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We study a variant of the quantum approximate optimization algorithm [E. Farhi, J. Goldstone, and S. Gutmann,
arXiv:1411.4028] with a slightly different parametrization and a different objective: rather than looking for a
state which approximately solves an optimization problem, our goal is to find a quantum algorithm that, given
an instance of the maximum 2-satisfiability problem (MAX-2-SAT), will produce a state with high overlap with
the optimal state. Using a machine learning approach, we chose a “training set” of instances and optimized the
parameters to produce a large overlap for the training set. We then tested these optimized parameters on a larger
instance set. As a training set, we used a subset of the hard instances studied by Crosson, Farhi, C. Y.-Y. Lin,
H.-H. Lin, and P. Shor (CFLLS) (arXiv:1401.7320). When tested, on the full set, the parameters that we find
produce a significantly larger overlap than the optimized annealing times of CFLLS. Testing on other random
instances from 20 to 28 bits continues to show improvement over annealing, with the improvement being most
notable on the hardest instances. Further tests on instances of MAX-3-SAT also showed improvement on the
hardest instances. This algorithm may be a possible application for near-term quantum computers with limited

coherence times.
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I. INTRODUCTION

The quantum approximation optimization algorithm
(QAOA) [1,2] is a recently proposed quantum optimization
algorithm, which itself is inspired by the quantum adiabatic
algorithm (QAA) [3]. Consider a classical optimization prob-
lem. Typically, the optimization problem will optimize some
objective over bit strings of length N. One encodes the objec-
tive function into a quantum Hamiltonian H, which is diagonal
in the computational basis, using N qubits to encode possible
bit strings in the obvious way, with the optimal value of the
objective function corresponding to the smallest value of H.
Now define an additional Hamiltonian Hy, which is typically
selected to be a transverse magnetic field on each qubit (the
subscripts X,Z on H indicate whether the corresponding
Hamiltonian is diagonal in the Z basis or in the X basis)

The QAA consists of first preparing the system in the
ground state of Hamiltonian Hy (which can be done easily
since Hyx does not couple the different qubits) and then
adiabatically evolving from Hy to Hz. The simplest adiabatic
pathchosenis H; = (1 — s)Hx + s Hz,fors € [0,1], although
other paths have been considered [4]. If the evolution time T
is sufficiently long compared to the smallest inverse spectral
gap along the path (we denote the minimum gap as An), then
with probability close to 1 the final state will be the ground
state of H; and hence will solve the given instance.

Unfortunately, there are theoretical arguments that A, can
be superexponentially small [5] (scaling as N~V for some
constant ¢ > 0) for some instances, and so for these instances
the time required for this adiabatic condition to hold is even
longer than the time 2V required by an algorithm that iterates
over spin configurations (other numerics suggest that the gap
may not be quite as small as this for random instances [6]).
Some improvements have instead been found by looking at
faster evolution times for which the adiabatic condition does
not hold [7] and we review this in more detail below.
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The QAOA is based on the observation that to implement
the evolution under a time-dependent Hamiltonian on a
quantum computer, the simplest method is to Trotterize:
first, decompose the evolution for a total time 7' into many
small increments df, small enough that the Hamiltonian
H; is roughly constant on time d7. Then, again for small
enough dt, one may decompose exp(i H;dt) =~ exp[i(l —
s)Hxdt]exp(is Hzdt). Thus, the total evolution is decomposed
into a product of rotations by Hy, H; with certain angles, and
the final state at the end of the evolution has the form

Wy = exp (i@;(HX) exp (i@,,ZHZ) ...exp (i0; Hy)
X exp (i02ZHZ) exp (i@leX) exp (iGIZHZ)\III, (1)

where 6 ]X ,0 ]Z are some parameters determined by the evolution
path, where the “number of steps” p = T'/dt, and ¥, is the
ground state of Hy (for all j, GJX ,0 jZ are small, of order dt, but

for small j, GJX is larger than 9].2 but for larger j the reverse is
true). The QAOA then instead restricts to a much smaller value
of p (indeed, Refs. [1,2] study p = 1) but allows the angles
¢ to be chosen arbitrarily as variational parameters. The
parameters may then be adjusted to optimize some objective
function; in Refs. [1,2], this objective function was chosen to
be the expectation value (Vg |Hz| V).

InRef. [8], a similar ansatz was used for purposes of approx-
imating ground states of interacting quantum Hamiltonians,
such as the Hubbard model. For example, in this case one
might select Hy to be a free fermion hopping term (or other
term whose ground state can be easily prepared) and H; to
contain the interactions. Some modifications to the ansatz of
Eq. (1) were made, as described in detail below. A larger value
of p was chosen and a numerical search over parameter values
was performed.

In this paper, we again use the modified ansatz of Ref. [8],
but we apply it to the classical optimization problem of the
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maximum 2-satisfiability problem (MAX-2-SAT). Instead of
adjusting parameters to minimize (Wg|Hz|Wr), our objective
function was the overlap between Wy and the true ground
state of the given instance. We refer to this as “targetting”
the overlap. Our general approach is inspired by machine
learning techniques; this differs from the worst-case analysis
of Refs. [1,2]. We consider p > 1 and we choose a “training
set” consisting of a small number of example instances. This
training set is chosen from the remarkable paper [7] which
searches for instances which are hard for the QAA and
then investigates whether a fast anneal or other modifications
outperform the original algorithm. After “learning” a set of
parameter values which optimize the average overlap on this
training set, we consider various test sets including many
instances not in the training set. We refer to a given sequence
of parameters as a “schedule.” An “annealing schedule” is a
particular choice of parameters which approximates a linear
anneal, so that the 9}‘ decrease linearly in j while the GJ.Z
increase linearly in j, while a “learned schedule” is a particular
schedule obtained by optimizing parameters on a training
set.

What we find is that the schedules we have learned give
results on various random test sets which outperform annealing
schedules, including both slow and fast anneals (a sufficiently
slow anneal will always find the ground state, but for many of
the test cases the time required for such an anneal would be
enormous, and if one restricts to anneals of modest time then
a fast anneal outperforms a slow one).

Choosing a test set much larger than the training set is
an essential step in showing the possible usefulness of this
algorithm. Learning a schedule is very costly as it is done by
a numerical search which itself consists of many steps and
in each step we must evaluate the objective function, while
testing the schedule requires a single evaluation of the objective
function on each instance.

