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Entanglement as a resource for local state discrimination in multipartite systems

Somshubhro Bandyopadhyay* and Saronath Halder
Department of Physics and Center for Astroparticle Physics and Space Science, Bose Institute,

Block EN, Sector V, Bidhan Nagar, Kolkata 700091, India

Michael Nathanson†

Department of Mathematics and Computer Science, Saint Mary’s College of California, Moraga, California 94556, USA
(Received 23 November 2015; revised manuscript received 5 July 2016; published 11 August 2016)

We explore the question of using an entangled state as a universal resource for implementing quantum
measurements by local operations and classical communication (LOCC). We show that for most systems
consisting of three or more subsystems, there is no entangled state from the same space that can enable all
measurements by LOCC. This is in direct contrast to the bipartite case, where a maximally entangled state
is a universal resource. Our results are obtained showing an equivalence between the problem of local state
transformation and that of entanglement-assisted local unambiguous state discrimination.
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I. INTRODUCTION

Given a quantum system composed of spatially separated
subsystems, it is well known that the set of quantum operations
which can be implemented with local operations and classical
communication (LOCC) constitutes a strict subset of all
quantum operations on the whole system. For example, it
is impossible, by LOCC, to transform a product state into
an entangled state [1], even with nonzero probability. The
presence of additional entanglement, however, can help to
overcome such restrictions [2–7], and appropriate shared
entanglement enables local implementation of any quantum
operation. In this way, entanglement can be seen as a
resource for quantum operations, e.g., quantum teleportation
[8], superdense coding [9], entanglement-catalysis [10], and
entangling measurements and unitaries [2–6].

In this work, we explore the question of universal resource
states, whose presence overcomes the limitations imposed
by LOCC to allow implementation of whole classes of
quantum operations. For instance, in a bipartite quantum
system H = HA ⊗ HB , a maximally entangled state |�〉 ∈
H constitutes a universal resource for extracting classical
information. This can be easily understood by imagining the
subsystems as controlled by two parties, Alice and Bob, who
share an unknown state |φ〉 ∈ HA ⊗ HB . If they also share
the maximally entangled state |�〉, they can use it to teleport
Alice’s qudit to Bob. Bob can then extract information about
|φ〉 by applying any quantum measurement to his own system,
thus overcoming the limitations of the spatial separation.
Because Alice and Bob can use |�〉 to perform any complete
measurement on |φ〉, we say that |�〉 is universal for the task
of complete measurement.

A natural question to ask is whether such universal resource
states also exist for multipartite systems (those consisting
of three or more subsystems), where entanglement has a
more complex structure [11]. The present work considers
the task of quantum state discrimination by LOCC [12–31]
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and seeks to characterize resource states which enable us to
locally distinguish any set of orthogonal states from a fixed
multipartite system. We show that for a given multipartite
system, a universal resource state for local state discrimination
must in general be from a larger-dimensional space than the
states themselves. Moreover, there exist orthonormal bases
that cannot be perfectly distinguished by LOCC using any
resource state from the same size state space, making them
good candidates for data hiding protocols [32–35].

We prove our results by demonstrating an equivalence
between local unambiguous state discrimination and local
state transformation. Any LOCC protocol which imple-
ments one task can be adapted to achieve the other. Since
multipartite entanglement is understood primarily in terms of
local state transformation, our equivalence gives us tools to
understand both unambiguous and perfect discrimination with
LOCC. This equivalence (which follows similar results in [24]
and others) is useful in its own right and nicely complements
recent results on resources for local state transformation [36].
This work extends earlier analysis of entanglement as a
resource in bipartite systems, which often calculate how much
additional entanglement is necessary to complete a certain
task locally. (Early examples include quantum teleportation
and entanglement catalysis for state discrimination [1,8,10].)
Given the complexity of quantifying the amount of multipartite
entanglement necessary for a given task, we must pay attention
to the quality of the entanglement instead.

The rest of the paper explores these questions in the
following way. In Sec. II, we give a precise definition of a
universal resource and full statements of our results, which are
proven in Sec. III. In Sec. IV, we illustrate our results with
examples, while Sec. V gives conclusions and directions for
future work.

