Training a quantum optimizer

Dave Wecker, ${ }^{1}$ Matthew B. Hastings, ${ }^{1,2}$ and Matthias Troyer ${ }^{1,2,3}$
${ }^{1}$ Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA
${ }^{2}$ Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
${ }^{3}$ Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

(Received 20 May 2016; published 10 August 2016)

Abstract

We study a variant of the quantum approximate optimization algorithm [E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028] with a slightly different parametrization and a different objective: rather than looking for a state which approximately solves an optimization problem, our goal is to find a quantum algorithm that, given an instance of the maximum 2-satisfiability problem (MAX-2-SAT), will produce a state with high overlap with the optimal state. Using a machine learning approach, we chose a "training set" of instances and optimized the parameters to produce a large overlap for the training set. We then tested these optimized parameters on a larger instance set. As a training set, we used a subset of the hard instances studied by Crosson, Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor (CFLLS) (arXiv:1401.7320). When tested, on the full set, the parameters that we find produce a significantly larger overlap than the optimized annealing times of CFLLS. Testing on other random instances from 20 to 28 bits continues to show improvement over annealing, with the improvement being most notable on the hardest instances. Further tests on instances of MAX-3-SAT also showed improvement on the hardest instances. This algorithm may be a possible application for near-term quantum computers with limited coherence times.

DOI: 10.1103/PhysRevA. 94.022309

I. INTRODUCTION

The quantum approximation optimization algorithm (QAOA) [1,2] is a recently proposed quantum optimization algorithm, which itself is inspired by the quantum adiabatic algorithm (QAA) [3]. Consider a classical optimization problem. Typically, the optimization problem will optimize some objective over bit strings of length N. One encodes the objective function into a quantum Hamiltonian H_{Z} which is diagonal in the computational basis, using N qubits to encode possible bit strings in the obvious way, with the optimal value of the objective function corresponding to the smallest value of H_{Z}. Now define an additional Hamiltonian H_{X}, which is typically selected to be a transverse magnetic field on each qubit (the subscripts X, Z on H indicate whether the corresponding Hamiltonian is diagonal in the Z basis or in the X basis)

The QAA consists of first preparing the system in the ground state of Hamiltonian H_{X} (which can be done easily since H_{X} does not couple the different qubits) and then adiabatically evolving from H_{X} to H_{Z}. The simplest adiabatic path chosen is $H_{s}=(1-s) H_{X}+s H_{Z}$, for $s \in[0,1]$, although other paths have been considered [4]. If the evolution time T is sufficiently long compared to the smallest inverse spectral gap along the path (we denote the minimum gap as $\Delta_{\text {min }}$), then with probability close to 1 the final state will be the ground state of H_{Z} and hence will solve the given instance.

Unfortunately, there are theoretical arguments that $\Delta_{\min }$ can be superexponentially small [5] (scaling as $N^{-c N}$ for some constant $c>0$) for some instances, and so for these instances the time required for this adiabatic condition to hold is even longer than the time 2^{N} required by an algorithm that iterates over spin configurations (other numerics suggest that the gap may not be quite as small as this for random instances [6]). Some improvements have instead been found by looking at faster evolution times for which the adiabatic condition does not hold [7] and we review this in more detail below.

The QAOA is based on the observation that to implement the evolution under a time-dependent Hamiltonian on a quantum computer, the simplest method is to Trotterize: first, decompose the evolution for a total time T into many small increments $d t$, small enough that the Hamiltonian H_{s} is roughly constant on time $d T$. Then, again for small enough $d t$, one may decompose $\exp \left(i H_{s} d t\right) \approx \exp [i(1-$ s) $\left.H_{X} d t\right] \exp \left(i s H_{Z} d t\right)$. Thus, the total evolution is decomposed into a product of rotations by H_{X}, H_{Z} with certain angles, and the final state at the end of the evolution has the form

$$
\begin{align*}
\Psi_{F}= & \exp \left(i \theta_{p}^{X} H_{X}\right) \exp \left(i \theta_{p}^{Z} H_{Z}\right) \ldots \exp \left(i \theta_{2}^{X} H_{X}\right) \\
& \times \exp \left(i \theta_{2}^{Z} H_{Z}\right) \exp \left(i \theta_{1}^{X} H_{X}\right) \exp \left(i \theta_{1}^{Z} H_{Z}\right) \Psi_{I}, \tag{1}
\end{align*}
$$

where $\theta_{j}^{X}, \theta_{j}^{Z}$ are some parameters determined by the evolution path, where the "number of steps" $p=T / d t$, and Ψ_{I} is the ground state of H_{X} (for all $j, \theta_{j}^{X}, \theta_{j}^{Z}$ are small, of order $d t$, but for small j, θ_{j}^{X} is larger than θ_{j}^{Z} but for larger j the reverse is true). The QAOA then instead restricts to a much smaller value of p (indeed, Refs. [1,2] study $p=1$) but allows the angles θ_{j}^{a} to be chosen arbitrarily as variational parameters. The parameters may then be adjusted to optimize some objective function; in Refs. [1,2], this objective function was chosen to be the expectation value $\left\langle\Psi_{F}\right| H_{Z}\left|\Psi_{F}\right\rangle$.

In Ref. [8], a similar ansatz was used for purposes of approximating ground states of interacting quantum Hamiltonians, such as the Hubbard model. For example, in this case one might select H_{X} to be a free fermion hopping term (or other term whose ground state can be easily prepared) and H_{Z} to contain the interactions. Some modifications to the ansatz of Eq. (1) were made, as described in detail below. A larger value of p was chosen and a numerical search over parameter values was performed.

