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Several information measures have recently been defined that capture the notion of recoverability. In particular,
the fidelity of recovery quantifies how well one can recover a system A of a tripartite quantum state, defined
on systems ABC, by acting on system C alone. The relative entropy of recovery is an associated measure in
which the fidelity is replaced by relative entropy. In this paper we provide concrete operational interpretations
of the aforementioned recovery measures in terms of a computational decision problem and a hypothesis testing
scenario. Specifically, we show that the fidelity of recovery is equal to the maximum probability with which a com-
putationally unbounded quantum prover can convince a computationally bounded quantum verifier that a given
quantum state is recoverable. The quantum interactive proof system giving this operational meaning requires four
messages exchanged between the prover and verifier, but by forcing the prover to perform actions in superposition,
we construct a different proof system that requires only two messages. The result is that the associated decision
problem is in QIP(2) and another argument establishes it as hard for QSZK (both classes contain problems
believed to be difficult to solve for a quantum computer). We finally prove that the regularized relative entropy of
recovery is equal to the optimal type II error exponent when trying to distinguish many copies of a tripartite state
from a recovered version of this state, such that the type I error is constrained to be no larger than a constant.
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I. INTRODUCTION

There are many facets of quantum science in which the
notion of quantum state recovery is deeply embedded. This
is particularly true for quantum error correction [1,2] and
quantum key distribution [3], where the primary goal is
fundamentally that of recovery. In the former, the task is to
reconstruct a quantum state where some part of the state has
undergone noise or loss; in the latter, the task is to keep a
message secure against an eavesdropper attempting a similar
reconstruction. In either case, the success or failure of a
protocol often hinges on whether a particular state in question
is recoverable at all or if the state is beyond repair.

A particularly important class of states are those that
constitute a Markov chain. A classical Markov chain can be
understood as a memoryless random process, i.e., a process
in which the state transition probability depends only on the
current state and not on past states. If random variables X, Y ,
and Z form a classical Markov chain as X → Y → Z, then
the classical conditional mutual information I (X; Z|Y ) = 0,
where

I (X; Z|Y ) ≡ H (XY ) + H (ZY ) − H (Y ) − H (XYZ) (1)

and H (X) is equal to the Shannon entropy of X. Classical
Markov chains model an impressive number of natural
processes in physics and many other sciences [4].

An attempt at understanding a quantum generalization of
these ideas was put forward in [5], but it was later realized that

these notions made sense only in the exact case [6]. That is, in
analogy with the classical case mentioned above, the authors
of [5] defined a quantum Markov chain to be a tripartite state
ρABC for which the conditional quantum mutual information
(CQMI) I (A; B|C)ρ is equal to zero, where

I (A; B|C)ρ ≡ H (AC)ρ + H (BC)ρ

−H (C)ρ − H (ABC)ρ (2)

and H (AC)ρ is equal to the von Neumann entropy of the
reduced state ρAC [and likewise for H (BC)ρ , H (C)ρ , and
H (ABC)ρ]. However, the later work in [6] (see also [7])
demonstrated that large perturbations of a quantum Markov
state as defined in [5] can sometimes lead only to small
increases of the CQMI, calling into question the definition
of quantum Markov chains from [5].

Meanwhile, it has been known for some time that an
equivalent description for the exact case I (A; B|C)ρ = 0 exists
in terms of recoverability. The work of Petz [8,9] implies that
there exists a recovery channel RC→AC such that ρABC =
RC→AC(ρBC) if and only if I (A; B|C)ρ = 0. This is in perfect
analogy with the exact classical case mentioned above: For
a state satisfying I (A; B|C)ρ = 0, one could lose system A

and recover it from C alone. In this sense, all correlations
between systems A and B are mediated through system C for
quantum Markov chain states. Recoverability in this sense is
thus intimately connected to Markovianity and represents a
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method for handling the approximate case, different from that
given in [5].