Further, we trained on sizes N = 20 but tested on sizes up
to N = 28 where they continued to perform well and we also
tested on some MAX-3-SAT instances. All the simulations
in this paper were performed on classical computers, taking
a time exponential in N and limiting the possible values of
N. However, if in the future a quantum computer becomes
available, the algorithm could be run with larger values of
N. By training on a small size and testing on larger sizes,
we raise the possibility that one might do training runs on
a classical computer at smaller values of N and then testing
runs on a quantum computer at larger values of N (one could
also train on the quantum computer, of course, but time on the
quantum computer may be more expensive than time on the
classical computer; also, one might use the schedule found on
the classical computer at small values of N as a starting point
for further optimization of the schedule at larger values of N
on the quantum computer).

II. PROBLEM DEFINITION AND ANSATZ

The MAX-2-SAT problem is defined as follows. One has N
different Boolean variables, denoted x;. Clauses are made up
from the Boolean OR of two terms, each term being a variable
or its negation. Thus, possible clauses are all of one of the four
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forms
Xi vV Xj, X; V Xj, X \/fj, X; ij,

where X; denotes the negation of a variable. The problem is
to find a choice of variables x; that maximizes the number of
satisfied clauses.

This problem can be cast into the form of an Ising model
as follows. Consider a system of N qubits. Let o;° denote the
Pauli Z operator on spini. Let 7 = +1 correspond to x; being
true and o = —1 correspond to x; being false. Then, a clause
X; V x;j is true if }T(l —o5(1 - af) is equal to 0 and is false
if }‘(1 — o)1 — ajf’) = 1. Indeed, each of the four possible
types of clauses above can be encoded into a term

1(1xof)(1£07),

which is O if the clause is true and 1 if the clause is false,
with the sign =+ being chosen based on whether the clause
contains a variable or its negation. Following Crosson, Farhi,
C. Y.-Y. Lin, H.-H. Lin, and P. Shor (CFLLS) [7] which did an
annealing study of the MAX-2-SAT problem, we define H; to
be the sum of these terms i( 1+ % af) over all clauses
in the instance. Similarly following the notation of CFLLS, we
define

1 X
HX_Xi:z(l a’), 2)
where o' is the Pauli X operator on spin i.

With these choices of Hy,Hz, the ground-state energy of
Hy is equal to 0 and the ground-state energy of H is equal to
the number of violated clauses. Both Hy and H; have integer
eigenvalues.

As mentioned, Ref. [8] used a modification of the ansatz (1).
This “modified ansatz” is

Wp = exp [i(@;‘HX + GfHZ)] ...exp [i (szHX + OZZHZ)]
x exp [i (0] Hy + 6] Hz)]¥;. 3)

The difference is that each exponential contains a sum of two
noncommuting terms, both Hx and Hz. We note that in the
case of the ansatz of Eq. (1), the quantities 67 indeed are
angles in that Wy is periodic in these quantities mod 27 if
Hy, Hy have integer eigenvalues, but for the modified ansatz of
Eq. (3) the quantities 6/ are generally not periodic mod 277. The
modified ansatz was chosen because we found that choosing
the modified ansatz leads to a significantly easier numerical
optimization in practice. In the gate model of quantum compu-
tation, the simplest way to implement the modified ansatz is to
approximate each exponential exp[i (0}‘ Hx + 6 jZ Hyz)] using a
Trotterization, which thus corresponds to a particular choice
of parameters in the “original ansatz” of Eq. (1), albeit with a
larger p. In this paper we continue to use this ansatz.

III. TRAINING AND COMPARISON TO CFLLS

A. Problem instances

Our training sets are taken from examples in CFLLS [7].
We briefly review the construction of the instances there. These
are randomly constructed instances with N = 20 variables
and 60 clauses. For each clause, the variables i, j are chosen
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uniformly at random, and also each variable is equally likely
to be negated or not negated, subject to the constraints that
i # j and that no clause appears twice, though the same pair
of variables may appear in more than one clause. Thus, it is
permitted to have clauses x; V x; and x; V X; but it is not
permitted to have x; V x; appear twice in the list of clauses.
From these random instances, further one retains only those
instances that have a unique ground state. In this way, 202 078
instances were generated. From these instances, a subset of
hard instances are determined. These are instances for which
an implementation of the QAA using a linear annealing path
H; = (1 —s)Hy 4+ sHz and an evolution time 7 = 100 has
a small success probability of less than 10~* of finding the
ground state. In that paper, the Schrodinger equation was
numerically integrated in continuous time. This left a total
of 137 hard instances. In the rest of the section, we simply call
these “instances,” without specifying that they are the hard
instances.

For each instance, CFLLS then determined whether a faster
anneal would lead to a higher probability of overlap with the
ground state than the slow anneal of time 100 (other strategies
were considered as well in that paper, which we do not discuss
here; we also remark that other authors have also considered
the possibility of faster paths [9,10]). The annealing time
was optimized individually for each instance (keeping the
annealing time smaller than 100), to maximize the squared
overlap with the ground state [11]. Below, when comparing
learned schedules to annealing, we are comparing the ratio
of the squared overlap for a learned schedule with that from
this optimized anneal. Our main result is that we are able to
learn schedules for which this ratio is significantly larger than
1. If one instead made a comparison to a QAA with a fixed
annealing time for all instances of CFLLS, this would lead to
a further slight improvement in the ratio.

B. Training methods

Rather than training on the full set of 137 instances, we
chose training sets consisting of 13 randomly chosen instances
from this set. This was done partly to speed up the simulation,
as then evaluating the average success probability could be
done more rapidly on the smaller set, but it was primarily done
so that then testing on the set of all instances would give a
test set much larger than the training set; this is needed to
determine whether the learned parameters generalize to other
instances beyond the training set.

Given a training set, our objective function is the average,
over the training set, of the squared overlap between the
state Wy and the ground state of Hz. To compute the
objective function, we compute the state Wr; we do this by
approximating the exponentials exp[i (6 Hx + 67 Hz)] by a
Trotter-Suzuki formula, as

exp [i (6 Hx + 6/ Hz)]

07 oX 07\
| exp iLHZ exp iLHX exp iLHZ ,
2n n 2n

where we chose n = 4. This value of n was chosen as the
smallest value of n that gives results for an annealing schedule
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on the CFLLS data set which are consistent with the continuous
time limit; larger values of n will likely lead to slight changes
in the optimal parameters of the learned schedule.