In this paper, we again use the modified ansatz of Ref. [8], but we apply it to the classical optimization problem of the
maximum 2-satisfiability problem (MAX-2-SAT). Instead of adjusting parameters to minimize $\left\langle\Psi_{F}\right| H_{Z}\left|\Psi_{F}\right\rangle$, our objective function was the overlap between Ψ_{F} and the true ground state of the given instance. We refer to this as "targetting" the overlap. Our general approach is inspired by machine learning techniques; this differs from the worst-case analysis of Refs. [1,2]. We consider $p>1$ and we choose a "training set" consisting of a small number of example instances. This training set is chosen from the remarkable paper [7] which searches for instances which are hard for the QAA and then investigates whether a fast anneal or other modifications outperform the original algorithm. After "learning" a set of parameter values which optimize the average overlap on this training set, we consider various test sets including many instances not in the training set. We refer to a given sequence of parameters as a "schedule." An "annealing schedule" is a particular choice of parameters which approximates a linear anneal, so that the θ_{j}^{X} decrease linearly in j while the θ_{j}^{Z} increase linearly in j, while a "learned schedule" is a particular schedule obtained by optimizing parameters on a training set.

What we find is that the schedules we have learned give results on various random test sets which outperform annealing schedules, including both slow and fast anneals (a sufficiently slow anneal will always find the ground state, but for many of the test cases the time required for such an anneal would be enormous, and if one restricts to anneals of modest time then a fast anneal outperforms a slow one).

Choosing a test set much larger than the training set is an essential step in showing the possible usefulness of this algorithm. Learning a schedule is very costly as it is done by a numerical search which itself consists of many steps and in each step we must evaluate the objective function, while testing the schedule requires a single evaluation of the objective function on each instance.

Further, we trained on sizes $N=20$ but tested on sizes up to $N=28$ where they continued to perform well and we also tested on some MAX-3-SAT instances. All the simulations in this paper were performed on classical computers, taking a time exponential in N and limiting the possible values of N. However, if in the future a quantum computer becomes available, the algorithm could be run with larger values of N. By training on a small size and testing on larger sizes, we raise the possibility that one might do training runs on a classical computer at smaller values of N and then testing runs on a quantum computer at larger values of N (one could also train on the quantum computer, of course, but time on the quantum computer may be more expensive than time on the classical computer; also, one might use the schedule found on the classical computer at small values of N as a starting point for further optimization of the schedule at larger values of N on the quantum computer).

II. PROBLEM DEFINITION AND ANSATZ

The MAX-2-SAT problem is defined as follows. One has N different Boolean variables, denoted x_{i}. Clauses are made up from the Boolean OR of two terms, each term being a variable or its negation. Thus, possible clauses are all of one of the four
forms

$$
x_{i} \vee x_{j}, \bar{x}_{i} \vee x_{j}, x_{i} \vee \bar{x}_{j}, \bar{x}_{i} \vee \bar{x}_{j},
$$

where \bar{x}_{i} denotes the negation of a variable. The problem is to find a choice of variables x_{i} that maximizes the number of satisfied clauses.

This problem can be cast into the form of an Ising model as follows. Consider a system of N qubits. Let σ_{i}^{z} denote the Pauli Z operator on spin i. Let $\sigma_{i}^{z}=+1$ correspond to x_{i} being true and $\sigma_{i}^{z}=-1$ correspond to x_{i} being false. Then, a clause $x_{i} \vee x_{j}$ is true if $\frac{1}{4}\left(1-\sigma_{i}^{z}\right)\left(1-\sigma_{j}^{z}\right)$ is equal to 0 and is false if $\frac{1}{4}\left(1-\sigma_{i}^{z}\right)\left(1-\sigma_{j}^{z}\right)=1$. Indeed, each of the four possible types of clauses above can be encoded into a term

$$
\frac{1}{4}\left(1 \pm \sigma_{i}^{z}\right)\left(1 \pm \sigma_{j}^{z}\right)
$$

which is 0 if the clause is true and 1 if the clause is false, with the sign \pm being chosen based on whether the clause contains a variable or its negation. Following Crosson, Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor (CFLLS) [7] which did an annealing study of the MAX-2-SAT problem, we define H_{Z} to be the sum of these terms $\frac{1}{4}\left(1 \pm \sigma_{i}^{z}\right)\left(1 \pm \sigma_{j}^{z}\right)$ over all clauses in the instance. Similarly following the notation of CFLLS, we define

$$
\begin{equation*}
H_{X}=\sum_{i} \frac{1}{2}\left(1-\sigma_{i}^{x}\right) \tag{2}
\end{equation*}
$$

where σ_{i}^{x} is the Pauli X operator on spin i.
With these choices of H_{X}, H_{Z}, the ground-state energy of H_{X} is equal to 0 and the ground-state energy of H_{Z} is equal to the number of violated clauses. Both H_{X} and H_{Z} have integer eigenvalues.

As mentioned, Ref. [8] used a modification of the ansatz (1). This "modified ansatz" is

$$
\begin{align*}
\Psi_{F}= & \exp \left[i\left(\theta_{p}^{X} H_{X}+\theta_{p}^{Z} H_{Z}\right)\right] \ldots \exp \left[i\left(\theta_{2}^{X} H_{X}+\theta_{2}^{Z} H_{Z}\right)\right] \\
& \times \exp \left[i\left(\theta_{1}^{X} H_{X}+\theta_{1}^{Z} H_{Z}\right)\right] \Psi_{I} \tag{3}
\end{align*}
$$

The difference is that each exponential contains a sum of two noncommuting terms, both H_{X} and H_{Z}. We note that in the case of the ansatz of Eq. (1), the quantities θ_{j}^{a} indeed are angles in that Ψ_{F} is periodic in these quantities $\bmod 2 \pi$ if H_{X}, H_{Z} have integer eigenvalues, but for the modified ansatz of Eq. (3) the quantities θ_{j}^{a} are generally not periodic $\bmod 2 \pi$. The modified ansatz was chosen because we found that choosing the modified ansatz leads to a significantly easier numerical optimization in practice. In the gate model of quantum computation, the simplest way to implement the modified ansatz is to approximate each exponential $\exp \left[i\left(\theta_{j}^{X} H_{X}+\theta_{j}^{Z} H_{Z}\right)\right]$ using a Trotterization, which thus corresponds to a particular choice of parameters in the "original ansatz" of Eq. (1), albeit with a larger p. In this paper we continue to use this ansatz.