II. STATEMENT OF RESULTS

A. Entanglement as a resource for LOCC measurement

Local state discrimination problems assume that classical
information has been encoded in quantum states and seek to
determine how much of this information can be recovered
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locally. Formally, we suppose that a set of spatially separated
observers share a quantum system prepared in one of a known
set of pure states {|ψi〉} ⊂ ⊗N

k=1Hk , each occurring with
some nonzero probability; see, e.g., [12–20]. The question
of interest is the following: can LOCC protocols distinguish
such quantum states as well as global measurements can?

Although optimal discrimination of two states is always
possible to implement using only LOCC [12,31], local
discrimination of larger sets in general is not [14,26]. In
particular, if B is a complete basis consisting of multipartite
states, LOCC is never sufficient to distinguish its elements
if B contains any entangled states [24]. It may be noted
that the existence of locally indistinguishable states imply
locally hidden information, and has thus found applications
in quantum cryptography primitives such as data hiding and
secret sharing [32–35,37].

On the other hand, sets of locally indistinguishable quantum
states may become distinguishable in the presence of shared
entanglement, e.g., [7,30], and this is the phenomenon we
wish to understand better. Imagine that Alice and Bob are
initially in the same location prior to going their separate ways.
They know that in the future, they will need to distinguish a
set of bipartite states from H ⊗ H; but they do not know
what these states will be. Nonetheless, if they prepare a
maximally entangled state |�〉 ∈ HA ⊗ HB , then for any set
of states {|ψi〉} ⊂ HA ⊗ HB , the states {|�〉 ⊗ |ψi〉} can be
distinguished as well using only LOCC across the A : B

split as they can be using any other quantum operations.
The maximally entangled state is a true resource in that
it enables measurements which are not otherwise possible
but is consumed in the process. And it is universal—Alice
and Bob can prepare |�〉 without knowing what the {|ψi〉}
will be.

In this work, we seek to explore this same idea in the
context of multipartite systems. If Alice, Bob, and Charlie
wish to jointly prepare an entangled resource state to help
them distinguish unknown sets from H ⊗ H ⊗ H, it is less
clear what this resource state should be, and in fact depends
on the type of state discrimination they are trying to achieve.
This motivates the primary definition in this work.

Definition 1. Let H = ⊗N
k=1C

dk be a multipartite system
and let H′ = ⊗N

k=1C
d ′

k be a system with the same multipartite
structure as H. Consider H′ ⊗ H as an N -partite system with
local subsystems (Cd ′

k ⊗ Cdk ), k = 1, . . . ,N .
We say that a state |�〉 ∈ H′ is universal for local state

discrimination in H if, for every set B = {|ψi〉} of mutu-
ally orthogonal states in H, the set of states |�〉 ⊗ B ≡
{|�〉 ⊗ |ψi〉} ⊂ H′ ⊗ H can be perfectly distinguished with
LOCC.

Likewise, |�〉 is universal for local unambiguous discrimi-
nation in H if, for every set B = {|ψi〉} of linearly independent
states in H, the set of states |�〉 ⊗ B ≡ {|�〉 ⊗ |ψi〉} ⊂ H′ ⊗
H can be unambiguously distinguished with LOCC.

We insist that our states be mutually orthogonal for perfect
state discrimination, as this is the necessary and sufficient
condition for them to be perfectly distinguishable using full
quantum operations. Likewise, we assume linear independence
for unambiguous state discrimination (defined in the next
section), since this is the necessary and sufficient condition
when we are not limited by locality [38].

A maximally entangled bipartite state constitutes a uni-
versal resource for both local state discrimination and local
unambiguous discrimination. In order to explore the analogous
question in multipartite systems, we need to develop necessary
conditions for resource states relative to each task.

B. Local state transformations

Our first result gives a strong equivalence between local
state transformation and the problem of unambiguous state
discrimination. In unambiguous state discrimination, defini-
tive knowledge of the state is balanced against a probability of
definitive failure. That is, given a state |ψ〉 ∈ {|ψi〉}, we either
conclude with certainty that |ψ〉 = |ψi〉 or else we receive
a failure indication. As long as each |ψi〉 is detectable with
positive probability, we say that the set of states can be
unambiguously discriminated; it is not hard to show that this
condition is equivalent to the linear independence of the |ψi〉
[38].