We treat this objective function as a black box, and optimize
the parameters in the schedule using the same algorithm
as in Ref. [8], except for modification of how we choose
the starting point for the search (also, we do not use the
annealed variational method of Ref. [8] to do the search).
Briefly, the optimization algorithm is as follows: Given an
“initial schedule” (i.e., a schedule chosen as the starting point
for the optimization), we use a greedy noisy search, slightly
perturbing the values of each 8¢ at random, accepting the
perturbation if it improves the objective function for a total
of 150 evaluations of the objective function. The step size for
the greedy search is determined in a simple way: every fifty
trials, we count the number of acceptances. If the number is
large, the step size is increased and if the number is small the
step size is reduced [12]. After the noisy search, we then use
Powell’s conjugate direction [13] method until it converges.
We alternate Powell’s method and the noisy search until no
further improvement is obtained.

We did this numerical optimization for five different
randomly chosen training sets of 13 instances (10% of the
data for each). For each training set, we did five different
runs of the optimization for a variety of initial schedules,
thus giving 25 runs for each initial schedule. While different
choices of initial schedule led to very different performances
of the final schedule found at the end of the optimization, for
any given choice of initial schedule the results were roughly
consistent across different choices of the training set and
different optimization runs. Certain training sets tended to do
slightly better (schedules trained on them tended to perform
better when tested on the full set as described in the next
section) but in general for an appropriate choice of initial
schedules we found that all choices of training sets and all
runs of the optimization with that initial schedule and training
set led to good performance on the full set.

C. Results

The learned schedules that performed well had a form quite
different from an annealing schedule. Instead, the form of
many of the good schedules was similar to that in Fig. 1. The
schedule begins with 9% large and fairly flat but §Z oscillating
near zero. Then, at the end of the schedule, the values are more
reminiscent of an anneal, with 6% increasing (albeit with some
oscillations) and 8% decreasing fairly linearly.

To find the schedules shown in Fig. 1 required an appro-
priate choice of initial schedule (described further below).
Instead, if we chose an initial schedule that was an annealing
schedule, the search over schedules would become stuck in
local optima that did not perform as well.

After discovering this form after some experimentation,
we studied a variety of schedules which had this form. These
schedules were labeled by a key ranging from 2 to 14 (key
values of 0,1 corresponded to schedules with a different form
that did not perform well and are not reported here). These
schedules are shown in Table I.

The details of the schedules are not that important. We
simply report the variety of the schedules considered for
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1 2 3 4 5 6 7 8 9 10

FIG. 1. Dashed curves show 8% and solid curves show 8%. Four
different learned schedules are shown; the format such as X621_3.64
indicates that this curve is 6%, for a schedule started using initial
schedule 6; the 21 indicate the particular training set and run (these
numbers are not important, as they are just keys to a random number
generator but they differentiate the three different curves that use
initial schedule 3); the 3.64 indicates the average improvement for
that schedule. The Xavg,Zavg curves show the parameters averaged
over those four schedules.

completeness and to show that all such choices led to some
improvement but that certain choices consistently led to more
improvement. Some of the schedules are described as “frozen”;
in this case, the 7 variables were not allowed to change during
the learning process and only the % variables were allowed
to change. Thus, the final learned schedule had the same 6%
variables as the initial and this was chosen to be 7 changing
linearly as a function of j. These schedules may be simpler
to implement in hardware due to less need for complicated

TABLE 1. Initial schedules for 9}.2,9/?‘ . The ten entries in a line
such as “1111111150” show a sequence of 8; for j =1,...,10 in
order. An entry 1 or O indicates a 1 or 0, while 5 indicates 0.5.
“Linear” indicates a linear function, sz =0.05,0.15,...,0.95 for
j=1,...,10. “Frozen” also indicates a linear function, but with %
held fixed during learning as described in text. “Avg” indicates that
the initial schedule is the average schedule shown in Fig. 1.

Key 0% 0%

2 1111111111 0000000000
3 1111111110 0000000001
4 1111100000 0000011111
5 0000000000 1111111111
6 1111111111 linear

7 1111100000 linear

8 1111111110 000000001
9 1111111110 linear
10 1111111110 frozen
11 1111111150 0000000051
12 1111111150 linear
13 1111111150 frozen
14 avg avg
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TABLEII. Improvement compared to optimized annealing times.
The entries report the ratio of averages (see text). First column
“Initial” labels the initial schedule from Table I. Columns 0,1,2,3,4
label different training sets. Column “Avg” is average of that row over
training sets. Row “Avg” is average of that training set over choices
of Initial. One can see that there is some variance from one training
set to another, but the performance is roughly consistent. The best
rows are 14, 11, and 8.

Initial 0 1 2 3 4 Avg
2 1.4 2.0 1.7 1.9 22 1.8
3 42 3.6 35 33 3.8 3.7
4 2.5 24 24 23 24 24
5 24 2.3 24 24 24 24
6 2.9 3.0 3.1 33 2.6 3.0
7 2.4 2.0 23 22 2.1 22
8 35 35 34 35 3.7 35
9 2.7 32 2.8 3.1 34 3.0
10 2.5 22 2.1 24 2.1 23
11 44 42 4.2 4.1 4.1 4.2
12 3.1 2.9 33 35 3.1 32
13 2.0 24 23 2.0 2.0 2.1
14 4.5 4.5 4.3 4.5 4.4 4.4
Avg 3.0 2.9 29 29 3.0 29

control of #%. They showed some improvement but not quite
as much as others.

The improvement is shown in Table II. The data in this
table include all 137 instances, so they include instances which
are in the training set; however, these instances represent less
than 10% of the test set. We report in this table a “ratio of
averages.” That is, we compute the squared overlap of Wp
with the ground state for each instance and average over
instances. Then, we compute the ratio of this average to the
same average using the optimized annealing times of CFLLS.
The parameters for certain schedules which performed well
are shown in Appendix A.

Another option to reporting the ratio of averages is to
report an ‘“average of ratios.” This means computing, for
each instance, the ratio of the squared overlap of Wy with
the ground state for a given learned schedule to the same
overlap for an optimized anneal, then averaging this ratio over
instances. The result would be different and would lead to a
larger improvement because the learned schedules do better
on the harder instances as shown in Fig. 2.

0.2

0.18
0.16
0.14
Y
0.12 "
0.1

Overlap

0.08
0.06
0.04
0.02

Instance Number

FIG. 2. x axis labels different instances. y axis shows overlap.
Dashed curve is from learned schedule while solid curve is for
optimized anneal. Instance numbers differ from CFLLS because
instances are sorted by overlap for optimized anneal.
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IV. TESTING ON RANDOM INSTANCES
WITH N = 20, 24, AND 28

In addition to testing against the instances of CFLLS, to
determine whether the learned schedules generalize to larger
sizes and other ensembles, we constructed further problem
instances for N = 20, 24, and 28. We repeated the case N =
20, since the ensemble that we constructed differs from that in
CFLLS as we explain.

