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Origins and optimization of entanglement in plasmonically coupled quantum dots
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A system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in
detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining
and understanding system configurations that generate multiple bipartite quantum entanglements between the
occupation states of the quantum dots. These configurations include allowing for the quantum dots to be
asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary
number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to
develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that
through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount
of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser
degree.
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I. INTRODUCTION

Hybrid systems composed of plasmonic nanostructures
and quantum emitters/absorbers (e.g., semiconductor quantum
dots or other gain media) are currently of much interest. This is
due to the plasmonic element’s ability to interact strongly with
light, leading to subwavelength control and confinement, and
the possibility of the quantum element introducing nonlinear
optical (as well as more general quantum) responses that may
be enhanced by its proximity to the plasmonic element. For
example, theoretical predictions of certain Fano resonance
phenomena [1–3] in such systems exist, and experiments
are approaching the ability to measure such features [4]
and have already demonstrated novel lasing action [5] and
quantum coherences [6]. The studies of such hybrid systems
can also be viewed as steps in the emerging field of “quantum
plasmonics” [7–9], which aims to realize quantum-controlled
devices relevant to quantum sensing, single-photon sources,
and nanoscale electronics.

Features relevant to quantum information, such as the
entanglement among the quantum dots (QDs), can also be
achieved in hybrid plasmonic-QD systems. This ability may
seem surprising given the dissipative (or lossy) aspect of
plasmonic structures. However, interactions between quantum
objects and a dissipative environment lead to the production of
stable entangled states [10–12]. Several pioneering theoretical
studies have shown that dissipation-induced entanglement
is relevant to systems of QDs interacting with plasmonic
nanostructures [13–19].

We previously explored methods for generating entangle-
ment in QD-plasmon systems, using both systems in which
only one QD is initially prepared in its excited state and
the system evolves without external excitation and systems
in which all the QDs are initially in their ground states and
the entire system is excited by an ultrafast laser pulse [20].
This latter work, as well as the present work, models the QDs
as two-level systems with occupation of the (electronically)
excited state being the relevant degree of freedom. (The QD

parameters are chosen to be consistent with CdSe nanocrystals
as discussed in greater detail in earlier work on single
QD/plasmon interactions [3,21].) Reference [20] showed that
either a single or repeated optical pulse entangled the QDs and
that the amount of entanglement can be tuned by controlling
the coupling of the QDs to the plasmonic nanostructure.
Furthermore, the whole system can be excited with a single
pulse, without the need to individually address each subsystem.
That work and the present work allow for asymmetric coupling
of the QDs to the plasmonic system; for example, one can
imagine the QDs to be configured to be at different distances
from the plasmonic system or in some other way that can lead
to asymmetry.

To allow dissipation-induced entanglement to be an effec-
tive candidate for quantum information applications, one must
thoroughly understand how the entanglement is generated.
Furthermore, constraining parameter sets in experimentally
viable regions of the parameter space and knowing the sets’
associated degrees of entanglement are important for engi-
neering such systems within any larger quantum information
platform. In this paper, we seek to determine system features
that maximize the degree of entanglement between the QDs.
To accomplish this objective, we employ analysis based on
solutions of limiting forms of the problem and optimization
based on numerical solutions to the complete cavity quantum
electrodynamics equations. We show that for any number
of QDs, simple initial conditions and parameter guidelines
generate systems where all pairs of QDs share some degree of
entanglement.

II. THEORETICAL METHODS

We consider a cavity quantum electrodynamics (CQED)
model of a system of N quantum dots in proximity to a
plasmonic system. The underlying system’s basis states are

|qN,qN−1, . . . ,q1; s〉 = |qN 〉 |qN−1〉 . . . |q1〉 |s〉 , (1)
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where qi ∈ { 0,1 } represents the exciton of the ith QD and s ∈
{ 0,1,2, . . . ,Ns } represents the plasmon energy levels. Using
a simplified notation q = qN, . . . ,q1, we can write the density
operator as

ρ̂(t) =
∑
qs

∑
q ′s ′

Cqs,q ′s ′ (t) |q; s〉 〈q ′; s ′| . (2)

Then our governing equation describing the CQED model is
defined as

dρ̂

dt
= − i

�
[Ĥ ,ρ̂] − i

�
[Ĥd,ρ̂] + L(ρ̂), (3)

where Ĥ , Ĥd , and L are the operators for the Hamiltonian, the
driving term, and the Lindblad, respectively. The Hamiltonian
Ĥ for the coupled dot-plasmon system is

Ĥ =
∑

i

Ĥi + Ĥs +
∑

i

Ĥs,i . (4)

Defining the lowering and raising operator pairs for both the
QDs and the plasmon, (σ̂i ,σ̂

†
i ) and (b̂,b̂†), in the usual manner

as in [3,20], we have the isolated dot and plasmon Hamiltonian
terms,

Ĥi = �ωiσ̂
†
i σ̂i and Ĥs = �ωsb̂

†b̂, (5)

respectively, and the dot-plasmon coupling terms,

Ĥs,i = −�gi(σ̂
†
i b̂ + σ̂i b̂

†). (6)

Equation (6) represents the simplest possible dot-plasmon
coupling term corresponding to a QD gaining (losing) a
quantum of energy when the plasmon loses (gains) a quantum
of energy.

For the system exposed to a time-dependent electric field
E(t), we have

Ĥd = −E(t)

[∑
i

di(σ̂i + σ̂
†
i ) + ds(b̂ + b̂†)

]
, (7)

where di and ds denote the transition dipole moments of the
QDs and plasmon, respectively.

We assume that the distance between the QDs is large
compared with the separation between QDs and neighboring
metal nanoparticles, so that direct through-space coupling
among the QDs can be neglected. We also neglect retardation;
hence, our treatment is limited to systems with physical
dimensions that are small compared with optical wavelengths.

The Lindblad superoperator L(ρ̂) in (3) describes the
dephasing and dissipation effects. We employ a previously
developed [3] extension of L(ρ̂) that is parametrized by the
QD population decay γp, the QD dephasing rate γd , and the
plasmon decay constant γs . We consider time scales on the
order of the inverse of these rates, so that there are no correlated
fluctuations in the QDs’ states and so that the use of the
Lindblad superoperator is justified. Although environmental
dephasing is explicitly included for the QDs, it is not necessary
to do so for the plasmon because the dephasing that arises
from its decay [encoded in the corresponding term in L(ρ̂)] is
much larger in magnitude. As in Ref. [3], the rotating wave
approximation is applied.

We use Wootter’s concurrence [22] to measure the entan-
glement of the system. An alternative representation of the

density operator (2) is the density matrix ρ with its elements
defined by

ρqs,q ′s ′ = 〈q; s| ρ̂ |q ′; s ′〉. (8)

Let ρ ′ be the reduced density matrix associated with one
particular pair of QDs, A and B, obtained by tracing the full
density matrix ρ over the plasmon quantum numbers s and
the quantum numbers for all other QDs. The AB pairwise
concurrence is then given by

CA,B = max{0,λ1 − λ2 − λ3 − λ4}, (9)

where λi are the square roots of the eigenvalues of ρ ′ρ̃ ′ with
λi � λi+1 (in descending order). The matrix ρ̃ ′ corresponds to
the spin-flipped density matrix [22],

ρ̃ ′ = (σy ⊗ σy)(ρ ′)∗(σy ⊗ σy), (10)

where

(σy ⊗ σy) =

⎡
⎢⎣

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎦. (11)

A. Approximate analysis

We define the “dark” evolution to be how a QD-plasmon
system evolves given some initial QD excitation with ev-
erything else in the system initially in the ground state and
with no incident electromagnetic field. In the limit of low
total excitation energy one can develop an exact analytical
solution for the problem of an arbitrary number of quantum
dots interacting with the plasmon if QD dephasing is neglected.
This procedure is discussed in Appendix A. We discuss some
predictions from this analysis first for two QDs and then briefly
for larger numbers of QDs. Also of interest is the case of pulsed
excitation, where the system is initially in its ground state and
then subjected to a laser pulse. We follow the discussion of the
dark evolution with analysis of this pulsed case using simple
Rabi flopping ideas.