To measure non-Markovianity in the approximate case, the
general approach outlined in [10] was to quantify the distance
from ρABC to its closest recovered version. The main measure
on which [10] focused was the fidelity of recovery, defined as

F (A; B|C)ρ ≡ sup
RC→AC

F (ρABC,RC→AC(ρBC)), (3)

where the quantum fidelity is defined as

F (ω,τ ) ≡ ‖√ω
√

τ‖2
1 (4)

for density operators ω and τ [11]. The optimization in (3) is
with respect to quantum channels RC→AC acting on system
C and producing an output on systems A and C. A related
measure, defined in [10] (see Remark 6), is the relative entropy
of recovery

D(A; B|C)ρ ≡ inf
RC→AC

D(ρABC‖RC→AC(ρBC)). (5)

The quantum relative entropy is defined as

D(ω‖τ ) ≡ Tr{ω[log2 ω − log2 τ ]} (6)

if supp(ω) ⊆ supp(τ ) and it is equal to +∞ otherwise [12].
These are clearly well motivated measures of recovery or non-
Markovianity, but hitherto they have been lacking concrete
operational interpretations. This is the main question that we
address in this paper.

From the main result of [13], which established that

I (A; B|C)ρ � − log2 F (A; B|C)ρ, (7)

it is now understood that the CQMI itself is a measure
of non-Markovianity as well. Before [13], an operational
interpretation for the CQMI had already been given in [14,15]
as twice the optimal rate of quantum communication needed
for a sender to transfer one share of a tripartite state to a receiver
(generally shared entanglement is required for this task). Here
the decoder at the receiving end in this protocol plays the role
of a recovery channel, an interpretation later used in [16]. A
wave of recent work [17–31] on this topic has added to and
complements [13], solidifying what appears to be the right
notion of quantum Markovianity.

It follows from the concerns in recovery applications that
one may have to systematically decide whether or not a given
tripartite quantum state is recoverable. In this paper we discuss
two concrete scenarios in which this is the case. The first
scenario is an experiment involving a single copy of the state
ρABC and the second involves many copies of such a state: For
both settings, the goal is to decide whether a given tripartite
state is recoverable.

In more detail, the first scenario asks the following: Given
a description of a quantum circuit that prepares a state ρABC ,
what is the maximum probability with which someone could
be convinced that the state is recoverable? Also, how difficult
is the task of deciding if the state meets some criteria of
recoverability when A is lost? We address these questions
by defining the associated decision problem, called FoR for
fidelity of recovery. Using ideas from quantum complexity
theory [32,33], we show that the fidelity of recovery is
equal to the maximum probability with which a verifier

can be convinced that ρABC is recoverable from ρBC by
acting on system C alone. The quantum interactive proof
system establishing this operational meaning for the fidelity of
recovery is depicted in Fig. 1 and follows intuitively from the
duality property of fidelity of recovery, originally established
in [10]. It also proves that FoR is contained in the complexity
class QIP [32,33].

However, the proof system in Fig. 1 requires the exchange of
four messages between the verifier and the prover, and from a
computational complexity theoretic perspective, it is desirable
to reduce the number of messages exchanged. In fact, this is
certainly possible because a general procedure is known that
reduces any quantum interactive proof system to an equivalent
one that has only three messages exchanged [34]. In Sec. III
we contribute a different proof system for FoR that requires the
exchange of only two messages between the verifier and the
prover. The main idea is that the verifier can force the prover
to perform actions in superposition, and the result is that the
FoR decision problem is in QIP(2). We also argue that FoR is
hard for QSZK [35,36], by building on earlier work in [37].
Note that both QSZK and QIP(2) contain problems believed
to be difficult to solve by a quantum computer.

The second scenario in which we give an operational
meaning for a recovery measure is an experiment involving
many copies of the state ρABC . Let n be a large positive
integer. Suppose that either the state ρ⊗n

ABC is prepared or the
state RCn→AnCn(ρ⊗n

BC) is, where RCn→AnCn is some arbitrary
collective recovery channel acting on all n of the systems C.
The goal is then to determine which is the case by performing
a collective measurement on all of the systems AnBnCn. There
are two ways that one could make a mistake in this hypothesis
testing setup. The first is known as the type I error and it is
equal to the probability of concluding that RCn→AnCn(ρ⊗n

BC)
was prepared if in fact ρ⊗n

ABC was prepared. The other kind
of error is the type II error. Defining the regularized relative
entropy of recovery as [16]