III. TRAINING AND COMPARISON TO CFLLS

A. Problem instances

Our training sets are taken from examples in CFLLS [7]. We briefly review the construction of the instances there. These are randomly constructed instances with $N=20$ variables and 60 clauses. For each clause, the variables i, j are chosen
uniformly at random, and also each variable is equally likely to be negated or not negated, subject to the constraints that $i \neq j$ and that no clause appears twice, though the same pair of variables may appear in more than one clause. Thus, it is permitted to have clauses $x_{i} \vee x_{j}$ and $x_{i} \vee \bar{x}_{j}$ but it is not permitted to have $x_{i} \vee x_{j}$ appear twice in the list of clauses. From these random instances, further one retains only those instances that have a unique ground state. In this way, 202078 instances were generated. From these instances, a subset of hard instances are determined. These are instances for which an implementation of the QAA using a linear annealing path $H_{s}=(1-s) H_{X}+s H_{Z}$ and an evolution time $T=100$ has a small success probability of less than 10^{-4} of finding the ground state. In that paper, the Schrödinger equation was numerically integrated in continuous time. This left a total of 137 hard instances. In the rest of the section, we simply call these "instances," without specifying that they are the hard instances.

For each instance, CFLLS then determined whether a faster anneal would lead to a higher probability of overlap with the ground state than the slow anneal of time 100 (other strategies were considered as well in that paper, which we do not discuss here; we also remark that other authors have also considered the possibility of faster paths $[9,10])$. The annealing time was optimized individually for each instance (keeping the annealing time smaller than 100), to maximize the squared overlap with the ground state [11]. Below, when comparing learned schedules to annealing, we are comparing the ratio of the squared overlap for a learned schedule with that from this optimized anneal. Our main result is that we are able to learn schedules for which this ratio is significantly larger than 1. If one instead made a comparison to a QAA with a fixed annealing time for all instances of CFLLS, this would lead to a further slight improvement in the ratio.

B. Training methods

Rather than training on the full set of 137 instances, we chose training sets consisting of 13 randomly chosen instances from this set. This was done partly to speed up the simulation, as then evaluating the average success probability could be done more rapidly on the smaller set, but it was primarily done so that then testing on the set of all instances would give a test set much larger than the training set; this is needed to determine whether the learned parameters generalize to other instances beyond the training set.

Given a training set, our objective function is the average, over the training set, of the squared overlap between the state Ψ_{F} and the ground state of H_{Z}. To compute the objective function, we compute the state Ψ_{F}; we do this by approximating the exponentials $\exp \left[i\left(\theta_{j}^{X} H_{X}+\theta_{j}^{Z} H_{Z}\right)\right]$ by a Trotter-Suzuki formula, as

$$
\begin{aligned}
& \exp \left[i\left(\theta_{j}^{X} H_{X}+\theta_{j}^{Z} H_{Z}\right)\right] \\
& \quad \approx\left[\exp \left(i \frac{\theta_{j}^{Z}}{2 n} H_{Z}\right) \exp \left(i \frac{\theta_{j}^{X}}{n} H_{X}\right) \exp \left(i \frac{\theta_{j}^{Z}}{2 n} H_{Z}\right)\right]^{n}
\end{aligned}
$$

where we chose $n=4$. This value of n was chosen as the smallest value of n that gives results for an annealing schedule
on the CFLLS data set which are consistent with the continuous time limit; larger values of n will likely lead to slight changes in the optimal parameters of the learned schedule.

We treat this objective function as a black box, and optimize the parameters in the schedule using the same algorithm as in Ref. [8], except for modification of how we choose the starting point for the search (also, we do not use the annealed variational method of Ref. [8] to do the search). Briefly, the optimization algorithm is as follows: Given an "initial schedule" (i.e., a schedule chosen as the starting point for the optimization), we use a greedy noisy search, slightly perturbing the values of each θ_{j}^{a} at random, accepting the perturbation if it improves the objective function for a total of 150 evaluations of the objective function. The step size for the greedy search is determined in a simple way: every fifty trials, we count the number of acceptances. If the number is large, the step size is increased and if the number is small the step size is reduced [12]. After the noisy search, we then use Powell's conjugate direction [13] method until it converges. We alternate Powell's method and the noisy search until no further improvement is obtained.

We did this numerical optimization for five different randomly chosen training sets of 13 instances (10% of the data for each). For each training set, we did five different runs of the optimization for a variety of initial schedules, thus giving 25 runs for each initial schedule. While different choices of initial schedule led to very different performances of the final schedule found at the end of the optimization, for any given choice of initial schedule the results were roughly consistent across different choices of the training set and different optimization runs. Certain training sets tended to do slightly better (schedules trained on them tended to perform better when tested on the full set as described in the next section) but in general for an appropriate choice of initial schedules we found that all choices of training sets and all runs of the optimization with that initial schedule and training set led to good performance on the full set.

C. Results

The learned schedules that performed well had a form quite different from an annealing schedule. Instead, the form of many of the good schedules was similar to that in Fig. 1. The schedule begins with θ^{X} large and fairly flat but θ^{Z} oscillating near zero. Then, at the end of the schedule, the values are more reminiscent of an anneal, with θ^{Z} increasing (albeit with some oscillations) and θ^{X} decreasing fairly linearly.

To find the schedules shown in Fig. 1 required an appropriate choice of initial schedule (described further below). Instead, if we chose an initial schedule that was an annealing schedule, the search over schedules would become stuck in local optima that did not perform as well.

After discovering this form after some experimentation, we studied a variety of schedules which had this form. These schedules were labeled by a key ranging from 2 to 14 (key values of 0,1 corresponded to schedules with a different form that did not perform well and are not reported here). These schedules are shown in Table I.