In the case of two QDs coupled to a plasmon, we are
concerned with determining QD-plasmon coupling factors
(g1 and g2) that maximize entanglement. For two QDs in
particular, it is convenient to consider the two entangled QD
states,

|S; s〉 = 1√
2

[|q2 = 0〉 |q1 = 1〉 + |q2 = 1〉 |q1 = 0〉] |s〉
(12)

and

|A; s〉 = 1√
2

[|q2 = 0〉 |q1 = 1〉 − |q2 = 1〉 |q1 = 0〉] |s〉 ,

(13)
in our calculations instead of the direct product of primitive
QD states as in (1). For two QDs, Appendix A discusses
in detail a three-state Hamiltonian model involving the basis
states |q2 = 0,q1 = 0; s = 1〉, |S; s = 0〉, and |A; s = 0〉 that
neglects QD dephasing and spontaneous emission but allows
for plasmon dissipation by introducing an appropriate complex
diagonal matrix element to the Hamiltonian matrix. The initial
state of relevance to the dark limit calculations is one with an
excited QD1, an unexcited QD2, and a plasmon; this state is
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represented by |0,1; 0〉 = 1√
2
(|S; 0〉 + |A; 0〉). This initial state

is interesting because although it is a separable, unentangled
state, it is a nonstationary state of the full system that has
been shown to evolve into a state with a possibly significant
transient degree of entanglement [13,14,20]. With no plasmon
dissipation (γs = 0) and for short times t , the probabilities of
states |0,0; 1〉, |S; 0〉, and |A; 0〉 are given by the respective
squares of a0(t), aS(t), and aA(t), where⎡

⎣a0(t)
aS(t)
aA(t)

⎤
⎦ ≈

⎡
⎢⎣

−ig1t

1√
2

− g1(g1+g2)t2

2
√

2
1√
2

+ g1(g2−g1)t2

2
√

2

⎤
⎥⎦. (14)

When γs > 0, the limit as t → ∞ is of interest because
the system can then reach a steady state in the populations.
Appendix A shows that for the initial condition with one
excited QD and the rest of the system unexcited,

aS(∞) = 1√
2(1 + x2)

x(1 − x) (15)

and

aA(∞) = 1√
2(1 + x2)

(1 − x), (16)

where x = g1−g2

g1+g2
. Remarkably, these results are valid for any

positive value of γs (although it must be remembered that
no QD dephasing has been allowed). The concurrence in this
asymptotic limit is simply |aA(∞)|2 − |aS(∞)|2 and can be
readily maximized to yield the optimum ratio of coupling
strengths: x = −2 + √

3 or
g2

g1
=

√
3. (17)

Appendix A also develops an exact procedure for construct-
ing the corresponding dark dynamics of N QDs interacting
with a plasmon, without QD dephasing. This system is
then described by an effective (N + 1) × (N + 1) complex
effective Hamiltonian model. For the scenario of one QD
initially excited, it can be used to get an idea of how the
entanglement results scale with increasing N .

We are also interested in the case when the system is
initially unexcited and an optical pulse is used to generate
transient entanglement. Assuming the pulse is relatively
simple and resonant with the QDs’ transition frequencies, a
simple question to ask is what values of g1 and g2 will lead to
the two-QD system being close to the |0,1; 0〉 state. We know
from previous work [13,14,20] that such a system will evolve
into a state with some degree of entanglement. On resonance,
the QDs undergo Rabi oscillations as they are excited by the
laser pulse. The time for QDi to undergo one Rabi oscillation
(i.e., to go from the ground state to the excited state and then
back to the ground state) is 2π/�R(i), where

�R(i) = μiE
loc
0 (i)

�
= 2giμsE0

�γs

, (18)

with Eloc
0 (i) being the amplitude of the sinusoidal electric field

experienced locally by QDi. The final term in (18) is obtained
by using the expression for Eloc

0 derived in Appendix B, which
relates this local electric field to the incident field E0. [Other
phenomena, such as the Purcell effect, are also occurring;

the Rabi formulas (18) discussed here should be construed as
approximate indicators of the dynamics.] In order to achieve
a highly entangled state, one QD, say QD1, must undergo
m − 1

2 Rabi oscillations (with m = 1,2, . . .) so that it is left in
the excited state. The time for this process to occur is 2π (m −
1
2 )/�R(1). The other dot, QD2, must undergo n = 1,2, . . . full
oscillations so that it is left in its ground state. The time for
this process to occur is 2πn/�R(2). Equating these two Rabi
times leads to the simple result that

g2

g1
= n

m − 1
2

. (19)

We see that the condition (19) on the couplings for achieving
one QD excited via pulsed excitation is not the same as
the condition (17) on the couplings for that excited state to
evolve to an entangled state. Nonetheless, for m = n = 1, (19)
predicts g2/g1 = 2, in approximate accord with (17) where
g2/g1 ≈ 1.73205. Although this restricts the parameter space
for the pulsed case somewhat, many parameters (especially
those describing the pulse) can still be varied freely.

B. Concurrence optimization

To find the set of system parameters that maximize the
sum of the pairwise concurrences, we employ a numerical
optimization framework that samples the parameter space in a
uniformly random fashion, evaluating the concurrence at each
point. The parameters in question include the N QD-plasmon
coupling coefficients (gi , i = 1,2, . . . ,N ), environmental as-
pects such as the QD dephasing and plasmon decay constants
(γd and γs , respectively), and applied laser pulse features such
as its fluence (F ) and duration (τ ). (See Sec. II C for definitions
of the laser pulse parameters.) Since the sum of the pairwise
concurrences is a nonconvex function of these parameters,
several isolated local maxima are likely to exist. Our approach
follows that in Ref. [23], clustering evaluated points in the
parameter space into basins of attraction for different maxima.
Clusters are formed by using the points’ function values (sum
of pairwise concurrences) and their proximity to points with
better function values. Points that do not have a better point
within a distance d are considered the best points in their
cluster. The distance d can be adjusted so a reasonable number
of clusters are identified. (One also can dynamically adjust d as
the parameter space is explored [23,24].) Local optimization
runs are then started from the best point in each cluster.

The local optimization problem of maximizing the sum of
pairwise concurrences is solved by minimizing the figure of
merit, ∑

i<j

(1 − Ci,j )2, (20)

where Ci,j depends on the system parameters being optimized
over [see (9)]. This form is appropriate because the pairwise
concurrences in (20) are bounded above by 1. Depending
on the context, Ci,j might be the maximum concurrence
achieved over time or a long-time asymptotic limit. When
viewed as a function of the parameters, (20) defines a
nonlinear least-squares problem. We solve this problem with
the Practical Optimization Using No Derivatives for sums of
Squares (POUNDerS) algorithm [25,26]. For a system with N
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QDs, POUNDerS iteratively builds local quadratic surrogates

of each of the (N2 ) residual functions {1 − Ci,j } and combines

this information in a master surrogate model. In each iteration
of the algorithm, this surrogate model is minimized within a
trust-region framework to generate candidate solutions.

C. Simulation details

We consider the time evolution of the density operator
in (3), with the choices of the parameters corresponding to
a gold nanoparticle system interacting with QDs in a polymer
matrix with a dielectric constant εmed = 2.25; these choices are
similar to those originally used in our single plasmonic-QD
system study [3]. For QDi, we choose �ωi = �ωs = 2.05 eV,
assuming the QD and plasmon transition energies are equal.
We set the QD dipole moments to be di = 13 D and the
plasmon dipole moment to be ds = 4000 D. The QDs are
assumed to have the same spontaneous decay rate, �γp =
190 neV. In some of our calculations we vary or consider
several values for the QD dephasing rate γd , and plasmon
decay rate γs . Consistent with our earlier work, base values
are �γd = 2 meV and �γs = 100 meV. We utilize coupling
factors �gi in the 0–30 meV range; and unlike all the other
QD parameters, we do allow QDs to have different coupling
constant values. Previous calculations show that a realistic
approximation for the plasmon-QD coupling is approximately
10 meV for a system such as the one we study here [3]. Other
systems, such as silver nanoparticles or particles with different
geometries, could exhibit larger coupling factors [21]. For
calculations that include a laser pulse E(t), we assume it has
the form (in the nonrotating frame) E(t) = G(t)E0 cos(ω0t),
where ω0 = ωs = ωi and G(t) is a Gaussian envelope function
such that the full width at half maximum of E2(t) is τ . The
pulse fluence is F = ∫ +∞

−∞ dt
√

εmedcε0E
2(t).