D∞(A; B|C)ρ ≡ lim
n→∞

1

n
D(An; Bn|Cn)ρ⊗n , (8)

we prove that D∞(A; B|C)ρ is equal to the optimal exponent
for the type II error if the type I error is constrained to be
no larger than a constant ε ∈ (0,1). That is, there exists a
measurement such that the type II error goes as ≈2−nD∞(A;B|C)ρ

with the type I error no larger than ε. However, if one tries
to make the type II error decay faster than ≈2−nD∞(A;B|C)ρ ,
then it is impossible to meet the type I constraint for any
ε ∈ (0,1). Thus, our result establishes a concrete operational
interpretation of the regularized relative entropy of recovery
in this hypothesis testing experiment. It was previously shown
in [16] that

I (A; B|C)ρ � D∞(A; B|C)ρ � − log2 F (A; B|C)ρ, (9)

but no operational interpretation of D∞(A; B|C)ρ was given
there. In the rest of the paper we provide more details of these
operational interpretations in order to justify them.
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II. OPERATIONAL MEANING OF FIDELITY
OF RECOVERY

We now provide an operational interpretation for the fidelity
of recovery, by considering the following computational task.

Problem 1 (FoR). Given is a description of a quantum circuit
that prepares a tripartite state ρABC , along with real numbers
α,β ∈ (0,1) satisfying α − β � [poly(n)]−1, for n denoting
the circuit size. Promised that either

YES: F (A; B|C)ρ � α or

NO: F (A; B|C)ρ � β,

decide which of the above is the case.
Remark. The additional assumption that α − β �

[poly(n)]−1 is a common assumption that allows for am-
plifying the probability of deciding correctly, by employing
error reduction procedures [34,38]. This kind of assumption is
required for most applications in quantum complexity theory
[33,39].

The computational problem FoR is defined with the
following in mind: A party constructs a state ρABC by acting
with the gates specified in a given circuit and wants to know
whether it is possible, if system A is lost, to recover the state
when given access to system C only. A YES instance of this
problem then corresponds to a recoverable state, since by the
definition of fidelity of recovery in (3), there exists a recovery
channel RC→AC that acts on ρBC and satisfies the recovery
criteria. A NO instance implies that no such recovery channel
exists. We note that this problem is distinct from deciding
whether ρABC is recoverable starting from the specification
of the density matrix, a problem that has been shown to
be decidable in classical polynomial time via a semidefinite
program [26].

In order to have a robust operational meaning, it is important
for this decision problem to have an efficient verification
strategy so that another party is unable to convince the verifier
that a state is recoverable if in fact it is not. The complexity
class QIP(k), introduced in [34,40], captures this concept. A
problem is said to be in QIP(k) if, given k distinct quantum
messages exchanged between a verifier and a computationally
unbounded prover, the verifier will accept YES instances and
reject NO instances with very high probability. The prover
will always try to make the verifier accept, regardless of
whether the state in question is a YES or NO instance. To prove
FoR ⊆ QIP, we will show that F (A; B|C)ρ is equal to the

maximum acceptance probability of the verifier in a particular
quantum interactive proof system. If this is true, then we can
immediately conclude that the probability of accepting a YES

instance is no smaller than α and the probability of accepting
a NO instance is no larger than β, satisfying the properties
of a QIP system. These probabilities can then be amplified
to be exponentially close to the extremes of one and zero,
respectively, by employing parallel repetition for QIP [34].

We now give an outline of a quantum interactive proof
system with maximum acceptance probability equal to the
fidelity of recovery, thus witnessing the containment FoR ⊆
QIP. Recall that, for any pure four-party state φABCD , the
fidelity of recovery obeys the following duality relation [10]:

F (A; B|C)φ = F (A; B|D)φ. (10)

The main idea behind this duality is that there is an optimal
recovery channel for recovering A from C and an optimal dual
Uhlmann recovery channel for recovering A from D and their
performance as measured by fidelity is equal, as guaranteed
by Uhlmann’s theorem [11]. The proof system we construct
is related to the methods used in [10] to establish the relation
in (10), but here we will have a computationally unbounded
prover sequentially implement the recovery channel and the
Uhlmann dual recovery channel [11]. In the setup of quantum
interactive proofs, it is apparently necessary for such a prover
to implement these channels given that the dimension of the
Hilbert space is essentially exponentially large in n (size of the
circuit needed to generate ρABC). More explicitly, consider the
following interaction between a verifier and a prover, depicted
in Fig. 1.