If we are restricted to local operations and classical
communications, it can be useful to employ entanglement
in the form of a resource state |�〉. We say that the set of
states {|�〉 ⊗ |ψi〉,1 � i � D} ∈ H′ ⊗ H is unambiguously
locally distinguishable if there exists an LOCC measurement
� = {�i}D+1

i=1 satisfying
∑

i �i = IH′⊗H such that for all
i,j ∈ {1,2, . . . D},

〈� ⊗ ψj |�i |� ⊗ ψj 〉 = δij εi, (1)

where δij is the Kronecker delta and the εi are positive con-
stants. The outcome (D + 1) is inconclusive. It turns out that
the task of using entanglement to enable local unambiguous
discrimination is closely related to that of transforming one
state into another using only LOCC.

Theorem 1. Let B = {|ψi〉} be a complete basis of H =
⊗N

k=1C
dk , not necessarily orthogonal. For each i, define |ψ̃i〉

to be the unique state in H which is orthogonal to every |ψj 〉
with j 	= i.

Let |�〉 be a pure state in H′ = ⊗N
k=1C

d ′
k ; and denote

by |�∗〉 the entrywise complex conjugate of |�〉 taken
in the standard basis. Then the set of states |�〉 ⊗ B ≡
{|�〉 ⊗ |ψi〉} ∈ H′ ⊗ H can be unambiguously distinguished
by LOCC if and only if there exists an LOCC protocol which
transforms |�∗〉 into each |ψ̃i〉 with positive probability.

In particular, if we can use LOCC to unambiguously
identify each |ψi〉 with probability εi > 0, then there exists
an LOCC protocol which transforms |�∗〉 into each |ψ̃i〉 with
probability at least εi

D
.

This theorem is proved in Sec. III by directly showing
how a local unambiguous measurement can be used to build a
local transformation protocol, and vice versa. As an immediate
consequence, we get a necessary condition for distinguishing
orthonormal bases, where for each i, |ψ̃〉 = |ψ〉.

Corollary 1. Let B = {|ψi〉} ⊂ H = ⊗N
i=1C

di be a com-
plete orthonormal basis of H, and let |�〉 ∈ H′ = ⊗N

i=1C
d ′

i

be fixed resource state (with d ′
i not necessarily equal to di).

If the set of states |�〉 ⊗ B ≡ {|�〉 ⊗ |ψi〉} ∈ H′ ⊗ H can
be perfectly distinguished by LOCC then there exists a LOCC
protocol by means of which |�∗〉 is converted to each of the
|ψi〉 with probability p = 1

D
.
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Corollary 1 follows immediately from the last piece of
Theorem 1, setting each εi = 1 and observing that if each
pi � 1

D
, then this must be an equality in order for the sum of

the pi to equal one. Note that if we let |�〉 be a product state,
then Theorem 1 implies Theorem 3 of [21], which states that,
without additional entanglement, a basis B is unambiguously
distinguishable with LOCC iff each |ψ̃i〉 is a product state.
Similarly, Corollary 1 implies the fundamental result of [24]
that a complete basis can be locally distinguished only if it
contains only product states.

C. Entanglement classes and universal resources

We return now to the question for finding universal re-
sources for local state discrimination. The challenge in finding
a universal resource is a consequence of the complex structure
of multipartite entanglement, which is often described in terms
of stochastic LOCC equivalence classes. Two states |ψ1〉 and
|ψ2〉 are considered to be in the same SLOCC class C if it is
possible to use LOCC to transform the state |ψ1〉 into |ψ2〉
with a positive probability of success, and also to effect the
transformation |ψ2〉 → |ψ1〉. The SLOCC equivalence classes
form a partially ordered set, with C1 � C2 if the transformation
|φ2〉 → |φ1〉 is possible with LOCC for |φi〉 ∈ Ci .

For a given bipartite system H = HA ⊗ HB , the SLOCC
partial ordering is characterized by the existence of least
upper bounds. Even though there are pairs of states which
are locally incompatible (|φ1〉 	→ |φ2〉 and |φ2〉 	→ |φ1〉) when
d > 2, there always exists a unique SLOCC class Cmax of
maximally entangled states such that if |φ〉 ∈ Cmax, then the
local transformation |φ〉 → |ψ〉 is possible for all |ψ〉 ∈ H
(and is, in fact, possible with probability 1).