We formulate a density matrix equation from (3) using (8),
and we solve the density matrix equation consisting of a set
of M2 ordinary differential equations for the time-dependent
complex amplitudes Cqs,q ′s ′ (t), with M = 2NNs where N is
the number of QDs and Ns is the number of plasmon energy
levels. We solve these ODEs numerically using an efficient
parallel solver that employs sparse matrix-matrix multiplica-
tion algorithms with either a Runge-Kutta or exponential time
integration scheme [27,28].

III. RESULTS

We now detail our quantum dynamics results corresponding
to a system of QDs interacting with a plasmonic system as
modeled in Sec. II. We analyze such systems for both free
evolution of some particular excitation (what we refer to as
“dark” evolution) and in the presence of a laser pulse.

A. Two quantum dots in the dark

We first consider two QDs (QD1 and QD2) interacting
with a plasmonic system under the assumption that the initial
state |q2 = 0,q1 = 1; s = 0〉 has been prepared and evolves
in the absence of any external pulses, that is, “in the dark.”
With one QD excited and the other QD in its ground state,
this initial condition represents an equal superposition of
symmetric and antisymmetric states, |S; s = 0〉 and |A; s = 0〉

[Eqs. (12) and (13)]. While each of these latter two states
is entangled, their superposition is not entangled at all. As
shown previously [13,14,20], however, the system evolves
into a state with a high degree of concurrence. The reason is
that the |S; s = 0〉 state rapidly decays while the |A; s = 0〉
undergoes a much slower decay leading to a more purely
entangled state. Moreover, when we start from a completely
cold system and apply a pulse and optimize couplings to
maximize concurrence (Secs. IIIC and D), the resulting
transitory dynamics can involve just one QD being excited
before evolving to a more entangled state. Unlike cases studied
in previous work [13,14,20], the possibility of asymmetric
dot-plasmon couplings (g1 �= g2) can lead to new features in
the time-dependent concurrence.

When the QDs are symmetrically distributed within the
plasmonic system so that g1 = g2, the |A; s〉 state is an
eigenstate of the Hamiltonian (4) and decays with a relatively
slow dephasing rate (γd ) due only to the Lindblad term in (3).
With finite (but still symmetric) coupling, the |S; 0〉 state
mixes with the |S; 1〉 state [20] and is no longer an eigenstate
of the Hamiltonian. The probability of being in |S; 0〉 is
1
2 cos2(

√
2gt), leading to an increased initial decay of the

|S; 0〉 state. The plasmon decay (γs) damps out any additional
oscillations of the |S; 0〉 population. As shown previously [20],
starting a system in the |0,1; 0〉 state then leads to a high degree
of concurrence, since the |S; 0〉 state quickly decays, while the
|A; 0〉 state undergoes a much slower decay. With γd = 0,
the maximum concurrence for such a symmetric system is
therefore 0.5. We describe here a method to achieve larger
degrees of concurrence by forcing the |S; 0〉 state to evolve
into |A; 0〉 rather than into |0,0; 1〉.

By breaking the symmetry of the couplings between the
two QDs, we mix the |S; 0〉 state with the |A; 0〉 state,
through the |0,0; 1〉 state. This approach follows the analysis in
Appendix A where a three-state model is discussed and solved
analytically in certain limits. When g1 = g2, no coupling
occurs between |S; 0〉 and |A; 0〉; but when g1 �= g2, the
two states are indirectly coupled through the |0,0; 1〉 state
(to which both states are directly coupled). Starting in the
|0,1; 0〉 = (|A; 0〉 + |S; 0〉)/2 state and setting �γs = �γd =
0 meV lead to a cyclic evolution between a completely
unentangled state and a highly entangled state.

We follow the convention that QD1 is the QD that is
initially in its excited state. If g1 < g2, then the |A; 0〉 state
reaches a population approaching 1 [Fig. 1(a)]; if g1 > g2,
then the |S; 0〉 state reaches a population approaching 1
[Fig. 1(b)]. The dynamics of these two examples are similar;
the |A; 0〉 (respectively, |S; 0〉) state evolves into the |0,0; 1〉
state, which evolves into the |S; 0〉 (respectively, |A; 0〉) state
and back through the |0,0; 1〉 state into its initial state. Where
the |S; 0〉 (respectively, |A; 0〉) state reaches its maximum,
the concurrence does as well, reaching a value of nearly 1.
Using the explicit three-state system described in (A9) in
Appendix A, we find the ratio g1/g2 = √

2 − 1 ≈ 0.414 gives
an |A; 0〉 state population of unity, which also maximizes
the concurrence for the g1 < g2 case. A similar analysis
can be done for the |S; 0〉 state, giving g1/g2 = √

2 + 1 ≈
2.414. Note that these optimal ratios for achieving large,
instantaneous concurrences when there is no dissipation are
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FIG. 1. Time dependence of the populations of the states |S; s = 0〉, |A; s = 0〉, and |q2 = 0,q1 = 0; s = 1〉, and the concurrence, for a
two-QD system initially in the |q2 = 0,q1 = 1; 0〉 state, with no surface plasmon decay or QD dephasing, i.e., �γs = �γd = 0 meV. (a) A case
with g1 < g2 corresponding to the initially excited QD1 not being as strongly coupled to the surface plasmon as QD2: �g1 = 12.5 meV,
�g2 = 25 meV. (b) A case with g1 > g2: �g1 = 25 meV, �g2 = 12.5 meV.

different from those of Sec. II A. The latter concern either
an asymptotic concurrence that can be reached in the case
of dissipation or the couplings conducive to a pulsed laser
generating a particular excited state that can then evolve to a
state with significant concurrence.

For short times t , the approximation (14) applies. When
g1 < g2 in this case, the second term of aA(t) is positive,
which leads to a boost in the population of the |A〉 state. When
g1 > g2, the second term is negative, and the population of
the |A〉 state initially declines. In both cases, aS(t) initially
declines; but when g1 > g2, it reaches 0 much faster and then
rises to nearly 1. Both effects can be seen in Fig. 1.

When the Lindblad terms describing dissipation and de-
phasing are added, the results of the two simulations (�g1,�g2)
= (12.5 meV, 25 meV) or (25 meV, 12.5 meV) in Fig. 1 become
very different. In Fig. 2 we consider simply adding plasmon
dissipation (γs > 0) to the simulations, while keeping the QD
dephasing term γd at zero. This case also has a closed-form
solution (see Appendix A and Sec. II A). We see from Figs. 2(a)
and 2(b) that the initial state evolves and begins to populate the
first excited plasmon state, but the plasmon population quickly
decays and the system reaches a steady state. The steady-state
concurrence for the case with g1 < g2, Fig. 2(a), is larger
than the case with g1 > g2, Fig. 2(b). This trend might be
expected on the basis of the dynamics without plasmon decay,
Figs. 1(a) and 1(b), wherein a smooth rise of concurrence
from 0 to 1 occurs over initial times for the case g1 < g2,
Fig. 1(a), but a more complicated behavior involving a small
local maximum in concurrence occurs for the case g1 > g2,
Fig. 1(b). In a realistic system, the g1 > g2 case will not create
concurrences as large as those seen when g1 < g2; the best
case is that the plasmon decay is sufficiently large to stop the
|A; 0〉 state from evolving into the |S; 0〉 state. Figure 2(c)
shows the maximum concurrence (for each time trajectory)
for many different values of g1 and g2. There is a clear area
of large concurrence when g2 ≈ √

3g1 in accordance with the
expectation from (17) in Sec. II A. Small discrepancies with
respect to (17) can exist because this equation pertains to the

asymptotic concurrence and we are considering the maximum
concurrence achieved over a finite window of time.