1. The verifier uses the description of the quantum circuit
to prepare the mixed state ρABC (with system D a purifying
system). In Fig. 1 this is denoted by a unitary Uρ acting on
many qubits prepared in the state |0〉, which we abbreviate
simply as |0〉. The unitary Uρ has output systems A, B, C,
and D. So then ρABC = TrD{|φ〉〈φ|ABCD}, where |φ〉ABCD ≡
Uρ |0〉.

2. The verifier sends system C to the prover.
3. The prover acts with a general unitary UCE→A′C ′F on

system C and an ancilla system E prepared in a fiducial state
|0〉E and the output systems are F , A′, and C ′.

4. The prover sends systems A′ and C ′ to the verifier.
5. The verifier sends systems A and D to the prover.
6. The prover acts with a unitary VADF→D′G on systems F ,

A, and D that has output systems D′ and G.

Uρ|0〉

U
|0〉

C

A

D

B

Uρ

V

D’

A’

C’

B

D’

G

A’

C’

FE

C

A

D

F

-1

Prover

FIG. 1. Illustration of the quantum interactive proof system that establishes an operational meaning of the fidelity of recovery and the
containment FoR ⊆ QIP. There are four distinct quantum messages exchanged between the verifier and the prover.
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7. The prover sends D′ back to the verifier.
8. The verifier accepts if and only if the projection of

the final state onto the pure state φA′BC ′D′ is successful.
This test can be conducted by applying the inverse of the
preparation unitary Uρ , measuring each of the output qubits
in the computational basis, and accepting if and only if the
measurement outcomes are all zeros.

From this interaction we can show via a chain of equalities
that the maximum acceptance probability of the proof system is
equal to the fidelity of recovery of the state ρABC . Consider that
the maximum acceptance probability is equal to the following
Euclidean norm:

max
U,V

‖〈φ|A′BC ′DVADF→D′GUCE→A′C ′F |φ〉ABCD|0〉E‖2
2

= max
U,V,|ϕ〉G

|〈φ|A′BC ′D〈ϕ|GV U |φ〉ABCD|0〉E |2 (11)

= max
U,V

|〈φ|A′BC ′D〈ϕ|GV U |φ〉ABCD|0〉E|2, (12)

where the first equality follows because there exists a unit
vector |ϕ〉G that achieves the norm and the second because the
optimization over |ϕ〉G can be absorbed into the optimization
over the unitary VADF→D′G. Consider that systems F , A, and
D purify the state

TrFAD{U (|φ〉〈φ|ABCD ⊗ |0〉〈0|E)U †}
= TrF {U (ρBC ⊗ |0〉〈0|E)U †} (13)

and systems D and G purify the state

TrDG{|φ〉〈φ|A′BC ′D ⊗ |ϕ〉〈ϕ|G} = ρA′BC ′ . (14)

Thus, by Uhlmann’s theorem [11] with VADF→D′G as the
Uhlmann unitary, it follows that (12) is equal to

max
U

F (ρA′BC ′ , TrF {U (ρBC ⊗ |0〉〈0|E)U †})
= max

RC→A′C′
F (ρA′BC ′ ,RC→A′C ′(ρBC))

= F (A; B|C)ρ, (15)

where the first equality follows by the well-known theorem of
Stinespring [41], which states that any quantum channel can be
realized by adjoining an ancilla system, acting with a unitary,
and tracing out a system. This establishes an operational inter-
pretation of fidelity of recovery as the maximum acceptance
probability of our quantum interactive proof system for FoR.
By the reasoning given above, it follows that FoR ⊆ QIP.

To establish that FoR is hard for QSZK, we need only
consider that a special case of FoR occurs when system C

is trivial, in which case the recovery channel reduces to a
preparation of a state on system A and we then need to decide
whether maxσA

F (ρAB,σA ⊗ ρB) is above or below a given
threshold. This problem, however, has already been shown in
[37] to be QSZK-complete, from which we conclude that FoR
is hard for QSZK.

III. TWO-MESSAGE QUANTUM INTERACTIVE PROOF
SYSTEM FOR FIDELITY OF RECOVERY

The quantum interactive proof system in Fig. 1 gives a
direct operational interpretation of the fidelity of recovery
in terms of its maximum acceptance probability. However,
from the perspective of computational complexity theory, the
QIP system has more messages exchanged than are necessary.
Indeed, a general result states that any QIP system can be
parallelized to an equivalent one that has only three messages
exchanged between the verifier and the prover [34].