An SLOCC class of H is maximal if it is not reached
from any other SLOCC class of H. Equivalently, we say
that C is maximal if, for all |φ〉 ∈ C and |ψ〉 ∈ H, |ψ〉 → |φ〉
implies that |ψ〉 ∈ C. We refer to states in maximal SLOCC
classes as maximally entangled. Most multipartite systems
have more than one maximally entangled equivalence class
[11,39]; combined with Theorems 1 and Corollary 1, this has
consequences in our search for a universal resource as follows.

Theorem 2. Consider an N -partite system H = ⊗N
k=1C

dk

with N � 3,dk � 2 for all k. If H contains more than one
maximally entangled equivalence class, then there does not
exist a universal resource state |�〉 ∈ H for either local state
discrimination or local unambiguous discrimination.

In fact, there exist orthonormal bases B of H for which
the set of states |�〉 ⊗ B is not locally distinguishable for any
|�〉 ∈ H.

Corollary 2. For any H = (Cd )
⊗N

with N � 3,d � 2,
there does not exist a universal resource state |�〉 ∈ H
for either local state discrimination or local unambiguous
discrimination.

The assumption in Theorem 2 that H contains a pair
of incompatible maximally entangled states is typical for
multipartite spaces. For instance, in the case of three qubits,
the GHZ states and the W states are both maximally entangled
but cannot be transformed into each other, so there is no three-
qubit pure state that can optimally distinguish all three-qubit
orthonormal bases. Any universal resource state must exist in
higher dimensions.

The second part of the theorem says that it may not be
possible to find even a basis-dependent resource state from the
same state space, i.e., there exists sets of multipartite states
for which no multipartite pure state from the same state space
can perfectly distinguish them by LOCC. Again in the case of
three qubits, an example would be any basis which contains
at least one GHZ state and one W state [see [11] and Eq. (5)].
For such a basis there is no three-qubit resource state which
will enable perfect state discrimination. Clearly, in this case
any resource state that perfectly distinguishes the basis using
LOCC requires higher dimensions as well.

To see the connection between Theorems 1 and 2, we
assume thatH is a multipartite space with two distinct maximal
SLOCC classes C1 and C2 with pure states |ψ1〉 ∈ C1 and
|ψ2〉 ∈ C2. Since these classes are maximal, we know that
if |�〉 ∈ H and |�〉 → |ψi〉, then |�〉 ∈ Ci for i = 1,2. Since
equivalence classes must be disjoint, there does not exist a
state |�〉 ∈ H which can be transformed into both |ψ1〉 and
|ψ2〉. By Corollary 1, if B1 and B2 are orthonormal bases for
H with |ψi〉 ∈ Bi , then it is not possible that the sets |�〉 ⊗ B1

and |�〉 ⊗ B2 are both perfectly (or even unambiguously)
distinguishable with LOCC. Since this is true for any |�〉 ∈ H,
then there is no universal resource state in H.

Note also if we look at a basis B which contains both |ψ1〉
and |ψ2〉 and apply Theorem 1, then the set |�〉 ⊗ B cannot
be unambiguously distinguished for any |�〉 ∈ H, even if we
allow |�〉 to depend on B.

As was previously observed, if we allow |�〉 to live in a
higher-dimensional space, then it might be possible to convert
into different maximal SLOCC classes of H. While character-
izing universal resource states for perfect discrimination has
proved challenging, our results give necessary and sufficient
conditions for unambiguous discrimination as a corollary to
Theorem 1 as folows.

Corollary 3. Let H = ⊗N
k=1C

dk be a multipartite system
and let H′ = ⊗N

k=1C
d ′

k be a system with the same multipartite
structure as H.

Then |�〉 ∈ H′ is a universal resource for unambiguous
discrimination if and only if for every maximally entangled
state |φ〉 ∈ H, |�∗〉 can be locally transformed into |φ〉.