Note that the isolated QD population decay rates γp

(discussed in Sec. II C) are sufficiently small and are generally
overwhelmed by the Purcell decays that result from finite
γs and plasmon-dot coupling factors gi . Thus, the inclusion
of decay in the QD populations has no significant effect
on the results presented here for the other parameter values
considered. The QD dephasing terms γd , however, can have
a more significant effect. Figure 2(d) [similar to Fig. 2(c) but
with �γd = 2.0 meV] shows the maximum concurrence for
many values of g1 and g2. Naturally, the maximum concurrence
is not as large as the �γd = 0 meV case. Furthermore, the clear
peak around the line g2 ≈ √

3g1 has been distorted, although
the line still has some significance. Including QD dephasing
effects causes the QD populations to decay before significant
entanglement can occur, unless the QDs are strongly coupled.
At small values of gi , the optimal point is far from the

√
3 line;

but as the couplings are increased, the optimal points again fall
upon the

√
3 line. As mentioned above, this derivation pertains

to the asymptotic values of the concurrence, but the dephasing
does not allow the system to approach that value without larger
values of gi .

B. N > 2 quantum dots in the dark

We have used the analytical solution for N QDs interacting
with a plasmonic system with no QD dephasing (Appendix A)
to explore how the dark entanglement dynamics scales with
increasing N beyond N = 2. As noted in Sec. III A, introduc-
ing dephasing can lead to smaller concurrences and shifts in
the optimal gj/gi ratios, but our results should indicate what
to qualitatively expect as N increases. As in our N = 2 dark
calculations, the initial condition corresponds to QD1 being
initially excited.

For the N = 3 case, Fig. 3 shows a contour map of the
asymptotic figure of merit (20) as a function of g2/g1 and
g3/g1. The results in this case do not depend on either g1 or
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FIG. 2. Results for a surface plasmon decay width �γs = 100 meV. Upper two panels (a) and (b) show the time dependence of the |S; s = 0〉,
|A; s = 0〉, |q2 = 0,q1 = 0; s = 1〉 state populations and concurrence for a two-QD system, initially in the |q2 = 0,q1 = 1; 0〉 state, and with
no QD dephasing, i.e., �γd = 0 meV. The cases with (a) �g1 = 12.5 meV, �g2 = 25 meV and (b) �g1 = 25 meV, �g2 = 12.5 meV are displayed.
The lower two panels (c) and (d) are the maximum concurrences found as a function of the QD/plasmon coupling factors, g1 and g2. (c)
Corresponds to no QD dephasing, γd = 0, and contains within it the concurrence maxima from the particular cases (a) and (b) above. (d) The
corresponding maximum concurrence when the QD dephasing is set to �γd = 2.0 meV. The dashed lines in (c) and (d) represent g2 = √

3g1.

the plasmon decay rate γs , provided that the latter is positive.
(The transient dynamics do depend on both g1 and γs and can
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FIG. 3. Asymptotic figure of merit, Eq. (20) for a three-QD
system, with one QD initially excited, γs > 0, and γd = 0, as a
function of the ratios of the QD/plasmon coupling parameters.

also be of interest.) We see that the optimal concurrences are
reached at g2/g1 = g3/g1 ≈ 1.05, which is somewhat smaller
than the g2/g1 = √

3 ratio found for the N = 2 case. The
optimal values of the concurrence are C1,2 = C1,3 ≈ 0.450 and
C2,3 = 0.215. At 0.450, the “direct” concurrence between the
initially excited dot and the other two dots is slightly smaller
than the result for the two-QD system.

Although we have not derived an explicit formula, we can
evaluate the exact asymptotic dynamics of the N QD case
using the procedure described in Appendix A. We find that
for the initial condition in question, two distinct concurrence
values always exist: a major one (Cmaj), associated with all the
QD pairs that involve the initially excited QD, and a smaller
one (Cmin), associated with all the indirectly excited pairs.
Evaluation of the results for N up to N = 150 shows that
Cmaj ≈ 0.54/

√
N , for N > 100; that is, the major concurrence

tends to zero, although it does so slowly, with an increasing
number of QDs. In this limit, the minor concurrence decays
somewhat faster, with Cmin ≈ 0.50/N . Also, the optimal
concurrence figure of merit is achieved with just one unique
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ratio for all the couplings, gi>1/g1 = x. We find that x ≈
1.09/

√
N for N > 100.

The optimal value of g2 becomes less than g1 when N = 4,
in contrast to the two- and three-QD systems, where g1 < g2.
This can be explained by looking at the relative fraction of QD
pairs, 2/N , that have Ci,j = Cmaj. When N < 4, the fraction
of QD pairs that have Ci,j = Cmaj is greater than 1/2. As N

becomes larger, more and more QD pairs have Ci,j = Cmin.
When g1 > g2, there is a boost in Cmaj, possibly at the cost
of Cmin. When N is large, the solution from minimizing the
figure of merit (20) no longer favors boosting Cmaj; instead it
increases the (more numerous) Cmin.

The state created by this mechanism, where all QDs share
bipartite entanglement (possibly weakly) with all other QDs,
is similar to a generalized W state [29]. In the W state, all pairs
of qubits have the same value of concurrence, and that value
is as large as possible. Thus, the W state is the optimal state,
given our figure of merit. According to an idea known as the
monogamy of entanglement [30], there is an upper bound on
the possible sum of bipartite entanglement. When N > 2, each
qubit pair can no longer be fully entangled. As N increases, the
maximum bipartite concurrence for each pair in the W state
decreases as 2/N . This represents a fundamental limit on the
entanglement that we can achieve in our system. The decay of
the concurrence with increasing N in our QD-plasmon system
is similar to that of the W state. Furthermore, if we measure
the initially excited QD, we can project onto a state where QD
pairs share a small degree of entanglement with each other.
Taking a ratio of the asymptotic value of Cmin in the projected
state to the W-state concurrence shows that each QD pair will
have only 1/4 of the concurrence of the W state. While this
may be a small fraction, it is a constant fraction with increasing
N , allowing a (low-fidelity) approximate W state to be easily
created for any number of QDs. The addition of decay in the
QD populations will further decrease the fidelity; but, as shown
in the two-QD case, the entanglement still persists, although
at a smaller value.

C. Two quantum dots subjected to ultrafast laser pulses

Preparing a system in the initial state |0,1; 0〉 can create
high degrees of entanglement, but it does not represent a
simple experimental setup. A simpler setup is to prepare a
system and excite it with a single optical pulse. Introducing
a laser pulse to a system increases the number of parameters
that the system depends on and can have a large effect on
the value of the concurrence [20]. For the two-QD system,
the parameters varied include the laser fluence (F ), laser
duration (τ ), coupling strengths (g1 and g2), QD dephasing
(γd ), and plasmon dephasing (γs); ωi , ωs , di , ds , and γp remain
fixed. We also constrained the parameter values in a physically
reasonable part of the parameter space; see Table I.

We used POUNDerS to find optimal parameters in different
parts of the parameter space defined in Table I. We optimized
the sum of the maximum value of the pairwise concurrence
over the time horizon; other figures of merit (such as the sum
of the integral of the pairwise concurrences over the time
window) will be investigated in future work.

The evolution of the pairwise concurrence and the states’
populations for a locally optimal result are given in Fig. 4(a)

TABLE I. Constraints for optimization parameters.