In this section we reduce the number of messages
exchanged by showing that there exists a two-message
quantum interactive proof system for the fidelity of recovery
computational problem. By glancing at Fig. 1, we see that the
previous QIP system has the prover perform two actions: the
recovery channel and the dual recovery channel, as discussed
after (10). The idea of the two-message QIP system given
in Fig. 2 is to force the prover to perform both actions in
superposition. In terms of the many-world interpretation of
quantum mechanics, we can think that the verifier employs
quantum entanglement and the superposition principle to force
the prover to perform the recovery channel on system C in one

F’’
T’’
C’’
A’’

|0〉

A
P

|0〉

C

D

A

B

D’’

E’

Prover

|0〉

|0〉 C’

Uρ

D’

T’

T

T’

C’

D’

A

D’’
D

A’’
C
C’’

Bell

T’’

T

C

D

|Φ 〉+

FIG. 2. Two-message quantum interactive proof system for deciding the fidelity of recovery computational problem. The quantum gates
with crossed wires denote controlled SWAP gates, as described in the text. A closed circle indicates that the SWAP occurs controlled on the value
in T being equal to one, while an open circle indicates that the SWAP occurs controlled on the value in T being equal to zero.
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world, while in the other world redirecting the D system to the
prover so that the prover can perform the dual recovery channel
on it. The verifier can then check at the end whether the prover
took the correct actions in each world by realigning systems in
each world, performing a Bell measurement, and demanding
that the original entangled state prepared be undisturbed by the
prover’s actions. The result is that if the fidelity of recovery is
high [so that by (10) both F (A; B|C) and F (A; B|D) are close
to one], then there is a high probability that the verifier will
be convinced that this is the case. If the fidelity of recovery is
low, then there is little chance for the prover to convince the
verifier.

We now detail the two-message QIP system. Let |φ〉ABCD

denote the four-party pure state of interest. The proof system
has the following steps.

1. The verifier prepares a Bell state

|�+〉T T ′ ≡ 1√
2

(|00〉T T ′ + |11〉T T ′), (16)

the four-party pure state |φ〉ABCD , and the ancilla states |0〉C ′

and |0〉D′ .
2. The verifier performs a SWAP of D and D′ controlled on

the value in T being equal to zero and a SWAP of C and C ′
controlled on the value in T being equal to one.

3. The verifier sends systems T ′, C ′, and D′ to the prover.
4. The prover performs a quantum channel with systems T ′,

C ′, and D′ as input and systems T ′′, A′′, C ′′, and D′′ as output,
sending these back to the verifier. The output systems have the
same size as the corresponding input systems and system A′′
has the same size as system A. This quantum channel can be
realized by adjoining an ancilla |0〉E′ of sufficiently large size,
performing a unitary PT ′C ′D′E′→T ′′C ′′D′′A′′F ′′ and a partial trace
over system F ′′.

5. The verifier performs a SWAP of D and D′′ controlled on
the value in T being equal to zero and a SWAP of C and C ′′
controlled on the value in T being equal to one. The verifier
also performs a SWAP of A and A′′ controlled on the value in
T being equal to one.

6. The verifier performs an incomplete Bell measurement on
systems T and T ′′, with measurement operators {�+

T T ′′ ,IT T ′′ −
�+

T T ′′ }, and accepts if and only if the outcome is �+
T T ′′ .

Figure 2 depicts this two-message QIP system.
We now analyze the maximum acceptance probability

of this QIP system and show that it can never exceed a
quantity related to the fidelity of recovery. The acceptance
probability given that the prover applies a particular unitary
PT ′C ′D′E′→T ′′C ′′D′′A′′F ′′ is as follows:

‖〈�+|T T ′′FT =1,AA′′FT =0,DD′′FT =1,CC ′′P FT =0,DD′FT =1,CC ′ |�+〉T T ′ |φ〉ABCD|0〉C ′ |0〉D′ |0〉E‖2
2, (17)

where we have abbreviated P ≡ PT ′C ′D′E′→T ′′C ′′D′′A′′F ′′ and FT =1,CC ′ denotes a SWAP C and C ′ controlled on the value in T being
equal to one (with a similar convention for the other controlled SWAP gates). We can then simplify the ket in the above expression
as