We took 60, 72, and 84 clauses, respectively, so that the
clause-to-variable ratio was maintained. We used the same
ensemble as in CFLLS, so that clauses are chosen at random
subject to the constraint that no clause appears twice and that
the instance has a unique ground state. However, rather than
finding hard instances based on a continuous time anneal
at time 7 = 100, we used a slightly different method. This
was partly done to speed up our search for hard instances; in
CFLLS, fewer than 1/1000 of the instances were hard by that
standard. However, it was primarily done to test the learned
schedules in a more general setting and to consider a range of
hardnesses to demonstrate that the learned schedules perform
relatively better on the harder instances.

In testing hardness, we used annealing schedules. Since we
will compare to a variety of annealing schedules, we introduce
some notation. Let L(p,x,z) denote the schedule with p steps
and 07 = zj/(p + 1) and 6) = x(p + 1 — j)/(p + 1).

We used L(10,1,1) to determine hardness, constructing
3346 random instances and sampling from 6.8% of the
instances which had the smallest squared overlap with
L(10,1,1), yielding 170 instances (for N = 28, we generated
a smaller number of instances so that only 72 were retained).
The reason for choosing 6.8% is that the resulting ensemble
had a difficulty for L(10,1,1) which was roughly comparable
to that of the CFLLS instances (however, the actual distribution
of instance difficulty is different from CFLLS and so the value
6.8% 1is fairly arbitrary). On these instances, a comparison of
various algorithms is shown in Tables III and IV. We also
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TABLEIV. First column labels schedule. Next four columns give
ratio of average comparing to L(10,1,1) for various test sets. Note
that the entry in the last four columns is 1 for the schedule L(10,1,1)
because there it is being compared to itself.

Ratio
Sched CFLLS N =20 N =24 N =28
8 4.4 3.5 4.7 5.6
31 4.2 2.5 3.2 3.7
49 4.2 14 1.5 1.6
84 4.7 34 4.3 5.3
113 4.4 1.3 1.3 14
122 4.2 1.5 1.7 1.8
154 4.6 4.4 5.9 7.6
157 4.6 4.1 5.5 7.1
L(10,1,1) 1.0 1.0 1.0 1.0
L(10,2,2) 0.9 3.9 4.5 4.8
L(10,3,3) 04 5.5 6.8 72
L(10,4,4) 0.2 6.2 6.5 8.5
L(20,1,1) 1.1 3.8 33 4.9
L(40,1,1) 0.3 8.3 9.0 12.3
L(80,1,1) 0.01 15.0 19.2 29.8

include in these tables results for the instances of CFLLS, as
now the tables compare the performance of various learned
schedules to L(10,1,1) rather than to an optimized anneal.
For the instances described in this section, we only compared
to schedules of the form L(p,x,z) which give a discrete
approximation to an anneal, rather than comparing to an
anneal. This was done to simplify the numerics. The results
for the instances of CFLLS is that such schedules give
performance similar to that of a continuous time QAA.

In these tables, the learned schedules are identified by a
pair such as 31(9). In this case, the number 31 is an arbitrary
key labeling the schedule. The number in parentheses, 9 in this

TABLE III. First column labels schedule. Next four columns give the average overlap for various test sets for each schedule; N = 20, 24,
and 28 refers to random instances constructed following procedure described in this section. Last four columns give average (over instances)
of ratio (of square overlap) comparing to L(10,1,1). Note that the entry in the last four columns is 1 for the schedule L(10,1,1) because there

it is being compared to itself.

Overlap Ratio
Sched CFLLS N =20 N=24 N =28 CFLLS N =20 N=24 N =28
8(8) 0.111 0.068 0.040 0.025 11.9 44 6.7 8.2
31 (9) 0.108 0.048 0.028 0.017 8.1 29 4.0 5.0
49 (9) 0.108 0.026 0.013 0.007 6.6 1.6 1.7 2.0
84 (11) 0.120 0.065 0.037 0.023 10.4 4.1 5.9 7.1
113 (12) 0.111 0.024 0.011 0.006 6.8 1.5 1.6 1.8
122 (12) 0.107 0.029 0.014 0.008 7.0 1.7 1.9 2.3
154 (14) 0.117 0.085 0.050 0.034 10.5 52 7.7 10.5
157 (14) 0.116 0.079 0.047 0.032 10.6 49 7.4 9.8
L(10,1,1) 0.025 0.019 0.009 0.004 1.0 1.0 1.0 1.0
L(10,2,2) 0.024 0.075 0.039 0.021 1.0 4.0 5.1 53
L(10,3,3) 0.011 0.105 0.058 0.032 0.5 5.8 83 8.3
L(10,4,4) 0.006 0.118 0.056 0.038 0.3 6.5 13.5 9.7
L(20,1,1) 0.028 0.073 0.028 0.022 1.3 3.9 6.4 54
L(40,1,1) 0.008 0.159 0.077 0.054 0.4 8.8 18.8 14.1
L(80,1,1) 0.0003 0.288 0.164 0.132 0.0 16.3 435 34.1
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FIG. 3. Ratio of averages for eight different subsets of the
MAX-2-SAT instances with N = 20, chosen by binning by hard-
ness for L(80,1,1). We compare various schedules to L(10,1,1).
Different colors label different schedules. On hardest instances
(those on the left side of the graph), 154 has highest ratio
(i.e., 154 is uppermost of curves on left side of graph), fol-
lowed by L(20,1,1), L(30,1,1), L(10,1,1), L(40,1,1), L(80,1,1)in
sequence.

case, indicates that schedule 31 was obtained by starting from
initial schedule 9 in Table I. We only give the keys here because
we also later refer to certain schedules by key; in particular,
number 154 which is one of the best performing by several
measures.

Note that while the learned schedules, in particular 154,
improve over L(10,1,1), we find that slower anneals such
as L(80,1,1) outperform the learned schedules on the N =
20, 24, and 28 instances. However, on instances from CFLLS,
the slower annealing schedules do significantly worse, with
L(80,1,1) much worse than L(10,1,1).

The reason for this can be seen by further dividing the
instances based on their hardness for L(80,1,1). We binned
the instances into eight different groups depending on the
squared overlap for L(80,1,1). Figure 3 shows the performance
compared to L(10,1,1) of various schedules for each bin.
We find that learned schedule 154 (chosen simply as it
was the best example; we expect similar performance from
other learned schedules) outperforms L(10,1,1) everywhere,
while the performance compared to L(80,1,1) varies: it
outperforms L(80,1,1) in the instances where L(80,1,1) does
the worst. In the instances where L(80,1,1) does the worst,
even L(10,1,1) outperforms L(80,1,1). This fits with the
observed performance of the learned schedule on the instances
of CFLLS as those instances were chosen to be difficult for a
slow anneal.