That is, to test whether a state is universal for unambiguous
discrimination in H, one need only test whether it can be
transformed into each of the maximally entangled states of
H. (Characterizing the set of maximally entangled states was
the focus of recent work in [40,41].) The corollary follows
since, for every |φ′〉 ∈ H, there exists a maximally entangled
state |φ〉 which can be locally transformed into |φ′〉. Hence
|�∗〉 → |φ〉 → |φ′〉, and we can apply Theorem 1.

III. PROOF OF THEOREM 1

We begin by showing that local unambiguous discrimina-
tion implies local transformation with fixed probabilities of
success. The following lemma is easily checked.

Lemma 1. Let {|ψi〉} be a complete basis of H, not
necessarily orthogonal; and for each i, let |ψ̃i〉 be the unique
unit vector in H such that 〈ψ̃i |ψj 〉 = 0 if i 	= j .

If dim D = H, I is the identity operator on H and |�〉 is
the standard maximally entangled state on H ⊗ H, then we
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can write

I =
∑

i

1

〈ψ̃i |ψi〉
|ψi〉〈ψ̃i |

and

|�〉 = 1√
D

∑
i

1

〈ψ̃i |ψi〉
|ψ∗

i 〉|ψ̃i〉,

where |ψ∗
i 〉 is the entrywise complex conjugate of |ψi〉.

Now suppose that there exists an LOCC measurement
� = {�i}Di=1 satisfying

∑
i �i = IH′⊗H such that

〈� ⊗ ψj |�i |� ⊗ ψj 〉 = δi,j εi (2)

for εi > 0. We show that there exists a local protocol which
effects the transformation |�∗〉 → |ψi〉 with probability εi

D
for

each i.
Suppose that N spatially separated observers {Ok} each

control a subsystem of H′ and initially share the state
|�∗〉 ∈ H′. Each observer Ok locally produces the maximally
entangled state |�k〉 ∈ Cdk ⊗ Cdk in an ancillary system. We
can then write the maximally entangled state on H ⊗ H as
|�〉 = ⊗N

k=1|�k〉. This means that the state of our entire system
is given by

|�∗〉 ⊗ |�〉 ∈ H′ ⊗ (H ⊗ H).

Using Lemma 1, we can write

|�〉 = 1√
D

∑
i

1

〈ψ̃i |ψi〉
⊗ |ψ∗

i 〉|ψ̃i〉,

|�∗〉 ⊗ |�〉 = 1√
D

∑
i

1

〈ψ̃i |ψi〉
|�∗〉 ⊗ |ψ∗

i 〉 ⊗ |ψ̃i〉.

Notice that we have created our copy of |�〉 using only local
operations on our N subsystems. Now, we take the entrywise
conjugate of each operator of our LOCC measurement � and
apply the new measurement �∗ to the first two systems. If we
get the outcome x, then our system has been transformed as

(
√

�∗
x ⊗ I)|�∗〉|�〉 = 1√

D

∑
i

√
�∗

x(|�∗〉|ψ∗
i 〉) ⊗ |ψi〉

= 1√
D

√
�∗

x(|�∗〉|ψ∗
x 〉) ⊗ |ψx〉.

Tracing out the first two systems shows that our last
system ends up in the state |ψx〉 with probability
1
D

〈� ⊗ ψx |�x |� ⊗ ψx〉 = εx

D
> 0, which was to be shown.

To prove the converse, we assume that the LOCC transfor-
mation |�∗〉 → |ψ̃i〉 is possible for each i. This implies that
there exists a product matrix Mi = ⊗N

k=1M
(k)
i with TrM∗

i Mi =
D′ and |ψ̃i〉 = μiMi |�∗〉 for some constant μi . We will use this
to build a measurement which unambiguously distinguishes
the {|ψi〉}.

For each subsystem k, let |� ′
k〉 be the standard maximally

entangled d ′
k ⊗ d ′

k state so that |� ′〉 = ⊗N
k=1|� ′

k〉 is maximally

entangled on H′ ⊗ H′. For each i, we can also define
|φi〉 = (I ⊗ Mi)|� ′〉, which is a product state across our N

subsystems. This allows us to write

|φi〉 = ⊗N
k=1

(
I ⊗ M

(k)
i |� ′

k〉
)

= (I ⊗ Mi)|� ′〉,
〈(� ⊗ ψj )|φi〉 = 〈(� ⊗ ψj )|(I ⊗ Mi)|� ′〉

= 1√
D′ 〈ψj |Mi |�∗〉 = 1√

D′ 〈ψj |ψ̃i〉.