FT =1,AA′′FT =0,DD′′FT =1,CC ′′P FT =0,DD′FT =1,CC ′ |�+〉T T ′ |φ〉ABCD|0〉C ′ |0〉D′ |0〉E
∝ FDD′′PT ′C ′D′E′→T ′′C ′′D′′A′′F ′′ |0〉T |0〉T ′FDD′ |φ〉ABCD|0〉C ′ |0〉D′ |0〉E′

+FAA′′FCC ′′PT ′C ′D′E′→T ′′C ′′D′′A′′F ′′ |1〉T |1〉T ′FCC ′ |φ〉ABCD|0〉C ′ |0〉D′ |0〉E′ (18)

= PT ′C ′D′E′→T ′′C ′′DA′′F ′′ |0〉T |0〉T ′ |φ〉ABCD′ |0〉C ′ |0〉D′′ |0〉E′

+PT ′C ′D′E′→T ′′CD′′AF ′′ |1〉T |1〉T ′ |φ〉A′′BC ′D|0〉C ′′ |0〉D′ |0〉E′ , (19)

where FDD′′ denotes a SWAP of D and D′′ (with a similar convention for the other SWAP gates). Then the acceptance probability
simplifies as follows:

1

4

∥∥∥∥
〈0|T ′′PT ′C ′D′E′→T ′′C ′′DA′′F ′′ |0〉T ′ |φ〉ABCD′ |0〉C ′ |0〉D′′ |0〉E′+

〈1|T ′′PT ′C ′D′E′→T ′′CD′′AF ′′ |1〉T ′ |φ〉A′′BC ′D|0〉C ′′ |0〉D′ |0〉E′

∥∥∥∥

2

2

. (20)

The following two operators are contractions because PT ′C ′D′E′→T ′′C ′′D′′A′′F ′′ is a unitary:

P 00
C ′D′E′→C ′′DA′′F ′′ ≡ 〈0|T ′′PT ′C ′D′E′→T ′′C ′′DA′′F ′′ |0〉T ′ , (21)

P 11
C ′D′E′→CD′′AF ′′ ≡ 〈1|T ′′PT ′C ′D′E′→T ′′CD′′AF ′′ |1〉T ′ . (22)

Then (20) is equal to

1
4

∥∥P 00
C ′D′E′→C ′′DA′′F ′′ |φ〉ABCD′ |0〉C ′ |0〉D′′ |0〉E′ + P 11

C ′D′E′→CD′′AF ′′ |φ〉A′′BC ′D|0〉C ′′ |0〉D′ |0〉E′
∥∥2

2. (23)

Now consider for any two vectors |ϕ1〉 and |ϕ2〉 that ‖|ϕ1〉 + |ϕ2〉‖2
2 = 〈ϕ1|ϕ1〉 + 〈ϕ2|ϕ2〉 + 2 Re{〈ϕ1|ϕ2〉}, which implies that

(23) is never larger than

1
2

[
1 + Re

{〈φ|ABCD′ 〈0|C ′ 〈0|D′′ 〈0|E′
(
P 00

C ′D′E′→C ′′DA′′F ′′
)†

P 11
C ′D′E′→CD′′AF ′′ |φ〉A′′BC ′D|0〉C ′′ |0〉D′ |0〉E′

}]

= 1
2 + 1

2 Re
{〈φ|ABCD′

[〈0|C ′ 〈0|E′
(
P 00

C ′D′E′→C ′′DA′′F ′′
)†|0〉C ′′ 〈0|D′′P 11

C ′D′E′→CD′′AF ′′ |0〉D′ |0〉E′
]|φ〉A′′BC ′D

}

= 1
2 [1 + Re{〈φ|ABCD′(VD′→A′′DF ′′ )†UC ′→CAF ′′ |φ〉A′′BC ′D}] � 1

2 [1 + |〈φ|ABCD′(VD′→A′′DF ′′)†UC ′→CAF ′′ |φ〉A′′BC ′D|], (24)
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where in the above we have defined the contractions

VD′→A′′DF ′′ ≡ 〈0|C ′′P 00
C ′D′E′→C ′′DA′′F ′′ |0〉C ′ |0〉E′ , UC ′→CAF ′′ ≡ 〈0|D′′P 11

C ′D′E′→CD′′AF ′′ |0〉D′ |0〉E′ . (25)