Parameter Lower bound Upper bound

�gi (meV) 0 25
F (nJ/cm2) 0 700
τ (fs) 10 200
�γd (meV) 0 5
�γs (meV) 100 300

and are seen to behave similarly to the dark case with one
initially excited QD shown in Fig. 2(a). In contrast to that
system, the plasmon population (not shown) reaches a much
higher value of nearly 10 in this system. (The |A〉 and |S〉 state
populations shown in Fig. 4 result from tracing the density
matrix over all plasmon quantum numbers.) We previously
discovered that we had to allow g1 and g2 to differ in order to
create large amounts of concurrence because doing so allowed
the system to approximate the |0,1〉 state, creating a highly
entangled state, with the proper parameter choices [20]. We
noted there that the less-strongly coupled QD achieved a
higher population after the pulse concluded. The boost in the
|A; s = 0〉 population we describe in this paper for the case
g1 < g2 (see discussion of Fig. 1) is also present, helping raise
the concurrence higher and thereby allowing the pulsed case to
reach levels of concurrence similar to those for the dark case.
This is clearly seen in Fig. 4(b), where the initial time scale
has been expanded and the pulse envelope is also displayed.
After the pulse ends, the |S〉 state begins to decline, but the |A〉
state grows, because of their indirect coupling. This boost of
the |A〉 state is the same as seen in the dark case. Figures 4(c)
and 4(d) also show this same parameter set with larger values
of γd . The maximum value of the pairwise concurrence
strongly depends on the QD dephasing γd . This dependence
is not surprising because longer coherence times are almost
always associated with larger degrees of (and longer-lived)
entanglement. Figure 4(c) shows the system at �γd = 0.2 meV
(approximately liquid helium temperatures), while Fig. 4(d)
shows the system at �γd = 2.0 meV (approximately liquid
nitrogen temperatures). The loss in concurrence from �γd =
0 meV to �γd = 0.2 meV is only about 10%, but it is almost
50% when �γd is raised to 2.0 meV. Generally, the concurrence
increases with decreasing γd .

Figure 5 shows the maximum concurrence over our time
window as g1 and F vary, for fixed pulse duration (τ ) and
coupling strength of the second QD (g2). An interesting
consequence of the Rabi oscillations is bifurcations of the areas
of high concurrence. At small laser fluences, given g1 < g2,
there is only one region of high concurrence corresponding
to one QD undergoing a half Rabi oscillation and the other
undergoing one oscillation; that is, the m = n = 1 case from
Sec. II A that was predicted to maximize entanglement. As the
laser fluence is increased, the region of high concurrence splits
into two regions, as the more-strongly coupled QD approaches
two full Rabi oscillations. The less-strongly coupled QD
can now go through either one-half or one-and-a-half Rabi
oscillations to end up in the excited state. This region bifurcates
again, as the second dot approaches three Rabi oscillations.
This analysis works for the two-QD and three-QD systems we
present in this paper, but it gives a relationship only between

022312-7



OTTEN, LARSON, MIN, WILD, PELTON, AND GRAY PHYSICAL REVIEW A 94, 022312 (2016)

0 200 400 600 800 1000

Time (fs)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Po

pu
la

tio
n 

(C
on

cu
rr

en
ce

)

|A
|S
Concurrence

0 50 100 150 200 250 300 350 400

Time (fs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
op

u
la

ti
on |A

|S
Pulse

0

2

4

6

8

10

P
u

ls
e 

E
n

ve
lo

pe

0 200 400 600 800 1000

Time (fs)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
pu

la
tio

n 
(C

on
cu

rr
en

ce
)

|A
|S
Concurrence

0 200 400 600 800 1000

Time (fs)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
pu

la
tio

n 
(C

on
cu

rr
en

ce
) |A

|S
Concurrence

(a) (b)

(c) (d)

FIG. 4. (a) and (b) The time dependence of the populations of the |A〉 and |S〉 states (traced over all |s〉) and concurrence for pulsed
excitation of an initially cold two-QD/surface plasmon system with parameters �g1 = 12.8 meV, �g2 = 24.9 meV, F = 263.4 nJ/cm2, τ =
12.5 fs, �γs = 186 meV, and �γd = 0 meV. These parameters are the result of a local optimization run. (c) and (d) These same parameter values
except for the QD dephasing, which is either (c) �γd = 0.2 meV or (d) �γd = 2 meV.

two of the parameters, g1 and g2. Since we have many other
parameters to optimize over, POUNDerS is used to find local
optima of the maximum concurrence.
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FIG. 5. Maximum concurrence for a parameter sweep of the two-
QD system, with �g2 = 30 meV, τ = 20 fs, �γs = 150 meV, �γd =
2 meV. The dashed lines represent coupling ratios obeying Eq. (19).

D. Three quantum dots subjected to ultrafast laser pulses

Since the QDs are assumed to be coupled to the plasmon
but not to each other, adding a QD increases the number of
parameters only by one (g3, the new QD’s coupling to the
plasmon). More importantly, the size of the Hilbert space
needed for the simulation increases by a factor of 2, more
than quadrupling the simulation’s run time and making the
optimization algorithm’s ability to quickly find locally optimal
solutions even more important. Here we present two locally
optimal points for a three-QD system. The QD dephasing,
�γd , is fixed to 0.2 meV, since this approximates a physically
realizable system at liquid helium temperatures.

Figure 6 shows the populations of the QDs and their
pairwise concurrences for the system parameters returned from
a local optimization run. Here we use the notation QDi:QDj

to signify the subsystem composed of QDi and QDj . This
system is analogous to the two-QD systems discussed above,
since g2 = g3. QD2 and QD3 undergo two Rabi flops, and QD1
undergoes one-and-a-half Rabi flops. Accordingly, g2/g1 =
g3/g1 = 1.322 ≈ 4

3 , as predicted by (19). The boost of the
population of the |A〉 state is also apparent in this system.
Shortly after the pulse has concluded, the |A〉 state is still rising,
while the |S〉 state decays. The boost of the |A〉 state eventually

022312-8



ORIGINS AND OPTIMIZATION OF ENTANGLEMENT IN . . . PHYSICAL REVIEW A 94, 022312 (2016)

0 500 1000 1500 2000

Time (fs)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
C

on
cu

rr
en

ce

QD3:QD2
QD3:QD1
QD2:QD1

(a)

100 150 200 250 300 350 400 450 500

Time (fs)

0.0

0.2

0.4

0.6

0.8

1.0

P
op

u
la

ti
on

QD1
QD2
QD3

(b)

0 100 200 300 400 500 600 700

Time (fs)

0.0

0.1

0.2

0.3

0.4

0.5

C
on

cu
rr

en
ce |A

|S
Pulse

0

1

2

3

4

5

6

7

8

9

P
u

ls
e

(c)

FIG. 6. Populations and concurrences for the final parameters
from a local optimization run on the three-QD system with �γd

fixed at 0.2 meV. The final parameters are �g1 = 14.6 meV,
�g2 = 19.3 meV, �g3 = 19.3 meV, F = 587.0 nJ/cm2, τ = 36.4 fs,
and �γs = 180.4 meV. (a) Shows the various bipartite concurrences,
and (b) shows the QD excitation probabilities. Because g2 = g3,
the QD3:QD1 and QD2:QD1 concurrences are identical, as are the
QD2 and QD3 excitation probabilities. (c) Shows the time-dependent
probabilities of the |S〉 and |A〉 states associated with either the
QD3:QD1 or QD2:QD1 subsystems and the pulse envelope.

finishes, and the |S〉 and |A〉 states then decay at similar rates.
Aside from having a much larger concurrence than presented
previously, the pulsed three QD simulations presented in this
paper are interesting because their coupling parameters are
smaller and represent a more physically reasonable system
than do our previous results [20].

Figure 7 shows the populations and concurrences for
a system with the best parameters from a different local
optimization run. The QDs in this system all have different
coupling values (as opposed to the previous example where
g2 = g3), leading to three different pairwise concurrences,
even though the populations of QD2 and QD3 are similar in
value. QD3 undergoes four Rabi flops, while QD1 undergoes
three-and-a-half Rabi flops, leading to g3/g1 = 1.142 ≈ 8

7 .
Additionally, QD2 undergoes three Rabi flops, leading to
g2/g1 = 0.858 ≈ 6

7 . Both these pairs agree with (19). The
QD3:QD1 subsystem, where the excited QD has a smaller
coupling value, exhibits the boost of the population of the |A〉
state described previously, as shown in Fig. 7(c). Contrast
this with the QD2:QD1 subsystem, Fig. 7(d), which does
not experience the boost, since the excited QD has a larger
coupling. After the pulse concludes, the |S〉 state undergoes a
similar evolution, but the |A〉 state is different. In the QD3:QD1
subsystem the |A〉 state increases after the pulse has concluded,
but in the QD2:QD1 subsystem the |A〉 state only decreases.
As a result, the QD3:QD1 concurrence ends up greater than
the QD2:QD1 state, even though the populations of QD2 and
QD3 end up at similar values.