By definition, 〈(� ⊗ ψj )|φi〉 = 〈ψj |ψ̃i〉 	= 0 if and only if i =
j . Since the {|φi〉} are product states, Lemma 3 [21] establishes
that they can be used to unambiguously distinguish the states
{|� ⊗ ψi〉} using only LOCC. QED

IV. EXAMPLES

When we look for universal resources in multipartite
systems, we can mimic the bipartite structure to identify an
example of a universal resource state: if one of the subsystems
shares sufficient bipartite entanglement with each of the other
subsystems, then teleportation can be used to recreate the entire
unknown state in one location, after which discrimination is
possible.

Example 1. Let H = ⊗N
k=1C

dk be a multipartite system
with D = dimH = d1d2 · · · dN . We define a state in which
each of the first (N − 1) subsystems shares a maximally
entangled state with the N th system:

∣∣�N
Bell

〉
:=

√
dN

D

D/dN∑
i=1

|i ⊗ i〉 ∈ (⊗N−1
k=1 C

dk
) ⊗ CD/dN .

Then |�N
Bell〉 is a universal resource for both local unambigious

discrimination and local perfect discrimination in H.
Note that in general this requires the resource state to exist

in a much higher-dimensional system that our original states,
since the dimension of the last subsystem is the product of the
dimensions of all the other subsystems.

This is not the only possible resource state, however.
Corollary 3 implies that |�〉 is a universal resource for
unambiguous discrimination if and only if its SLOCC class
is an upper bound for every SLOCC class in H. This requires
|�〉 to possess sufficient entanglement, as measured by any
entanglement monotone. In particular, we can look at the
Schmidt measure

ES(|�〉) := log r, (3)

where r is the minimum number of terms in any representation
of |�〉 as a linear combination of product states. In bipartite
systems, r is simply the rank of the reduced density matrix, but
ES is well defined as an entanglement monotone in multipartite
systems as well [11,42–44]. The Schmidt rank of a pure
state cannot increase under LOCC, which implies that for
any universal resource state |�〉, ES(|�〉) � ES(|ψ〉) for all
|ψ〉 ∈ H. This necessary condition leads us to a second class
of universal resource states for unambiguous discrimination as
follows.
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Example 2. Let H = ⊗N
k=1C

dk be a multipartite system.

Following the notation in [45], we define |GHZR
N 〉 ∈ (CR)

⊗N

to be the generalized GHZ state in dimension R with N parties:

1
∣∣GHZR

N

〉 = 1√
R

(R−1)∑
i=0

|i〉⊗N .

Then |GHZR
N 〉 is a universal resource for unambiguous

discrimination in H if and only if

log R � max
|ψ〉∈H

ES(|ψ〉).

The necessity follows from the monotonicity of the Schmidt
measure. The sufficiency is given as Observation 1 in [45],
which establishes that this state can be transformed into any
state with smaller Schmidt rank, and the specific case when
H = (C2)

⊗3
is proved in [36]. The proof is immediate: we can

write any state |ψ〉 ∈ H as a linear combination of at most R

product states:

|ψ〉 =
R∑

i=1

αi ⊗N
k=1 |ai,k〉.

If we define Ak = ∑
i (αi)1/N |ai,k〉〈i|, then we can write

|ψ〉 =
√

R
(⊗N

k=1Ak

)∣∣GHZR
N

〉
,

which shows that we can locally transform |GHZR
N 〉 into any

state |ψ〉 ∈ H.
The maximum rank R of H defined in this example is

not easily calculated. However, the example of generalized W

states in [45,46] gives us that if d = 2n and H = (Cd )
⊗N

, then
R � (N − 1)(d − 1) + 1.

This now gives us two classes of universal resources which
are opposite extremes: |�N

Bell〉 has minimal dimension in all
parties except one, while |GHZR

N 〉 has uniform dimensions
across each party and the minimum dimension for which this is
possible. For instance, in the case of three qubits, the minimum
rank is R = 3, so |GHZR

N 〉 lives in a 3 ⊗ 3 ⊗ 3 system, while
|�N

Bell〉 lives in a 4 ⊗ 2 ⊗ 2 system. It is an open question to
characterize all universal resource states for a fixed system H.