Consider that

|〈φ|ABCD′(VD′→A′′DF ′′)†UC ′→CAF ′′ |φ〉A′′BC ′D|
� max

V,U
{|〈φ|ABCD′(VD′→A′′DF ′′)†UC ′→CAF ′′ |φ〉A′′BC ′D| : ‖V ‖∞,‖U‖∞ � 1} =

√
F (A; B|C)φ. (26)

where the last equality follows from the duality of fidelity
of recovery and because any contraction can be written as a
convex combination of isometries, so there is an optimal pair of
isometries achieving the maximum in the second line (see [42],
Theorem 5.10). Thus, the maximum acceptance probability for
the QIP system is never higher than

1
2 [1 +

√
F (A; B|C)φ]. (27)

This upper bound on the acceptance probability can be
achieved if the prover applies a unitary extension of the
following isometry:

PT ′C ′D′E′→T ′′CD′′AF ′′

= |0〉T ′′ 〈0|T ′ ⊗ VD′→A′′DF ′′ |0〉C ′′ 〈0|C ′ 〈0|E′

+ |1〉T ′′ 〈1|T ′ ⊗ UC ′→CAF ′′ |0〉D′′ 〈0|D′ 〈0|E′ , (28)

where VD′→A′′DF ′′ and UC ′→CAF ′′ are isometries achieving the
maximum in the fidelity of recovery F (A; B|C)φ .

Thus, in the case of a YES instance, there exists a strategy
to convince the verifier to accept with the probability in (27),
while in the case of a NO instance, no strategy can convince
the verifier to accept with probability higher than that in (27).
Given the promise from Problem 1 and known error reduction
procedures for QIP(2) [38], these probabilities can then be
amplified to be exponentially close to the extremes of one and
zero, respectively.

IV. OPERATIONAL MEANING OF REGULARIZED
RELATIVE ENTROPY OF RECOVERY

In this section we provide an operational interpretation of
the regularized relative entropy of recovery in the context
of quantum hypothesis testing [43,44]. The setting is as
discussed in the Introduction: Given are n copies of a state
ρABC and the task is to determine whether ρ⊗n

ABC is prepared
or whether RCn→AnCn (ρ⊗n

BC) is prepared, where RCn→AnCn is
some recovery channel. This is an instance of a more general
problem of discriminating between a state ρ⊗n and a set S (n)

of states, where in our case

ρ⊗n = ρ⊗n
ABC, (29)

S (n) = {
RCn→AnCn

(
ρ⊗n

BC

)
: R ∈ CPTP

}
, (30)

with CPTP denoting the set of completely positive and trace-
preserving quantum channels from Cn to AnCn. This more
general setting was studied in detail in [45], where it was
found that the type II rate of convergence simplifies if the
following conditions hold.

1. (Convexity) S (n) is convex and closed for all n.

2. (Full rank) There exists a full rank state σ such that each
S (n) contains σ⊗n.

3. (Reduction) For each σ ∈ S (n), Trn{σ } ∈ S (n−1).
4. (Concatenation) If σn ∈ S (n) and σm ∈ S (m), then σn ⊗

σm ∈ S (n+m).
5. (Permutation invariance) S (n) is closed under permuta-

tions.
We now verify that the set S (n) as defined in (30) satisfies

the above properties.
Convexity. Let R1

Cn→AnCn(ρ⊗n
BC) and R2

Cn→AnCn (ρ⊗n
BC) ∈

S (n). Then for all λ ∈ [0,1] we have that

λR1
Cn→AnCn

(
ρ⊗n

BC

) + (1 − λ)R2
Cn→AnCn

(
ρ⊗n

BC

) ∈ S (n)

because λR1
Cn→AnCn + (1 − λ)R2

Cn→AnCn is a quantum chan-
nel if R1

Cn→AnCn and R2
Cn→AnCn are. Furthermore, the set of all

CPTP maps is closed.
Full rank. Without loss of generality, we can assume that

ρB is a full-rank state. A particular recovery channel is one that
traces out system C and replaces it with the maximally mixed
state on AC. Taking n copies of such a state gives a full-rank
state in S (n).

Reduction. Let RCn→AnCn(ρ⊗n
BC) ∈ S (n). Consider that

TrAnBnCn

{
RCn→AnCn

(
ρ⊗n

BC

)}

= TrAnCn

{
RCn→AnCn

(
ρ⊗n−1

BC ⊗ ρC

)}
. (31)

This state is in S (n) because the recovery channel for ρ⊗n−1
BC

could consist of tensoring in ρC , applying RCn→AnCn , and
tracing out systems AnCn.