We note that the Rabi-flop mechanism of Eq. (19) singles
out one QD (the one undergoing m − 1

2 Rabi flops) to become
strongly entangled with all other QDs, while the other two
QDs become strongly entangled only with the excited QD and
become weakly entangled with each other. This is an inherent
limit of the prescription described. Remarkably, entanglement
between the two approximate ground-state QDs reaches the
level that it does, even for identical QDs (i.e., a concurrence
of 0.1 in Fig. 6), but the entanglement is still much smaller
than the entanglement they share with the excited QD. Since
the pulse approximately prepares the same state studied in
Sec. III B and the Rabi-flop mechanism can be used for
N quantum dots, we can again project onto a (low-fidelity)
approximate W state, where all pairs of QDs share the same
amount of bipartite entanglement. This approach is more
experimentally feasible than having a previously excited QD,
but the bipartite concurrence values will be lower than those
of Sec. III B.

IV. CONCLUDING REMARKS

We provide a detailed explanation of the origins and
optimization of bipartite (or pairwise) entanglement in two,
three, and an arbitrary number of QDs coupled to a plasmonic
system. We analyze systems with an initially excited state as
well as initially unexcited systems excited by a laser pulse.
We vary the QD-plasmon coupling values (which represent
a QD’s distance from the plasmonic system), as well the
femtosecond pulse parameters and dephasing rates, in order to
explore entanglement generation. By utilizing the full density
matrix master equation, we are able to study the entanglement
(via concurrence) of many different systems.

In the case of two QDs, two mechanisms are identified as
the source of the entanglement generation: the differing decay
rates of the |S〉 and |A〉 states (previously identified) [20] and
a mechanism involving an indirect coupling between the |S〉
and |A〉 states that leads to a boost in the |A〉 state population.
With no dephasing or decay, high degrees of entanglement can
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FIG. 7. Populations and concurrences for the final parameters from a second local optimization run on the three-QD system with �γd fixed
at 0.2 meV. The final parameters are �g1 = 19.0 meV, �g2 = 16.3 meV, �g3 = 21.7 meV, F = 603.4 nJ/cm2, τ = 39.4 fs, and �γs = 107.7 meV.
(a) Shows the various bipartite concurrences, and (b) shows the QD excitation probabilities. The pulse envelope and the populations of the |S〉
and |A〉 states are shown for the QD3:QD1 pair in (c) and the QD2:QD1 pair in (d).

be generated by having near-unity populations of either the
|A〉 or |S〉 states. When plasmon decay is added, however, the
entanglement generated from |A〉 is much higher than that of
|S〉. A simple analysis including plasmon decay but neglecting
QD dephasing predicts that the asymptotic concurrence is
maximized when g2/g1 = √

3 in the dark case; calculations
show that this relation is still useful when QD dephasing is
considered.

The two entanglement-generating mechanisms are most
apparent when the system is initially prepared with equal
populations of |S; 0〉 and |A; 0〉, which is most easily achieved
by having one excited QD and the other QD in the ground
state. This dark case may be contrasted with attempts to
generate entanglement in initially unexcited systems by using
laser pulses. On the basis of optimization, we find that only
certain sets of parameters generate an analog to the dark
case. In particular, certain rational values of the ratio of the
QD-plasmon couplings, gi/gj , lead to results comparable to
the dark case. These ratios can be understood by analyzing the
underlying Rabi flops of the component QDs; the target final
state, after the pulse, consists of one QD excited and the other
QD in the ground state. To achieve this, one QD undergoes
m − 1

2 Rabi oscillations, leaving it in an approximate excited

state, while the other QD undergoes n full oscillations, leaving
it in an approximate ground state. This method will work for
any pair of QDs, even if that pair is part of a larger system of
N QDs.

In the case of three QDs, we optimize the sum of the
bipartite concurrences among all of the pairs. Several local
maxima corresponding to different sets of system parameters
are obtained, and we present two in this paper. One (“so-
lution 1”) was analogous to the two-QD systems discussed
above, with g1 < g2 = g3, while the other (“solution 2”) had
g2 < g1 < g3; both exhibited the entanglement generation
mechanisms described above. The parameters for all three
optimal systems are listed in Table II. The ratios of the gi

values in the highly entangled pairs of these three-QD systems
follow the simple rules derived from the Rabi-flop analysis.

We also extended our results to N QDs, with some
simplifying assumptions, such as no QD population decay and
a single initially excited QD. For any number of QDs, all pairs
of QDs will become entangled. However, since this mechanism
relies on one QD being in the excited state and the rest of the
QDs being in the ground state, these mechanisms can strongly
entangle only a fraction (2/N) of the pairs of QDs. Using the
simple rules laid out in this paper for a large number of QDs
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TABLE II. Summary of optimization run results for a laser pulse interacting with a system composed of two and three quantum dots. An"f "

denotes that the parameter value was fixed and therefore not optimized over.

Two QDs Three QDs, Solution 1 Three QDs, Solution 2

�g1 (meV) 12.8 14.6 19.0
�g2 (meV) 24.9 19.3 16.3
�g3 (meV) – 19.3 21.7
F (nJ/cm2) 263.4 587.0 603.4
τ (fs) 12.5 36.4 39.4
�γd (meV) 0 0.2f 0.2f

�γs (meV) 186 180 108
Figure Fig. 4 Fig. 6 Fig. 7
Maximum bipartite concurrence 0.60 0.34 0.35

results in the QD initially in its excited state being strongly
entangled with all other QDs, but all the initially ground-state
QDs will be strongly entangled only with the initially excited
QD and only weakly entangled with each other. Since all QDs
share some amount of bipartite entanglement with all other
QDs, the resulting state is similar to a generalized W state and,
with a measurement of the excited QD, can be projected to a
state where all pairs of QDs share the same amount of bipartite
concurrence (though this projected state only has 1/4 of the
bipartite concurrence of a true W state).

Additionally, this procedure could generate certain types of
cluster states. A cluster state is a graph in which qubits are
represented by nodes on a graph, and an edge between two
nodes represents entanglement between the two qubits [31].
The W state would be a cluster state represented by a complete,
fully connected graph. An important subclass of cluster states
is the star state, where a central node is connected to all other
nodes (or, a single qubit is entangled to all other qubits but the
other qubits are not entangled with each other). A four-qubit
star cluster can be used for universal quantum computing [32].
In our model, we have an approximate star cluster for N QDs,
since the initially excited QD is strongly entangled with all
other QDs. Although we show N QD results only for a specific
initial starting condition, we also show how this state can be
prepared for N QDs from a single, ultrafast laser pulse. The
rules for the ratios of the coupling strengths based on the
number of Rabi flops can be used to define an appropriate set
of parameters to prepare an approximate form of the specific
initial starting condition studied.

The ability to fabricate systems with specific QD/plasmon
coupling factors or ratios is necessary in order to realize the
results discussed in this paper. These factors are related to
the distances between the QDs and the plasmonic system,
which are ideally less than 10 nm. While challenging, rapid
progress continues in the area of nanofabrication, e.g., in the
use of DNA-based assembly methods [33,34] to generate metal
nanoparticle-DNA-linker-QD systems, and so the systems we
envision may well be experimentally feasible in the near future.
We note that here we are not envisioning dynamical control
of the QD/plasmon coupling factors during an entanglement
experiment, but rather clever experimental fabrication to
achieve a fixed and generally asymmetric configuration of QDs
about the plasmonic system that exhibits the couplings and
coupling ratios consistent with the optimal structures deduced
in this paper.

Further studies of such systems that better approximate
the W state are planned, as are studies of the entanglement
between all qubits of the system (rather than just pairs), which
would be similar to the GHZ state [29], which represents
entanglement where all the qubits are mutually entangled with
each other (rather than just sharing bipartite entanglement with
other qubits). The W and GHZ states represent two mutually
exclusive examples of multipartite entanglements and allow
entanglement to be used as a quantum information resource in
different ways [29]. The model presented here is reasonably
general; and, while our numerical applications focused on
a parameter regime and thus phenomena consistent with
semiconductor nanocrystal/plasmonic systems, the approach
may be relevant to other systems such as QDs coupled to other
types of resonators or even nitrogen vacancies in diamond [35]
and superconducting qubits [36].