Importantly, the data show that as N increases the ratio
between the learned schedules and L(10,1,1) is increasing.
This may partly be due to the fact that the overlap for all
schedules is decreasing with increasing N.

MAX-3-SAT

As a final example, we tested the performance of the
algorithm on MAX-3-SAT. Clauses were of the form x; Vv x; v
Xy (or similar, with some variables negated). Each variable in
the clause was chosen independently and uniformly and was
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FIG. 4. Ratio of averages for eight different subsets of the
MAX-3-SAT instances with N = 20, chosen by binning by hardness
for L(80,1,1). We compare various schedules to L(10,1,1). 154
and 157 are both learned schedules. Different colors label different
schedules. On hardest instances, 157 has highest ratio, followed by
154, L(20,1,1), L(10,1,1), L(40,1,1), L(80,1,1) in sequence.

equally likely to be negated or not negated (so in this case
it is possible to have a clause such as x; V x; V x; which is
just a 2-SAT clause or a clause such as x; V X; V x; which
is always true). We took N = 20 variables and 120 clauses
(clauses were chosen independently and we allowed the same
clause to occur more than once). The clause to variable ratio
was taken as 6 to ensure that we are above the satisfiability
phase transition [14]. We then selected for instances which
had unique ground states. Finally we chose the hardest 6.8%
of instances based on overlap for L(10,1,1). The results are
shown in Fig. 4. We emphasize that we use the schedules
trained on MAX-2-SAT instances from CFLLS here, even
though this is a different problem.

V. TOY MODEL AND THEORETICAL ANALYSIS
A. Toy model

To better understand why the learned schedules perform
well, we have constructed a toy model. We write the model
directly as an Ising model (it does not exactly correspond to
a MAX-2-SAT instance since some of the terms involve only
a single variable). The model is related to a model studied
in Refs. [15,16] but with one crucial modification; in those
papers, a model was studied which has a large number of
classical ground states. All but one of those ground states form
a cluster of solutions which are connected by single spin flips,
while the remaining ground state is isolated from the others
and can only be reached by flipping a large number of spins.
It was shown that a quantum annealer will be very likely to
end at one of the ground states in the cluster, while a classical
annealer in contrast will have a much higher probability of
ending at the isolated ground state. We modify this model so
that it has only a single unique ground state (the isolated state
of the original model), moving the others to higher energy. In
this way, it becomes very difficult for a quantum annealer to
locate the ground state.

This is a model with N = 2K spins. As shown in Fig. 5,
K of the spins form what is called the “inner ring,” and are
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FIG. 5. Graph of the toy model considered for the case of K =
6 with N = 12 spins. The edges indicate ferromagnetic couplings
between spins. All but one spin of the inner ring has positive magnetic
fields (indicated by 4 symbols), while all the outer spins have negative
fields (indicated by —) symbols applied in the z direction.

arranged in a ring with ferromagnetic couplings of strength
1/4. The 1/4 is chosen to correspond to the factor of 1/4
that arises when translating from a MAX-2-SAT model to
an Ising model; we chose to keep the magnitudes of terms
similar to the magnitudes of the terms on the training set. Each
of the other spins form what is called the “outer ring.” The
outer ring spins are not coupled to each other; instead, each
outer ring spin is coupled to one inner ring spin (every outer
ring spin is coupled to a different inner ring spin), again with
ferromagnetic couplings of strength 1/4. Finally, on every
outer ring spin there is a magnetic field in the Z direction
with strength —1/4 while on all but one of the the inner ring
spins, there is a Z direction magnetic field with strength +1/4.
Thus, labeling the spins by i =0,...,N —1with0<i < K
corresponding to the inner ring, we have

K—1 K—1
H; = —l oot — 1 oo’
zZ = i Yi+1mod K i Yit+K
4 = 4 —

12K—1 1K—2
Z z
_Z N g 4

To better understand this model, suppose that instead we
added the Z direction magnetic field with strength +1/4
to all spins on the inner ring, so that the last term of Hy
became 41'1 l.I:)l of. This model, which is the model studied
in Refs. [15,16], has 25X + 1 degenerate ground states. The
isolated ground state is the state with o7 = +1 for all i.
The cluster of 2X ground states has o = —1 for all spins
on the inner ring while the spins on the outer ring are arbitrary.
By removing the Z direction field from one of the spins on the
inner ring, the model (4) has a unique unique ground state with
of = +1 for all i while the cluster of states with 0 = —1 on
the inner ring is now an excited state with energy 1/2 above
the ground state.

Now consider the effect of a small transverse magnetic field
as occurs near the end of an annealing path. The energy of the
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TABLE V. Absolute squared overlap for various values of K,
for learned schedule 154, and for annealing schedules L(10,1,1) and
L(80,1,1).

K 154 L(10,1,1) L(80,1,1)

2 0.409 0.379 0.811

3 0.237 0.208 0212

4 0.157 0.104 0.0182

5 0.1 0.0493 0.000683

6 0.0582 0.0233 1.25 x 1073
7 0.0313 0.011 9.37 x 107°
8 0.0169 0.00524 1.34 x 1075
9 0.0095 0.00248 4. % 1076
10 0.00543 0.00118 5.42 x 1077

unique ground state does not change to linear order in the
transverse field strength. However, the energy of the cluster of
states does change to linear order, by an amount proportional
to the number of spins. Thus, such a low-order perturbation
analysis suggests a level crossing occurring at a transverse
magnetic-field strength proportional to 1/N, i.e., a level
crossing in Hy for (1 —s) ~ 1/N. Of course, since H always
has a unique ground state, this level crossing must become an
avoided crossing. However, K ~ N spins must flip to move
from the cluster to the isolated state, so one may expect that the
gap will be small, proportional to the transverse magnetic-field
strength raised to a power proportional to K . Thus, the gap will
be of order N =N for some positive constant (we give a
more detailed analysis of this effect below, computing the gap
to leading order in perturbation theory). This argument for the
small gap above is closely related to the argument of Ref. [5],
and so this toy model may provide an interesting example. It
would be interesting if a superexponentially small gap could
be proven in this particular case.

The performance of various schedules in this model is
shown in Table V. For K = 2, the slow annealing schedule
L(80,1,1) outperforms the others, but already its success prob-
ability is noticeably less than 1. For K = 3, the slow anneal
L(80,1,1) and the fast anneal L(10,1,1) have comparable
performance, and for increasing values of K, the slow anneal
becomes dramatically worse. This is due to the spectrum of the
model which has a single avoided crossing with very small gap.
Comparing L(10,1,1) to 154, we find that 154 is consistently
better and becomes relatively better as K increases. Both
L(10,1,1) and 154 show a roughly exponential decay of the
squared overlap with increasing K, but the decay is slightly
faster for L(10,1,1).