The details of the schedules are not that important. We simply report the variety of the schedules considered for

FIG. 1. Dashed curves show θ^{X} and solid curves show θ^{Z}. Four different learned schedules are shown; the format such as $X 621 _3.64$ indicates that this curve is θ^{X}, for a schedule started using initial schedule 6; the 21 indicate the particular training set and run (these numbers are not important, as they are just keys to a random number generator but they differentiate the three different curves that use initial schedule 3); the 3.64 indicates the average improvement for that schedule. The Xavg, Zavg curves show the parameters averaged over those four schedules.
completeness and to show that all such choices led to some improvement but that certain choices consistently led to more improvement. Some of the schedules are described as "frozen"; in this case, the θ^{Z} variables were not allowed to change during the learning process and only the θ^{X} variables were allowed to change. Thus, the final learned schedule had the same θ^{Z} variables as the initial and this was chosen to be θ_{j}^{Z} changing linearly as a function of j. These schedules may be simpler to implement in hardware due to less need for complicated

TABLE I. Initial schedules for $\theta_{j}^{Z}, \theta_{j}^{X}$. The ten entries in a line such as " 1111111150 " show a sequence of θ_{j} for $j=1, \ldots, 10$ in order. An entry 1 or 0 indicates a 1 or 0 , while 5 indicates 0.5 . "Linear" indicates a linear function, $\theta_{j}^{Z}=0.05,0.15, \ldots, 0.95$ for $j=1, \ldots, 10$. "Frozen" also indicates a linear function, but with θ^{Z} held fixed during learning as described in text. "Avg" indicates that the initial schedule is the average schedule shown in Fig. 1.

Key	θ^{X}	θ^{Z}
2	11111111111	0000000000
3	1111111110	0000000001
4	1111100000	0000011111
5	0000000000	1111111111
6	1111111111	linear
7	1111100000	linear
8	1111111110	000000001
9	1111111110	linear
10	1111111110	frozen
11	1111111150	0000000051
12	1111111150	linear
13	1111111150	frozen
14	avg	avg

TABLE II. Improvement compared to optimized annealing times. The entries report the ratio of averages (see text). First column "Initial" labels the initial schedule from Table I. Columns $0,1,2,3,4$ label different training sets. Column "Avg" is average of that row over training sets. Row "Avg" is average of that training set over choices of Initial. One can see that there is some variance from one training set to another, but the performance is roughly consistent. The best rows are 14,11 , and 8 .

Initial	0	1	2	3	4	Avg
2	1.4	2.0	1.7	1.9	2.2	1.8
3	4.2	3.6	3.5	3.3	3.8	3.7
4	2.5	2.4	2.4	2.3	2.4	2.4
5	2.4	2.3	2.4	2.4	2.4	2.4
6	2.9	3.0	3.1	3.3	2.6	3.0
7	2.4	2.0	2.3	2.2	2.1	2.2
8	3.5	3.5	3.4	3.5	3.7	3.5
9	2.7	3.2	2.8	3.1	3.4	3.0
10	2.5	2.2	2.1	2.4	2.1	2.3
11	4.4	4.2	4.2	4.1	4.1	4.2
12	3.1	2.9	3.3	3.5	3.1	3.2
13	2.0	2.4	2.3	2.0	2.0	2.1
14	4.5	4.5	4.3	4.5	4.4	4.4
Avg	3.0	2.9	2.9	2.9	3.0	2.9

control of θ^{Z}. They showed some improvement but not quite as much as others.

The improvement is shown in Table II. The data in this table include all 137 instances, so they include instances which are in the training set; however, these instances represent less than 10% of the test set. We report in this table a "ratio of averages." That is, we compute the squared overlap of Ψ_{F} with the ground state for each instance and average over instances. Then, we compute the ratio of this average to the same average using the optimized annealing times of CFLLS. The parameters for certain schedules which performed well are shown in Appendix A.

Another option to reporting the ratio of averages is to report an "average of ratios." This means computing, for each instance, the ratio of the squared overlap of Ψ_{F} with the ground state for a given learned schedule to the same overlap for an optimized anneal, then averaging this ratio over instances. The result would be different and would lead to a larger improvement because the learned schedules do better on the harder instances as shown in Fig. 2.

FIG. 2. x axis labels different instances. y axis shows overlap. Dashed curve is from learned schedule while solid curve is for optimized anneal. Instance numbers differ from CFLLS because instances are sorted by overlap for optimized anneal.

IV. TESTING ON RANDOM INSTANCES WITH $N=20,24$, AND 28

In addition to testing against the instances of CFLLS, to determine whether the learned schedules generalize to larger sizes and other ensembles, we constructed further problem instances for $N=20,24$, and 28 . We repeated the case $N=$ 20, since the ensemble that we constructed differs from that in CFLLS as we explain.

We took 60,72 , and 84 clauses, respectively, so that the clause-to-variable ratio was maintained. We used the same ensemble as in CFLLS, so that clauses are chosen at random subject to the constraint that no clause appears twice and that the instance has a unique ground state. However, rather than finding hard instances based on a continuous time anneal at time $T=100$, we used a slightly different method. This was partly done to speed up our search for hard instances; in CFLLS, fewer than $1 / 1000$ of the instances were hard by that standard. However, it was primarily done to test the learned schedules in a more general setting and to consider a range of hardnesses to demonstrate that the learned schedules perform relatively better on the harder instances.

In testing hardness, we used annealing schedules. Since we will compare to a variety of annealing schedules, we introduce some notation. Let $L(p, x, z)$ denote the schedule with p steps and $\theta_{j}^{Z}=z j /(p+1)$ and $\theta_{j}^{X}=x(p+1-j) /(p+1)$.

We used $L(10,1,1)$ to determine hardness, constructing 3346 random instances and sampling from 6.8% of the instances which had the smallest squared overlap with $L(10,1,1)$, yielding 170 instances (for $N=28$, we generated a smaller number of instances so that only 72 were retained). The reason for choosing 6.8% is that the resulting ensemble had a difficulty for $L(10,1,1)$ which was roughly comparable to that of the CFLLS instances (however, the actual distribution of instance difficulty is different from CFLLS and so the value 6.8% is fairly arbitrary). On these instances, a comparison of various algorithms is shown in Tables III and IV. We also

TABLE IV. First column labels schedule. Next four columns give ratio of average comparing to $L(10,1,1)$ for various test sets. Note that the entry in the last four columns is 1 for the schedule $L(10,1,1)$ because there it is being compared to itself.