Note that |�N
Bell〉 is clearly a universal state for perfect

discrimination as well as unambiguous discrimination, while
it is not clear whether this is true for |GHZR

N 〉. The following
example shows that one need not imply the other.

Example 3. Consider the three-qubit system H = C2 ⊗
C2 ⊗ C2 and the resource state

|�〉 = 1√
3

(|000〉 + |110〉 + |201〉) ∈ C3 ⊗ C2 ⊗ C2. (4)

Then |�〉 is universal for the problem of unambiguous
discrimination in H but not perfect state discrimination.

In order to be universal for unambiguous state discrimina-
tion in H, we need only show that |�〉 can be transformed into
both a W state and a GHZ state. We can transform one state
into another if they are related by a product matrix, and it is

not hard to see that

|W 〉 = 1√
3

(|100〉 + |010〉 + |001〉)

=
([

0 1 1
1 0 0

]
⊗ I2 ⊗ I2

)
|�〉,

|GHZ〉 = 1√
2

(|000〉 + |111〉)

=
√

3

2

([
0 1 1
1 0 0

]
⊗ σx ⊗ I2

)
|�〉. (5)

This means that |�〉 can be transformed into |W 〉 and |GHZ〉.
These are the two maximally entangled three-qubit SLOCC
classes, and Corollary 3 tells us that this is sufficient for |�〉
to be universal for unambiguous discrimination.

On the other hand, if B is a basis of H which consists
entirely of W states and GHZ states (including at least one GHZ
state), then the set |�〉 ⊗ B cannot be perfectly distinguished
with LOCC. This can be seen by looking at the bipartite
entanglement across the AB : C split. Split this way, |W 〉 and
|�〉 are in the same bipartite SLOCC class ofC6 ⊗ C2, and they
possess H ( 2

3 ) < 1 units of bipartite entanglement, while the
GHZ state has a full unit H ( 1

2 ) = 1 of AB : C entanglement.
Since average bipartite entanglement cannot increase under

LOCC, there does not exist an LOCC protocol which trans-
forms |�〉 into each element of B with probability 1

8 ; any
protocol which sometimes gains entanglement by transform-
ing |�〉 into |GHZ〉 must also sometimes lose entanglement
as well. This result implies that the elements of |�〉 ⊗ B
are not perfectly distinguishable with LOCC, according to
Corollary 1.

V. CONCLUSION

We have shown that for a fixed multipartite system there is
often no resource from the same state space that can enable
all complete orthogonal measurements on the whole system
by LOCC. This is always the case when the dimensions of
the N � 3 subsystems are all equal. This is in sharp contrast
to the bipartite scenario, where a maximally entangled state
of full Schmidt rank serves as a universal resource state.
Furthermore, there exist orthonormal bases for which one
cannot find any resource state from the same state space
that perfectly distinguishes the basis states. This property of
multipartite spaces is found to be typical even if we allow the
dimensions of the subsystems to be different from one another;
exceptions arise in scenarios where dimension of one of the
subsystems is much larger than the dimensions of the other
subsystems.

This line of questioning suggests many open problems.
There is much that is not known about multipartite entangle-
ment and the structure of SLOCC entanglement classes, and
trying to understand the nature of universal resource states
gives a possible line of approach. Certainly, it would be useful
to find a complete characterization of universal resource states,
perhaps finding ways to adapt the methods in [47] to do
so. Even just bounding the necessary dimensions for such
states would be a step in the right direction. The strength
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of Theorem 1 makes it seem like the search for universal
states for unambiguous local discrimination would be the
most promising. One could also try to determine whether
the generalized GHZ states in Example 2 are universal for
perfect state discrimination. This is related to the question of
finding optimal resources in [36], or even knowing whether a
unique optimal resource exists. A larger question would be to
find efficient universal resources to accomplish any quantum
operation as efficiently locally as one could globally. For this,
a pair of bell states |�N

Bell〉 could suffice (one to teleport
everything into one place, and one to teleport them back), but it

would be nice to have a smaller resource for this. It is hoped that
this line of questioning will enable the continued exploration
of the interplay between locality and entanglement.
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