Above, we removed the Z field from one of the inner spins
to break the ground-state degeneracy. Another way to do this is
to vary the field strengths, keeping the same field on all inner
spins but making it slightly weaker. The results are shown
in Table VI, where we took the inner field strength to be
(1/4)(N — 1)/N on all spins (so that the total field is the
same as above). It is interesting that this does not hurt the
performance of the learned schedule (see the discussion of
weighted MAX-2-SAT later). A more quantitative calculation
of the gap in this model is given in Appendix B.

We also studied another toy model. This model has N
states (not N qubits, but rather an N-dimensional Hilbert
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TABLE VI. Absolute squared overlap for various values of K,
for learned schedule 154, and for annealing schedules L(10,1,1)
and L(80,1,1). All inner fields have same strength but are reduced
compared to outer fields. Total strength of inner fields is same as in
Table V.

K 154 L(10,1,1) L(80,1,1)

2 0.422 0.386 0.8

3 0.265 0.228 0.191

4 0.186 0.122 0.0124

5 0.121 0.0594 0.000353

6 0.0704 0.0283 0.000214

7 0.0379 0.0135 0.000113

8 0.0204 0.00647 3.98 x 1075
9 0.0115 0.00309 6.79 x 107
10 0.0066 0.00147 2.15 x 1077

space), divided into three subspaces of dimensions Ni,N;,1
respectively, with N = N; + N, + 1. The Hamiltonian Hy
was chosen to be a sum of two terms; the first term was
proportional to the projector onto the uniform superposition
of all states, while the second term was proportional to the
uniform projector onto the superposition of states in the second
subspace (the subspace with dimension N,). The Hamiltonian
H7; was proportional to the identity in each eigenspace, with
the ground state being the third subspace (of dimension 1)
and the subspace of first excited states being the subspace of
dimension N,. If we take N, = 0, then this model is simply
an instance of database search (and Grover’s algorithm is
optimal [17]); likely there are algorithms similar to Grover
which are equally optimal for this model. However, our goal
was instead to test various schedules. We found that if the
second term in Hy was chosen sufficiently strong, then this
would create a small gap: at intermediate values of s the ground
state was concentrated on the second subspace while at s = 1
the ground state was the third subspace. It was in this case that
the learned schedules outperformed the annealing schedules.

B. Creating excited states

These toy models suggest the following explanation for
the success of the learned schedules. Small gaps can create
difficulties for an annealing algorithm. These small gaps can
occur especially if one “basin of local minima” has slightly
higher energy than the true minimum of H; but is able to
reduce its energy by more in the presence of a transverse field.
Suppose there is a single small gap at some s, with the gap
very small that a very slow anneal will be required to stay in
the ground state. In this case, it might be desirable to be in an
excited state at an intermediate value of s (s < s.) and then
to anneal more rapidly so that a diabatic transition leaves the
final state close to the ground state for s > s,.

There are a variety of possible ways to produce this excited
state. In Ref. [18], thermal excitation was suggested as one
possible mechanism. The optimized anneals of CFLLS give
another mechanism. Let us say that Ty, is some characteristic
time scale to stay in the ground state for s near s., while Ty,
is some intermediate time scale required to stay in the ground
state for other values of s. Thus, a fast anneal (faster than
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Tine) may lead to a transition to an excited state at some small
s, leaving one in the appropriate excited state at s slightly
smaller than s.. In contrast a slower anneal (but still faster than
Tiow) such as L(80,1,1) will be slow enough to be close to the
ground state at an intermediate s < s, but will be fast enough
to have a diabatic transition at the small gap and so will end at
an excited state for s > s, (i.e., the time scale of the anneal is
between Ty and Tyow)-

Another strategy also tried in CFLLS was to deliberately
prepare the system in a randomly chosen first excited state at
s = 0 and then run an anneal (the time of this anneal might
be longer than T, but still faster than 7y) so that one is
hopefully in the first excited state at s slightly smaller than s..
Note that there are N degenerate first excited states at s = 0
so the probability of success of this method is at most 1/N. It
was found [7] that in fact the probability of success was close
to1/N.

However, the learned schedules in this paper give a higher
probability of success than this (significantly higher than 1/N
for most of the instances). Thus, we conjecture that the success
of the learned schedules is that the behavior in the first steps
(with an oscillating Z term, and a large X) serve to drive the
system into the correct first excited state and then schedules
conclude by approximately following an anneal so that they
end in the ground state as a result of a diabatic transition when
the gap becomes small.

C. Modification to schedules

The conjecture in the last subsection suggests a natural way
to modify the schedules to further improve the performance
(at the cost of increasing the number of steps). Suppose, as
conjectured, that the initial steps of the schedules serve to
drive the system into the “correct” first excited states while the
final steps serve as an anneal. This final anneal is fast enough
that the system does a diabatic transition back into the ground
state. However, since the gap minimum is superexponentially
small, even a much slower final anneal would still do such a
diabatic transition [we have argued that the L(80,1,1) anneal
suffers from poor performance because even that anneal is
fast enough to do a diabatic transition from the ground state
to a first excited state]. So, if more steps are available, it
may be possible to slow down the final anneal and improve
performance: so long as the final anneal is fast enough to do a
diabatic transition (and, as we have argued, the relevant time
scale is superexponentially long), a slower final anneal may
improve performance by reducing other diabatic transitions to
even higher excited states.

So, we took schedule 154 and modified the final steps; we
studied this on the toy model with all but one inner ring spin
having field strength 1/4 and the remaining spin having no
field. See the table in Appendix A for the particular parameters
in schedule 154. Note that 8 is monotonically increasing on
the last three steps while 6% is monotonically decreasing. We
tried then two different modifications to the schedule: either re-
move the last two steps of schedule 154 and replace with them
with eight steps in which 8% decreased linearly from 0.8 to 0.1
and 67 increased linearly from 1.3 to 2.0, or to remove the last
step and replace it with six steps in which % decreased linearly
from 0.6 to 0.1 and 67 increased linearly from 1.6 to 2.1.
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TABLE VII. Absolute squared overlap for various values of K,
for learned schedule 154, and for two modifications discussed in text.