Sched	$\begin{aligned} & \text { Ratio } \\ & \text { CFLLS } \end{aligned}$	$N=20$	$N=24$	$N=28$
8	4.4	3.5	4.7	5.6
31	4.2	2.5	3.2	3.7
49	4.2	1.4	1.5	1.6
84	4.7	3.4	4.3	5.3
113	4.4	1.3	1.3	1.4
122	4.2	1.5	1.7	1.8
154	4.6	4.4	5.9	7.6
157	4.6	4.1	5.5	7.1
$L(10,1,1)$	1.0	1.0	1.0	1.0
$L(10,2,2)$	0.9	3.9	4.5	4.8
$L(10,3,3)$	0.4	5.5	6.8	7.2
$L(10,4,4)$	0.2	6.2	6.5	8.5
$L(20,1,1)$	1.1	3.8	3.3	4.9
$L(40,1,1)$	0.3	8.3	9.0	12.3
$L(80,1,1)$	0.01	15.0	19.2	29.8

include in these tables results for the instances of CFLLS, as now the tables compare the performance of various learned schedules to $L(10,1,1)$ rather than to an optimized anneal. For the instances described in this section, we only compared to schedules of the form $L(p, x, z)$ which give a discrete approximation to an anneal, rather than comparing to an anneal. This was done to simplify the numerics. The results for the instances of CFLLS is that such schedules give performance similar to that of a continuous time QAA.

In these tables, the learned schedules are identified by a pair such as $31(9)$. In this case, the number 31 is an arbitrary key labeling the schedule. The number in parentheses, 9 in this

TABLE III. First column labels schedule. Next four columns give the average overlap for various test sets for each schedule; $N=20,24$, and 28 refers to random instances constructed following procedure described in this section. Last four columns give average (over instances) of ratio (of square overlap) comparing to $L(10,1,1)$. Note that the entry in the last four columns is 1 for the schedule $L(10,1,1)$ because there it is being compared to itself.

Sched	Overlap CFLLS	$N=20$	$N=24$	$N=28$	Ratio CFLLS	$N=20$	$N=24$	$N=28$
8 (8)	0.111	0.068	0.040	0.025	11.9	4.4	6.7	8.2
31 (9)	0.108	0.048	0.028	0.017	8.1	2.9	4.0	5.0
49 (9)	0.108	0.026	0.013	0.007	6.6	1.6	1.7	2.0
84 (11)	0.120	0.065	0.037	0.023	10.4	4.1	5.9	7.1
113 (12)	0.111	0.024	0.011	0.006	6.8	1.5	1.6	1.8
122 (12)	0.107	0.029	0.014	0.008	7.0	1.7	1.9	2.3
154 (14)	0.117	0.085	0.050	0.034	10.5	5.2	7.7	10.5
157 (14)	0.116	0.079	0.047	0.032	10.6	4.9	7.4	9.8
$L(10,1,1)$	0.025	0.019	0.009	0.004	1.0	1.0	1.0	1.0
$L(10,2,2)$	0.024	0.075	0.039	0.021	1.0	4.0	5.1	5.3
$L(10,3,3)$	0.011	0.105	0.058	0.032	0.5	5.8	8.3	8.3
$L(10,4,4)$	0.006	0.118	0.056	0.038	0.3	6.5	13.5	9.7
$L(20,1,1)$	0.028	0.073	0.028	0.022	1.3	3.9	6.4	5.4
$L(40,1,1)$	0.008	0.159	0.077	0.054	0.4	8.8	18.8	14.1
$L(80,1,1)$	0.0003	0.288	0.164	0.132	0.0	16.3	43.5	34.1

FIG. 3. Ratio of averages for eight different subsets of the MAX-2-SAT instances with $N=20$, chosen by binning by hardness for $L(80,1,1)$. We compare various schedules to $L(10,1,1)$. Different colors label different schedules. On hardest instances (those on the left side of the graph), 154 has highest ratio (i.e., 154 is uppermost of curves on left side of graph), followed by $L(20,1,1), L(30,1,1), L(10,1,1), L(40,1,1), L(80,1,1)$ in sequence.
case, indicates that schedule 31 was obtained by starting from initial schedule 9 in Table I. We only give the keys here because we also later refer to certain schedules by key; in particular, number 154 which is one of the best performing by several measures.

Note that while the learned schedules, in particular 154, improve over $L(10,1,1)$, we find that slower anneals such as $L(80,1,1)$ outperform the learned schedules on the $N=$ 20, 24, and 28 instances. However, on instances from CFLLS, the slower annealing schedules do significantly worse, with $L(80,1,1)$ much worse than $L(10,1,1)$.

The reason for this can be seen by further dividing the instances based on their hardness for $L(80,1,1)$. We binned the instances into eight different groups depending on the squared overlap for $L(80,1,1)$. Figure 3 shows the performance compared to $L(10,1,1)$ of various schedules for each bin. We find that learned schedule 154 (chosen simply as it was the best example; we expect similar performance from other learned schedules) outperforms $L(10,1,1)$ everywhere, while the performance compared to $L(80,1,1)$ varies: it outperforms $L(80,1,1)$ in the instances where $L(80,1,1)$ does the worst. In the instances where $L(80,1,1)$ does the worst, even $L(10,1,1)$ outperforms $L(80,1,1)$. This fits with the observed performance of the learned schedule on the instances of CFLLS as those instances were chosen to be difficult for a slow anneal.

Importantly, the data show that as N increases the ratio between the learned schedules and $L(10,1,1)$ is increasing. This may partly be due to the fact that the overlap for all schedules is decreasing with increasing N.