ACKNOWLEDGMENTS

This work was performed at the Center for Nanoscale
Materials, a U.S. Department of Energy Office of Science
User Facility and supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research (both under Contract No. DE-AC02-06CH11357).
We thank Ron Shepard for helpful suggestions concerning
some of the analytical analysis presented in this paper. We
thank Todd Pittman and Jason Kestner for helpful discussions.

APPENDIX A: THREE AND N + 1 STATE MODELS

The “dark” problem, namely, to determine the dynamics
of N QDs and a plasmonic system that results from a given
initial condition without any applied laser pulse, can be solved
analytically if the initial condition is not too energetic and
QD dephasing is neglected. An example is a system in which
there is just one quantum of excitation within the QD manifold
and a cold plasmonic system. The analytical solution is made
possible because under such conditions a time-dependent
Schrödinger equation involving an effective, non-Hermitian
Hamiltonian can be employed and the latter can be represented
by an (N + 1) × (N + 1) matrix with a simple structure. We
first illustrate such a solution in detail for the case of N = 2.
We then present the general N + 1 state solution.
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For two QDs interacting with a plasmonic system, we wish
to solve for the time evolution of |�(t)〉 satisfying

i�
∂

∂t
|�(t)〉 = Ĥ |�(t)〉, (A1)

where

|�(t)〉 = c0(t) |q2 = 0,q1 = 0; s = 1〉
+ cS(t) |S; s = 0〉 + cA(t) |A; s = 0〉. (A2)

We refer to the three states |q2 = 0,q1 = 0; s = 1〉, |S; s = 0〉,
and |A; s = 0〉 as the zero-order basis. This limited basis is
adequate for describing an initial condition that involves any
superposition of these three states, such as the case of one
QD being excited and the plasmonic system and other QD
being cold. With the definitions of the basis states in the
text, (1), (12), and (13), and the Hamiltonian operator (4),
the corresponding 3 × 3 Hamiltonian matrix of the zero-order
basis representation is

H = �

⎡
⎣ω0 − iε α β

α ω0 0
β 0 ω0

⎤
⎦. (A3)

The QD and plasmon transition frequencies are assumed to be
equal, ω1 = ω2 = ωs , the coupling between |0,0; 1〉 and |S; 0〉
is

α = 1√
2

(g1 + g2), (A4)

and the coupling between |0,0; 1〉 and |A; 0〉 is

β = 1√
2

(g1 − g2). (A5)

We assume no direct coupling between |S; 0〉 and |A; 0〉. Notice
that in (A3), we have added an imaginary part −iε to the
diagonal matrix element associated with |0,0; 1〉. With ε =
γs/2 this term represents the dissipative loss of the plasmonic
system.

Introducing the more slowly varying coefficient vector,⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦ = exp (iω0t)

⎡
⎣c0(t)

cS(t)
cA(t)

⎤
⎦, (A6)

(A1) leads to

d

dt

⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦ = −iW

⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦, (A7)

where

W =
⎡
⎣−iε α β

α 0 0
β 0 0

⎤
⎦. (A8)

The solution of (A7) is thus⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦ = exp (−iW t)

⎡
⎣a0(0)

aS(0)
aA(0)

⎤
⎦. (A9)

In the limit (assuming no plasmon dissipation, ε = 0),
expanding the exponential and re-grouping terms, (A9) can

be written more explicitly as⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦ =

⎡
⎣a0(0)

aS(0)
aA(0)

⎤
⎦ +

⎛
⎝

⎡
⎣η2 0 0

0 α2 αβ

0 αβ β2

⎤
⎦F (t)

η2
− iW

G(t)

η

⎞
⎠

×
⎡
⎣a0(0)

aS(0)
aA(0)

⎤
⎦, (A10)

where

η =
√

α2 + β2 (A11)

and

F (t) = cos(ηt) − 1, G(t) = sin(ηt). (A12)

Note that for the initial condition corresponding to
|�(t = 0)〉 = |q2 = 0,q1 = 0; s = 0〉 or a0(0) = 0, aS(0) =
aA(0) = 1√

2
, the above exact solution (for ε = 0) is such that

a0(t) is a purely imaginary number for all times and that aS(t)
and aA(t) are purely real numbers for all times. Equation (A10)
can be approximated to various orders in time by expanding
F (t) and G(t) defined in (A12) appropriately. Thus, with
the initial condition |�(t = 0)〉 = |q2 = 0,q1 = 1; s = 0〉, the
approximate solution, accurate to second order in time,
is

⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦ ≈

⎡
⎢⎢⎣

−i
(α+β)t√

2
1√
2

− (α2+αβ)t2

2
√

2
1√
2

− (β2+αβ)t2

2
√

2

⎤
⎥⎥⎦, (A13)

or, in terms of g1 and g2,

⎡
⎣a0(t)

aS(t)
aA(t)

⎤
⎦ ≈

⎡
⎢⎢⎣

−ig1t

1√
2

− g1(g1+g2)t2

2
√

2
1√
2

+ g1(g2−g1)t2

2
√

2

⎤
⎥⎥⎦. (A14)

Of course, another way to obtain (A10) is to determine
the eigenvalues and eigenvectors of W [Eq. (A8)], wk and
|φk〉, k = 1,2,3, and represent (A9) with them. This procedure
can be carried out exactly even when plasmonic dissipation is
allowed (ε > 0). The eigenvalues of W are easily found to be

w1 = 0,

w2 = 1
2 (−iε −

√
4α2 + 4β2 − ε2), (A15)

w3 = 1
2 (−iε +

√
4α2 + 4β2 − ε2),

and the associated (unnormalized) eigenvectors projected onto
the zero-order basis are

⎡
⎣〈0,0; 1|φ1〉

〈S; 0|φ1〉
〈A; 0|φ1〉

⎤
⎦ =

⎡
⎣ 0

−β/α

1

⎤
⎦, (A16)

⎡
⎣〈0,0; 1|φ2〉

〈S; 0|φ2〉
〈A; 0|φ2〉

⎤
⎦ =

⎡
⎢⎣

−iε−
√

4α2+4β2−ε2

2β

α/β

1

⎤
⎥⎦, (A17)
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and ⎡
⎣〈0,0; 1|φ3〉

〈S; 0|φ3〉
〈A; 0|φ3〉

⎤
⎦ =

⎡
⎢⎣

−iε+
√

4α2+4β2−ε2

2β

α/β

1

⎤
⎥⎦. (A18)

The propagator may then be written as

exp(−iŴ t) =
∑

k

|φk〉 〈φ∗
k | exp(−iwkt)/nk, (A19)

where

nk = 〈φ∗
k |φk〉 =

∑
j=0,S,A

〈j |φk〉2. (A20)

The bra vectors we employ, 〈c| (as is most common), are
defined to be the transpose of the complex conjugates of
the coefficients representing their corresponding kets, |c〉.
Thus 〈c|d〉 = ∑

j c∗
j dj , where cj = 〈j |c〉, dj = 〈j |d〉. An

expression such as (A20), which involves an additional
complex conjugate in the argument of the bra vector, implies
that nk is the sum of the (complex) squares of the components
of |φk〉, as opposed to being the more familiar sum of the
squares of the magnitudes of the components. This necessary
peculiarity arises from W being symmetric but not Hermitian.
(In particular the symmetry of W implies for eigenvalues
wa �= wb that 〈φ∗

a |φb〉 = 0, which ultimately leads to an
expression for the unity operator involving a sum of |φk〉 〈φ∗

k |
terms instead of the more familiar sum of |φk〉 〈φk| terms.)