Concatenation. LetR1
Cn→AnCn(ρ⊗n

BC) ∈ S (n) andR2
Cm→AmCm

(ρ⊗m
BC ) ∈ S (m). Then

R1
Cn→AnCn

(
ρ⊗n

BC

) ⊗ R2
Cm→AmCm

(
ρ⊗m

BC

) ∈ S (n+m), (32)

because

R1
Cn→AnCn

(
ρ⊗n

BC

) ⊗ R2
Cm→AmCm

(
ρ⊗m

BC

)

= (
R1

Cn→AnCn ⊗ R2
Cm→AmCm

)(
ρ⊗n+m

BC

)
, (33)

so the recovery channel consists of the parallel concatenation
of R1

Cn→AnCn and R2
Cm→AmCm .

Permutation invariance. Here we need to show that for
σ ∈ S (n), we have that πσπ † ∈ S (n) for all permutations π of
the n systems. Let RCn→AnCn(ρ⊗n

BC) ∈ S (n). Then

πAnBnCnRCn→AnCn

(
ρ⊗n

BC

)
(πAnBnCn )†

= (πAn ⊗ πBn ⊗ πCn )R
(
ρ⊗n

BC

)
(πAn ⊗ πBn ⊗ πCn )†

= (πAn ⊗ πCn)R
(
πBnρ⊗n

BCπ
†
Bn

)
(πAn ⊗ πCn )†

= (πAn ⊗ πCn)
[
R

(
π

†
Cnρ

⊗n
BCπCn

)]
(πAn ⊗ πCn )† ∈ S (n),

(34)
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where the second equality follows because the permutation
of B systems commutes with the recovery channel, the third
because ρ⊗n

BC is a permutation invariant state, and the last
line because a potential recovery consists in applying the
permutation π

†
Cn , followed by RCn→AnCn , followed by the

permutation πAn ⊗ πCn .
From here we can define a hypothesis testing relative

entropy of recovery for a state ρABC as follows:

Dε
H (A; B|C)ρ ≡ inf

RC→AC

Dε
H (ρABC‖RC→AC(ρBC)),

where Dε
H is the hypothesis testing relative entropy [46,47],

defined for two states ω and τ as

Dε
H (ω‖τ ) ≡ − log2 min

Q
[Tr{Qτ } : 0 � Q � I ∧

Tr{Qω} � 1 − ε].

By definition, the hypothesis testing relative entropy Dε
H is

equal to the optimal type II error exponent when the type I
error cannot exceed ε ∈ (0,1). By employing the main result
of [45] and the above observations, we can conclude that

lim
n→∞

1

n
Dε

H (An; Bn|Cn)ρ⊗n = D∞(A; B|C)ρ (35)

for all ε ∈ (0,1). (Note that the limit as ε → 0 is not needed.)
This gives an operational interpretation of D∞(A; B|C)ρ as
the optimal type II error exponent as claimed.

V. CONCLUSION

We have given operational meaning to two different
recovery measures: the fidelity of recovery and the relative
entropy of recovery. The first occurs in a one-shot scenario,
where we find that the fidelity of recovery is equal to the

maximum probability with which a quantum prover can
convince a quantum verifier that a given state is recoverable.
As an additional contribution we give a different quantum
interactive proof system for the fidelity of recovery problem
that has only two messages exchanged between the verifier
and the prover. Thus we make progress on a computational
problem related to recoverability by showing that the problem
FoR is in QIP(2) and is hard for QSZK. The second operational
interpretation occurs in a scenario involving many copies of a
given tripartite state and represents a generalization of quantum
Stein’s lemma [43,44]. We showed that the optimal type II
error exponent is equal to the regularized relative entropy of
recovery if there is a constraint on the type I error.

Going forward from here, it would be interesting to give
better bounds on the computational problem FoR. For example,
could we show that the general recoverability problem is hard
for QIP(2)? For the hypothesis testing setup, can we give finer
characterizations of the optimal type II exponent when the
type I error is not a fixed constant but decays as well (see
[48])? Might the Rényi relative entropy of recovery studied in
[49] be relevant here? This question was recently addressed
and solved in the specialized classical case [50], but additivity
issues pose a significant challenge to extending results like
these to the quantum case.
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