MAX-3-SAT

As a final example, we tested the performance of the algorithm on MAX-3-SAT. Clauses were of the form $x_{i} \vee x_{j} \vee$ x_{k} (or similar, with some variables negated). Each variable in the clause was chosen independently and uniformly and was

FIG. 4. Ratio of averages for eight different subsets of the MAX-3-SAT instances with $N=20$, chosen by binning by hardness for $L(80,1,1)$. We compare various schedules to $L(10,1,1) .154$ and 157 are both learned schedules. Different colors label different schedules. On hardest instances, 157 has highest ratio, followed by $154, L(20,1,1), L(10,1,1), L(40,1,1), L(80,1,1)$ in sequence.
equally likely to be negated or not negated (so in this case it is possible to have a clause such as $x_{i} \vee x_{i} \vee x_{j}$ which is just a 2-SAT clause or a clause such as $x_{i} \vee \bar{x}_{i} \vee x_{j}$ which is always true). We took $N=20$ variables and 120 clauses (clauses were chosen independently and we allowed the same clause to occur more than once). The clause to variable ratio was taken as 6 to ensure that we are above the satisfiability phase transition [14]. We then selected for instances which had unique ground states. Finally we chose the hardest 6.8% of instances based on overlap for $L(10,1,1)$. The results are shown in Fig. 4. We emphasize that we use the schedules trained on MAX-2-SAT instances from CFLLS here, even though this is a different problem.

V. TOY MODEL AND THEORETICAL ANALYSIS

A. Toy model

To better understand why the learned schedules perform well, we have constructed a toy model. We write the model directly as an Ising model (it does not exactly correspond to a MAX-2-SAT instance since some of the terms involve only a single variable). The model is related to a model studied in Refs. $[15,16]$ but with one crucial modification; in those papers, a model was studied which has a large number of classical ground states. All but one of those ground states form a cluster of solutions which are connected by single spin flips, while the remaining ground state is isolated from the others and can only be reached by flipping a large number of spins. It was shown that a quantum annealer will be very likely to end at one of the ground states in the cluster, while a classical annealer in contrast will have a much higher probability of ending at the isolated ground state. We modify this model so that it has only a single unique ground state (the isolated state of the original model), moving the others to higher energy. In this way, it becomes very difficult for a quantum annealer to locate the ground state.

This is a model with $N=2 K$ spins. As shown in Fig. 5, K of the spins form what is called the "inner ring," and are

FIG. 5. Graph of the toy model considered for the case of $K=$ 6 with $N=12$ spins. The edges indicate ferromagnetic couplings between spins. All but one spin of the inner ring has positive magnetic fields (indicated by + symbols), while all the outer spins have negative fields (indicated by -) symbols applied in the z direction.
arranged in a ring with ferromagnetic couplings of strength $1 / 4$. The $1 / 4$ is chosen to correspond to the factor of $1 / 4$ that arises when translating from a MAX-2-SAT model to an Ising model; we chose to keep the magnitudes of terms similar to the magnitudes of the terms on the training set. Each of the other spins form what is called the "outer ring." The outer ring spins are not coupled to each other; instead, each outer ring spin is coupled to one inner ring spin (every outer ring spin is coupled to a different inner ring spin), again with ferromagnetic couplings of strength $1 / 4$. Finally, on every outer ring spin there is a magnetic field in the Z direction with strength $-1 / 4$ while on all but one of the the inner ring spins, there is a Z direction magnetic field with strength $+1 / 4$. Thus, labeling the spins by $i=0, \ldots, N-1$ with $0 \leqslant i<K$ corresponding to the inner ring, we have

$$
\begin{align*}
H_{Z}= & -\frac{1}{4} \sum_{i=0}^{K-1} \sigma_{i}^{z} \sigma_{i+1 \bmod K}^{z}-\frac{1}{4} \sum_{i=0}^{K-1} \sigma_{i}^{z} \sigma_{i+K}^{z} \\
& -\frac{1}{4} \sum_{i=K}^{2 K-1} \sigma_{i}^{z}+\frac{1}{4} \sum_{i=0}^{K-2} \sigma_{i}^{z} . \tag{4}
\end{align*}
$$

To better understand this model, suppose that instead we added the Z direction magnetic field with strength $+1 / 4$ to all spins on the inner ring, so that the last term of H_{Z} became $\frac{1}{4} \sum_{i=0}^{K-1} \sigma_{i}^{z}$. This model, which is the model studied in Refs. $[15,16]$, has $2^{K}+1$ degenerate ground states. The isolated ground state is the state with $\sigma_{i}^{z}=+1$ for all i. The cluster of 2^{K} ground states has $\sigma^{z}=-1$ for all spins on the inner ring while the spins on the outer ring are arbitrary. By removing the Z direction field from one of the spins on the inner ring, the model (4) has a unique unique ground state with $\sigma_{i}^{z}=+1$ for all i while the cluster of states with $\sigma^{z}=-1$ on the inner ring is now an excited state with energy $1 / 2$ above the ground state.

Now consider the effect of a small transverse magnetic field as occurs near the end of an annealing path. The energy of the

TABLE V. Absolute squared overlap for various values of K, for learned schedule 154 , and for annealing schedules $L(10,1,1)$ and $L(80,1,1)$.

K	154	$L(10,1,1)$	$L(80,1,1)$
2	0.409	0.379	0.811
3	0.237	0.208	0.212
4	0.157	0.104	0.0182
5	0.1	0.0493	0.000683
6	0.0582	0.0233	1.25×10^{-5}
7	0.0313	0.011	9.37×10^{-6}
8	0.0169	0.00524	1.34×10^{-5}
9	0.0095	0.00248	$4 . \times 10^{-6}$
10	0.00543	0.00118	5.42×10^{-7}

unique ground state does not change to linear order in the transverse field strength. However, the energy of the cluster of states does change to linear order, by an amount proportional to the number of spins. Thus, such a low-order perturbation analysis suggests a level crossing occurring at a transverse magnetic-field strength proportional to $1 / N$, i.e., a level crossing in H_{s} for $(1-s) \sim 1 / N$. Of course, since H_{s} always has a unique ground state, this level crossing must become an avoided crossing. However, $K \sim N$ spins must flip to move from the cluster to the isolated state, so one may expect that the gap will be small, proportional to the transverse magnetic-field strength raised to a power proportional to K. Thus, the gap will be of order $N^{- \text {const } \times N}$ for some positive constant (we give a more detailed analysis of this effect below, computing the gap to leading order in perturbation theory). This argument for the small gap above is closely related to the argument of Ref. [5], and so this toy model may provide an interesting example. It would be interesting if a superexponentially small gap could be proven in this particular case.