K 154 Replace last two steps Replace last step
4 0.157 0.121 0.183

6 0.0582 0.0699 0.0818

8 0.0169 0.0163 0.027

10 0.0054 0.0044 0.0092

These particular numbers of steps and values of 0% ,07
were chosen for the following reasons. First, in our experience,
having 6 change by roughly 0.1 on a step is small enough that
the effect is similar to a continuous time anneal. Second, we
chose the initial values of 8% ,67 (the values at the start of the
added steps) to be similar to the values in the learned schedule
on the step immediately previous.

We find that replacing the last two steps led to a slight
reduction in overlap in general on most sizes, but replacing the
last step led to a distinct increase in overlap. See Table VII for
details. We emphasize that no attempt was made to optimize
the parameters for the final steps; indeed, in general our
experience with this problem is that the results are fairly
sensitive to the numbers chosen on the early steps (certainly
a change in a value on an early step by 0.1 has a large effect
on performance), so even the fact that the performance only
reduced slightly with this replacement on the last two steps is
some evidence that indeed the effect is similar to an anneal.
More importantly, replacing the last step shows that even
further improvement in performance is possible with longer
schedules; it would be interesting to test such a schedule on
the MAX-2-SAT problems and to try further improving this
longer schedule using training. Another possible schedule that
one might consider would be an annealing schedule with a fast
anneal at the start and a slow anneal at the end.

VI. DISCUSSION

We have applied a numerical search to find schedules for
a modification of the QAOA algorithm. These schedules were
trained on a small subset of instances with 20 bits, but were
found to perform well on the full set of such instances as well
as related but slightly different ensembles with 20, 24, and 28
bits. The performance of these schedules raises the hope that
they may outperform annealing on larger sizes and may be a
useful application for an early quantum computer.
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As a caveat, we have only studied SAT problems. We began
a study of weighted SAT, where each clause comes with some
arbitrary energy cost for violating that clause. As a first step
to such a study, we simply tried giving all clauses the same
weight; this does not change the ground state of H but simply
scales Hz by some factor. However, the learned schedules did
not perform well even with this simple rescaling. By training
the schedules instead on a range of such weighted instances
(for example, training on a set of ten random instances as well
as those instances rescaled by various factors) we were able
to slightly improve the ability to deal with this rescaling, but
the ratios were much worse than the results reported here. It
may be the case that other initial schedules or training methods
would better deal with this case.

For hardware implementation, we have studied some
schedules where 6% simply does a linear ramp, which may
be easier to implement. Further, any schedule where 8% has
a fixed sign can be implemented by taking a time-varying
6% and a time-constant . That is, suppose one has the
ability to time-evolve under the Hamiltonian gX Hy + gZ H,
for arbitrary g¥ and some given gZ; then, to implement a uni-
tary transformation exp[i (0¥ Hy + 6% H,)] one should evolve
under the Hamiltonian gX Hy + g H, for g* = gZ?0% /6% and
do the evolution for time 8% /g%.

We have found that it is very important to have an
appropriate initial schedule as otherwise the learning gets
trapped in local optima. Thus, while it may be the case that one
can learn a schedule on a classical computer using a modest
number of qubits and then apply it on a quantum computer with
a larger number of qubits, the learned schedule might also be
a good starting point for further optimization of schedules on
the quantum computer.
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APPENDIX A: SCHEDULES

Here in Tables VIII and IX we give the parameters for
certain learned schedules.

TABLE VIIIL. 67 for certain learned schedules. First column gives key indicating particular learned schedule number (the number itself is
meaningless and serves only as a key). Second column gives initial schedule for training (see Table I).

Schedule Initial 67 07 o7 07 07 0f 07 07 0f ol

8 §  —0279307 0313947  0.614148 —0.220295 0.256869  0.465194 —0.212299 0.312254 1.50651 2.011013
31 9 0368606 0359748  0.190667 0392364 0.208514  0.021365  0.642995 1.143198 1.64574 1.814225
49 9 0424251 0771576 0464935 0435078 0.404496  0.187802 077197 1.300528 1701031 1.745732
84 11 01629  —0496857 0450711 —0.791892 0.326329 —0.475372 0433593 1.033271 1.659841 2.031027
113 12 037599  0.680923 0997025 0715514 0271968 0.519316  1.068852 1.443309 1.433469 1.333607
122 12 0489956 0510331 0740654  0.538733 0.245925  0.08665  0.761729 1.188631 1.418336 1.89151
154 14 0748224 —0.080047 —0.117857 0316126 0.096738 —0.307805 1210155 1.183015 1.557269 1.745549
157 14 0677717 —0.099922 —0.055678  0.294502 0.107643 —0.276445  1.070014 1.057304 1.479656 1.646192
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TABLE IX. 0% for certain learned schedules. First column gives key indicating particular learned schedule number (the number itself is
meaningless and serves only as a key). Second column gives initial schedule for training (see Table I).

Schedule Initial 6 6 2 o) 6 0 65 6 o5 o

8 8 0985164 1711707 1308381 1272364 071373  2.073916 1340572 1.037615 1.217506 0.730447
31 9 LI168114 1375238 1350988 1356165 1337642 1.091975 1426565 1.162721 0.885662 0.431466
49 9 1510793 1.665954 1205267 1.062189 159617 1481757 1.6141 1285973 0.903954 0.396039
84 11 1945308 1.142874 0.875239 0914909 1373274 1.191093 2.016909 1.142808 1.104454 0.585

113 12 1609044 1459435 1971842 1.625206 1537716 1515011 1.398038 0.983823 05701  0.273691
122 12 1683547 0979162 1.878078 1.631202 1.16941  1.055429 1.635904 1.172053 0.795996 0.519226
154 14 135801 0955197 1.397257 1219015 1396977 1420552 1.283791 0.889047 0.671747 0.339493
157 14 1359167 1.060199 1293059 1248988 1328482 1431533 1.237331 0.854213 0.688784 0.382808

APPENDIX B: EFFECTIVE DYNAMICS

In this Appendix, we give a more quantitative derivation
of the minimum gap in the toy model. Let us derive an
effective dynamics for the inner spins in the first toy model.
Consider a pair of spins, one on the inner and one on the
outer ring, connected by a bond, and let 1 — s < 1. Consider
a pair in which the inner spin has a field. Ignoring the
coupling between this pair and the rest of the system, we
find that the two lowest energy states are split in energy by
an amount equal to (1/4)(1 — s) + O(s?): the lowest energy
state has the inner spin with 0% = —1 and the outer spin
aligned along the transverse field, while the next energy
state has the inner spin with 0% = 41 and the outer spin
with (0%) =1 — O[(1 — s5)?]. Thus, the inner spin feels an
effective parallel magnetic field (1/4)(1 —s) + O[(1 — $)1.
The remaining inner spin (the one without a field in the
bare Hamiltonian) feels an effective parallel magnetic field
—(1/4) + O(1 — s). Finally, the effective transverse field on
the inner spins is (1/4)(1 — s)/+/2 where the 1/+/2 factor
arises due to overlap of different states on the outer spin.
Studying the effective Hamiltonian, if we ignore the transverse
field, there is a ground-state degeneracy at 1 —s o< 1/N.
Tunneling between these states due to a transverse field
strength proportional to 1/N splits this. To understand this
splitting, and justify the claim that it is superexponentially
small, we use perturbation theory and compare to numerics.