We note that for ε = γs/2 > 0, w2 and w3 always have
negative imaginary components. As t → ∞, only the k = 1
contribution to (A19) survives because only w1 has no decay
(or negative imaginary) component. If we initiate the system
with one QD excited, then⎡

⎣a0(0)
aS(0)
aA(0)

⎤
⎦ =

⎡
⎢⎣

0
1√
2

1√
2

⎤
⎥⎦. (A21)

The asymptotic amplitude for aS is then

aS(∞) = 〈S|�(∞)〉
= 〈S|φ1〉 〈φ1|�(0)〉
= 1√

2(1 + x2)
x(1 − x), (A22)

where

x = β

α
= g1 − g2

g1 + g2
, (A23)

and we have used the fact that n1 = 1 + x2. In a similar fashion
we find

aA(∞) = 1√
2(1 + x2)

(1 − x). (A24)

The asymptotic concurrence in this case is simply [14]

C(∞) = |PA(∞) − PS(∞)|
= ||aA(∞)|2 − |aS(∞)|2|. (A25)

Since the magnitude of x in (A23) is always less than 1 when
g1 and g2 are positive, PA > PS , and one can ignore the outer

absolute signs. The concurrence then reduces to

C(∞) = 1

2(1 + x2)2
(1 − x)2(1 − x2). (A26)

Viewed as a function of x, the maximum of (A26) is found to be
at x = −2 + √

3, and corresponds to g2/g1 = √
3, consistent

with the results in the text. For this value of x, C(∞) ≈ 0.6495.
The three-state model above involving the states

|q1 = 0,q2 = 0; s = 1〉, |S; s = 0〉, and |A; s = 0〉 is conve-
nient because it led directly to simple analytical expressions
for the asymptotic concurrence. However, the same result
can be obtained, with a little more work, by employing the
basis |q1 = 0,q2 = 0; s = 1〉, |q1 = 0,q2 = 1; s = 0〉, and
|q1 = 1,q2 = 0; s = 0〉. In fact this approach is advantageous
because it then is easily generalizable to N > 2 QDs. Assume
we have N QDs, with each QDk interacting only with the
dissipative plasmon via a Hamiltonian coupling term �gk . If
the basis is taken to be |q1 = 0,q2 = 0,q3 = 0, . . . ; s = 1〉,
|q1 = 1,q2 = 0,q3 = 0, . . . ; s = 0〉, | q1 = 0,q2 = 1,q3 = 0,

. . . ; s = 0〉, . . . , then one has an (N + 1) × (N + 1)
Hamiltonian matrix representation H = �W with

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

−iε g1 g2 · · · gN

g1 0 0 · · · 0
g2 0 0 · · · 0
...

. . .

gN 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A27)

The characteristic equation for the eigenvalues of W is then
wN−1(w2 + iεw − G) = 0, where G = ∑N

k=1 g2
k . It implies

that there are N − 1 degenerate eigenvalues w1 = w2 = . . . =
wN−1 = 0 and two complex eigenvalues,

wN = (−iε −
√

4G − ε2)/2,

wN+1 = (−iε +
√

4G − ε2)/2.

(A28)

Let vk denote the eigenvector corresponding to the kth
eigenvalue, and let vk

j denote the j th component of this eigen-
vector. One can easily see that the k = 1,2, . . . ,N − 1 degen-
erate eigenvectors must all have vk

1 = 0; that is, they contain
no component in the basis state |q1 = 0,q2 = 0, . . . ; s = 1〉.
The remaining components must satisfy

N+1∑
j=2

gj−1v
k
j = 0. (A29)

Although one can easily solve (A29) for low N in various
ways, a systematic procedure for obtaining N − 1 linearly
independent and orthogonal eigenvectors is as follows. Notice
that (A29) implies that each of the desired vectors vk must
be orthogonal to the vector g = (0,g1, . . . ,gN )T . Thus one
can initially set N − 1 vectors with random coefficients and
use a Gram-Schmidt procedure initiated with the vector g, or-
thogonalizing all subsequent vectors against g and previously
generated vectors.

The final two eigenvectors for k = N and k = N + 1 are
easily found to have the j = 1 components vN

1 = wN/gN and
vN+1

1 = wN+1/gN . Their j = 2, . . . ,N components are vN
j =

vN+1
j = gj−1/gN and, finally, for the j = N + 1 components,

vN
N+1 = vN+1

N+1 = 1. These two eigenvectors are orthogonal to
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each other and the previous N − 1 eigenvectors associated
with the degenerate eigenvalue, and we find it convenient to
employ them in this way with normalization considerations
entering into the propagator representation (A19).

With the systematic procedure above for evaluating all the
eigenvectors, and introducing the time-dependent amplitudes
bj (t) corresponding to states j = 1,2, . . . ,N + 1 within the
basis |0,0,0,0, . . . ; 1〉, |0,1,0,0, . . . ; 0〉, ..., |0, . . . ,0,1; 0〉, one
can use (A19) (extended to N + 1 states, of course) to
show

bj (t) =
N+1∑
k=1

exp(−iwkt)Kj,k, (A30)

where

Kj,k =
∑

i

vk
j v

k
i bi(0)/nk. (A31)

The probabilities for QDs 1,2, . . . ,N to be excited are
P1 = ‖b2‖2, P2 = ‖b3‖2, . . . ,PN = ‖bN+1‖2. While obtain-
ing bipartite concurrences may appear arduous, if b1(0) = 0
(i.e., no amplitude in the state corresponds to the plasmon
excited with all QDs cold) and all the other amplitudes
are real, one can show that the bipartite concurrences are
simply Ci,j = 2

√
PiPj . As with the three-state example, we

note that as t → ∞, only the k = 1,2, . . . ,N − 1 eigenvector
contributions survive and one could use (A30), setting the
exponential to one and carrying the sum out to only k = N − 1,
to evaluate the asymptotic populations.

APPENDIX B: LOCAL FIELD ENHANCEMENT

To estimate Rabi-flop frequencies for the QDs, we need
an estimate of the local electromagnetic field they experience,
which is enhanced relative to the incident field due to the
presence of the plasmonic system. To this end, we consider the
interaction of one QD with a plasmonic system and employ a
classical coupled dipole picture, as in Ref. [3] and associated
supplemental material. The time-dependent dipoles for the
plasmon (μs(t)) and QD (μq(t)), in the presence of an incident
field with frequency ω satisfy the equations of motion,

μ̈s(t) + ω2
s μs(t) + γsμ̇s(t) = As[E0 cos ωt + μq(t)J ], (B1)

μ̈q(t) + ω2
qμq(t) + γqμ̇s(t) = Aq[E0 cos ωt + μs(t)J ].

(B2)

The parameters ωs , ωq , and γs are the same as those in the
CQED model of Sec. II. The other parameters in these classical
equations are related to those in the CQED model as follows:

J = �g

dsdq

,

As = 2d2
s ωs/�,

Aq = 2d2
qωq/�,

γq = 2γd.

(B3)

Several comments are in order regarding these relations. The
relation for J was derived in Ref. [3]. The relations for As

and Aq reflect exactly solving (B1) and (B2) in the limit of
the dipoles not interacting (J = 0) and equating the resulting
amplitudes of oscillation of the dipoles with the corresponding
quantum expressions (in the linear or low E0 limit). These
expressions are twice as small as the previously inferred ones,
which were less accurate because they were based on an
approximate solution of the classical equations. The classical
decay factor γq is taken to be twice the corresponding quantum
dephasing factor γd . This ensures that the full width at half
maximum of the isolated QD spectrum, inferred from the
classical expression with γq , is equal to the corresponding
quantum result in the low E0 limit.

We can identify the term μs(t)J in (B2) as the local electric
field the QD experiences because of the plasmon, that is,

Eloc(t) = μs(t)J. (B4)

For estimating Eloc, one can approximate μs(t) by the
expression that results from the exact solution of (B1) in the
uncoupled (J = 0) and on resonance (ω = ωs) limits. This
solution is readily obtained by complexifying the equation,
that is, by replacing cos(ωt) by exp(−iωt), which leads to
an equation that is easy to solve exactly. The real part of the
complex solution then solves the original, real equation. Thus,

μs(t) ≈ AsE0

ωsγs

sin(ωt). (B5)

Insertion of (B5) into (B4) leads to

Eloc(t) ≈ Eloc
0 sin(ωt), (B6)

where

Eloc
0 = 2

ds

dq

g

γs

E0, (B7)

where the expressions in (B3) have also been used.
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