The performance of various schedules in this model is shown in Table V. For $K=2$, the slow annealing schedule $L(80,1,1)$ outperforms the others, but already its success probability is noticeably less than 1 . For $K=3$, the slow anneal $L(80,1,1)$ and the fast anneal $L(10,1,1)$ have comparable performance, and for increasing values of K, the slow anneal becomes dramatically worse. This is due to the spectrum of the model which has a single avoided crossing with very small gap. Comparing $L(10,1,1)$ to 154 , we find that 154 is consistently better and becomes relatively better as K increases. Both $L(10,1,1)$ and 154 show a roughly exponential decay of the squared overlap with increasing K, but the decay is slightly faster for $L(10,1,1)$.

Above, we removed the Z field from one of the inner spins to break the ground-state degeneracy. Another way to do this is to vary the field strengths, keeping the same field on all inner spins but making it slightly weaker. The results are shown in Table VI, where we took the inner field strength to be $(1 / 4)(N-1) / N$ on all spins (so that the total field is the same as above). It is interesting that this does not hurt the performance of the learned schedule (see the discussion of weighted MAX-2-SAT later). A more quantitative calculation of the gap in this model is given in Appendix B.

We also studied another toy model. This model has N states (not N qubits, but rather an N-dimensional Hilbert

TABLE VI. Absolute squared overlap for various values of K, for learned schedule 154 , and for annealing schedules $L(10,1,1)$ and $L(80,1,1)$. All inner fields have same strength but are reduced compared to outer fields. Total strength of inner fields is same as in Table V.

K	154	$L(10,1,1)$	$L(80,1,1)$
2	0.422	0.386	0.8
3	0.265	0.228	0.191
4	0.186	0.122	0.0124
5	0.121	0.0594	0.000353
6	0.0704	0.0283	0.000214
7	0.0379	0.0135	0.000113
8	0.0204	0.00647	3.98×10^{-5}
9	0.0115	0.00309	6.79×10^{-6}
10	0.0066	0.00147	2.15×10^{-7}

space), divided into three subspaces of dimensions $N_{1}, N_{2}, 1$ respectively, with $N=N_{1}+N_{2}+1$. The Hamiltonian H_{X} was chosen to be a sum of two terms; the first term was proportional to the projector onto the uniform superposition of all states, while the second term was proportional to the uniform projector onto the superposition of states in the second subspace (the subspace with dimension N_{2}). The Hamiltonian H_{Z} was proportional to the identity in each eigenspace, with the ground state being the third subspace (of dimension 1) and the subspace of first excited states being the subspace of dimension N_{2}. If we take $N_{2}=0$, then this model is simply an instance of database search (and Grover's algorithm is optimal [17]); likely there are algorithms similar to Grover which are equally optimal for this model. However, our goal was instead to test various schedules. We found that if the second term in H_{X} was chosen sufficiently strong, then this would create a small gap: at intermediate values of s the ground state was concentrated on the second subspace while at $s=1$ the ground state was the third subspace. It was in this case that the learned schedules outperformed the annealing schedules.

B. Creating excited states

These toy models suggest the following explanation for the success of the learned schedules. Small gaps can create difficulties for an annealing algorithm. These small gaps can occur especially if one "basin of local minima" has slightly higher energy than the true minimum of H_{Z} but is able to reduce its energy by more in the presence of a transverse field. Suppose there is a single small gap at some s_{c}, with the gap very small that a very slow anneal will be required to stay in the ground state. In this case, it might be desirable to be in an excited state at an intermediate value of $s\left(s<s_{c}\right)$ and then to anneal more rapidly so that a diabatic transition leaves the final state close to the ground state for $s>s_{c}$.

There are a variety of possible ways to produce this excited state. In Ref. [18], thermal excitation was suggested as one possible mechanism. The optimized anneals of CFLLS give another mechanism. Let us say that $T_{\text {slow }}$ is some characteristic time scale to stay in the ground state for s near s_{c}, while $T_{\text {int }}$ is some intermediate time scale required to stay in the ground state for other values of s. Thus, a fast anneal (faster than
$T_{\text {int }}$) may lead to a transition to an excited state at some small s, leaving one in the appropriate excited state at s slightly smaller than s_{c}. In contrast a slower anneal (but still faster than $\left.T_{\text {slow }}\right)$ such as $L(80,1,1)$ will be slow enough to be close to the ground state at an intermediate $s<s_{c}$ but will be fast enough to have a diabatic transition at the small gap and so will end at an excited state for $s>s_{c}$ (i.e., the time scale of the anneal is between $T_{\text {int }}$ and $T_{\text {slow }}$).

Another strategy also tried in CFLLS was to deliberately prepare the system in a randomly chosen first excited state at $s=0$ and then run an anneal (the time of this anneal might be longer than $T_{\text {int }}$ but still faster than $T_{\text {slow }}$) so that one is hopefully in the first excited state at s slightly smaller than s_{c}. Note that there are N degenerate first excited states at $s=0$ so the probability of success of this method is at most $1 / N$. It was found [7] that in fact the probability of success was close to $1 / N$.

However, the learned schedules in this paper give a higher probability of success than this (significantly higher than $1 / N$ for most of the instances). Thus, we conjecture that the success of the learned schedules is that the behavior in the first steps (with an oscillating Z term, and a large X) serve to drive the system into the correct first excited state and then schedules conclude by approximately following an anneal so that they end in the ground state as a result of a diabatic transition when the gap becomes small.

C. Modification to schedules

The conjecture in the last subsection suggests a natural way to modify the schedules to further improve the performance (at the cost of increasing the number of steps). Suppose, as conjectured, that the initial steps of the schedules serve to drive the system into the "correct" first excited states while the final steps serve as an anneal. This final anneal is fast enough that the system does a diabatic transition back into the ground state. However, since the gap minimum is superexponentially small, even a much slower final anneal would still do such a diabatic transition [we have argued that the $L(80,1,1)$ anneal suffers from poor performance because even that anneal is fast enough to do a diabatic transition from the ground state to a first excited state]. So, if more steps are available, it may be possible to slow down the final anneal and improve performance: so long as the final anneal is fast enough to do a diabatic transition (and, as we have argued, the relevant time scale is superexponentially long), a slower final anneal may improve performance by reducing other diabatic transitions to even higher excited states.