We do this comparison in the second model, where all
inner spins have the same magnetic-field strength, using a
perturbation theory. At s = 1, the transverse field strength
vanishes, and the ground state is the state with all spins having
0% = +1. There are 2V first excited states with all inner spins
having 0* = —1 and all outer spins arbitrary. The energy gap
between the ground and first excited states is equal to 1/2 (one
may verify that this factor of 1/2 arises from the factor of 1/4
that we have chosen in the toy model to make the energy scale
match that of the MAX-2-SAT instances, and then this factor
of 1/4 is doubled when computing the gap since the ground
state has its energy reduced by 1/4 while the first excited
state has its energy increased by that). Let us next consider
the Hamiltonian projected onto the subspace containing these
2N 4 1 states; we will study its energy gap in this subspace for
arbitrary s. The state with all spins having o° = 41 does not
couple to the other states after this projection. The spectrum of
the other 2V states can be understood simply: up to a constant
energy shift due to the Ising interaction terms and magnetic

field terms on the inner spins, we simply have N decoupled
spins (i.e., the outer spins) in a transverse field of strength
(1/2)(1 — ), so the lowest energy state has its energy reduced
by (1/2)(1 — s)N. So, the gap in this (2" + 1)-dimensional
space is equal to
1(1/2)s — (1/2)(1 — 5)N|.

In this case, the gap closes at s = N/(N + 1). For N =4,
this gives a gap closing at s = 0.8, which is close to where
the minimum gap was observed numerically (the minimum
gap was observed at s = 0.77 .. ., while for N = 6, this gives
a gap closing at s = 0.857..., while the minimum gap was
observed at s = 0.84...).

The projection onto this (2V 4 1)-dimensional subspace
gives a gap closing. We now consider the Hamiltonian in
the full Hilbert space, considering transitions via the other
states perturbatively in the transverse field. This will induce
an effective tunneling amplitude, that we write f.¢, between
the two lowest energy states that will open the gap. The lowest-
order contribution (fewest number of spin flips) requires
flipping all the spins in the inner ring and hence occurs at Nth
order in perturbation theory. Let us write & for the transverse
field strength at the given s. In this case, Ay = (1 — 5)(1/2).
The lowest energy process at this order (the process that
involves transitions through the lowest energy intermediate
states) involves flipping a single inner spin which creates a
pair of domain walls, and then successively flipping additional
spins to move the domain walls around the inner ring (without
creating any additional domain walls) until the domain walls
annihilate against each other with all spins flipped in the inner
ring. The additional energy of a pair of domain walls is equal to
4 Jesr where Jogr = (1/4)s is the strength of the Ising coupling
at the given s. Thus, naively the amplitude for such a process
would be hévff Jgf_l. However, there is an additional overlap
amplitude to take into account: in the initial state, the outer
spins are polarized in the z direction while in the final state they
are polarized in the x direction; this overlap leads to a factor
of 27N/2_Thus, for this process we get an overall amplitude of
2-N2pN /TN We must then sum over possible processes:
the first spin flipped is one of N possible spins, and then at
each step afterwards (except for the last step) there are two
possible spins which can be flipped to move a domain wall
without creating additional domain walls. Thus, this gives
N2N=2 possible processes, giving ter & 2V/2 2NN/ JE!.
In fact, this is only an approximation even at leading order
in perturbation theory: there are other processes which create
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additional domain walls (for example, two pairs of domain
walls) which are smaller but which are not parametrically
suppressed in heg/ Jegr; We do not estimate the effects of these
(we expect them to multiply the final amplitude by ¢V for
some constant ¢ in the large N limit so that the gap is still
superexponentially small). Doubling 7. to get the effective
gap, we get the minimum gap AEpy, ~ 2V INAY, Jelgf_l.
We emphasize that a similar perturbation theory calculation
could be given for the model with one inner spin having
vanishing field, but the particular sequences that contributed
to tunneling would be slightly different.

Now, we consider how well this estimate of the gap agrees
with the numerics. Unfortunately, this agreement is difficult to
check: at small values of N, the value h.¢ is sufficiently large
that higher-order effects are important while at large values
of N the exponential dependence on N leads to a gap which
becomes small compared to numerical precision. So, in order
to achieve the goal of keeping N modest (so that the gap is not
too small) while keeping /g small (so that this perturbation
theory is accurate), we instead further modify the model by
changing the inner field strength from (1/4)(N —1)/N to
(1/4)(0.95); for modest values of N, this increases the field
strength and moves the transition to larger values of s where
hegr 1s smaller. Indeed, using the theory above, the minimum
gap is now at s ~ 0.95. The minimum gap is then roughly
364 x 10%atN =4and 1.7 x 1077 at N = 5. Numerically,
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we find that the gap is roughly 4.7 x 107 at N =4 and
3.1 x 1077 at N = 5, giving qualitative agreement between
perturbation theory and numerics. When we incorporate other
processes into perturbation theory which involve creating
additional domain walls, theory agrees much more closely
with numerics. For example, at N = 4, in addition to the 16
processes identified above in which only two domains walls are
created (16 = N2V ~2), there are an additional eight processes
which involve flipping a spin at a single inner site (N =4
possible such choices) creating a pair of domain walls, then
flipping the inner spin diametrically opposite that spin (there is
aunique choice of that spin) giving four domain walls, and then
finally flipping the remaining two inner spins in either order
(two possible such choices). These eight processes give an
amplitude which is (1/2)2~V/2aN. /T~ where the additional
factor of 1/2 is due to the larger energy denominator with
four domain walls. Including these processes increases the
perturbation theory result for the gap; to 4.6 x 107, in close
agreement with the numerical result 4.7 x 10~; the remaining
slight difference may be due to either a slight shift in where
the minimum gap occurs, or due to other processes at higher
order in A/ Jege, or due to numerical error.

This comparison of perturbation theory and numerics
supports the picture that the dynamics is governed by an
effective Ising model on the inner ring with transverse and
parallel magnetic fields.
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