So, we took schedule 154 and modified the final steps; we studied this on the toy model with all but one inner ring spin having field strength $1 / 4$ and the remaining spin having no field. See the table in Appendix A for the particular parameters in schedule 154 . Note that θ^{Z} is monotonically increasing on the last three steps while θ^{X} is monotonically decreasing. We tried then two different modifications to the schedule: either remove the last two steps of schedule 154 and replace with them with eight steps in which θ^{X} decreased linearly from 0.8 to 0.1 and θ^{Z} increased linearly from 1.3 to 2.0 , or to remove the last step and replace it with six steps in which θ^{X} decreased linearly from 0.6 to 0.1 and θ^{Z} increased linearly from 1.6 to 2.1 .

TABLE VII. Absolute squared overlap for various values of K, for learned schedule 154, and for two modifications discussed in text.

K	154	Replace last two steps	Replace last step
4	0.157	0.121	0.183
6	0.0582	0.0699	0.0818
8	0.0169	0.0163	0.027
10	0.0054	0.0044	0.0092

These particular numbers of steps and values of θ^{X}, θ^{Z} were chosen for the following reasons. First, in our experience, having θ change by roughly 0.1 on a step is small enough that the effect is similar to a continuous time anneal. Second, we chose the initial values of θ^{X}, θ^{Z} (the values at the start of the added steps) to be similar to the values in the learned schedule on the step immediately previous.

We find that replacing the last two steps led to a slight reduction in overlap in general on most sizes, but replacing the last step led to a distinct increase in overlap. See Table VII for details. We emphasize that no attempt was made to optimize the parameters for the final steps; indeed, in general our experience with this problem is that the results are fairly sensitive to the numbers chosen on the early steps (certainly a change in a value on an early step by 0.1 has a large effect on performance), so even the fact that the performance only reduced slightly with this replacement on the last two steps is some evidence that indeed the effect is similar to an anneal. More importantly, replacing the last step shows that even further improvement in performance is possible with longer schedules; it would be interesting to test such a schedule on the MAX-2-SAT problems and to try further improving this longer schedule using training. Another possible schedule that one might consider would be an annealing schedule with a fast anneal at the start and a slow anneal at the end.

VI. DISCUSSION

We have applied a numerical search to find schedules for a modification of the QAOA algorithm. These schedules were trained on a small subset of instances with 20 bits, but were found to perform well on the full set of such instances as well as related but slightly different ensembles with 20,24 , and 28 bits. The performance of these schedules raises the hope that they may outperform annealing on larger sizes and may be a useful application for an early quantum computer.

As a caveat, we have only studied SAT problems. We began a study of weighted SAT, where each clause comes with some arbitrary energy cost for violating that clause. As a first step to such a study, we simply tried giving all clauses the same weight; this does not change the ground state of H_{Z} but simply scales H_{Z} by some factor. However, the learned schedules did not perform well even with this simple rescaling. By training the schedules instead on a range of such weighted instances (for example, training on a set of ten random instances as well as those instances rescaled by various factors) we were able to slightly improve the ability to deal with this rescaling, but the ratios were much worse than the results reported here. It may be the case that other initial schedules or training methods would better deal with this case.

For hardware implementation, we have studied some schedules where θ^{Z} simply does a linear ramp, which may be easier to implement. Further, any schedule where θ^{Z} has a fixed sign can be implemented by taking a time-varying θ^{X} and a time-constant θ^{Z}. That is, suppose one has the ability to time-evolve under the Hamiltonian $g^{X} H_{X}+g^{Z} H_{Z}$ for arbitrary g^{X} and some given g^{Z}; then, to implement a unitary transformation $\exp \left[i\left(\theta^{X} H_{X}+\theta^{Z} H_{Z}\right)\right]$ one should evolve under the Hamiltonian $g^{X} H_{X}+g^{Z} H_{Z}$ for $g^{X}=g^{Z} \theta^{X} / \theta^{Z}$ and do the evolution for time θ^{Z} / g^{Z}.

We have found that it is very important to have an appropriate initial schedule as otherwise the learning gets trapped in local optima. Thus, while it may be the case that one can learn a schedule on a classical computer using a modest number of qubits and then apply it on a quantum computer with a larger number of qubits, the learned schedule might also be a good starting point for further optimization of schedules on the quantum computer.

ACKNOWLEDGMENTS

We thank E. Crosson for supplying the instances in CFLLS and for very useful explanations. We thank E. Farhi for useful comments on a draft of this paper. This work was supported by Microsoft Research. We acknowledge hospitality of the Aspen Center for Physics, supported by NSF Grant No. PHY1066293.

APPENDIX A: SCHEDULES

Here in Tables VIII and IX we give the parameters for certain learned schedules.

TABLE VIII. θ^{Z} for certain learned schedules. First column gives key indicating particular learned schedule number (the number itself is meaningless and serves only as a key). Second column gives initial schedule for training (see Table I).

Schedule	Initial	θ_{1}^{Z}	θ_{2}^{Z}	θ_{3}^{Z}	θ_{4}^{Z}	θ_{5}^{Z}	θ_{6}^{Z}	θ_{7}^{Z}	θ_{8}^{Z}	θ_{9}^{Z}	θ_{10}^{Z}
8	8	-0.279307	0.313947	0.614148	-0.220295	0.256869	0.465194	-0.212299	0.312254	1.50651	2.011013
31	9	0.368606	0.359748	0.190667	0.392364	0.208514	0.021365	0.642995	1.143198	1.64574	1.814225
49	9	0.424251	0.771576	0.464935	0.435078	0.404496	0.187802	0.77197	1.300528	1.701031	1.745732
84	11	0.1629	-0.496857	0.450711	-0.791892	0.326329	-0.475372	0.433593	1.033271	1.659841	2.031027
113	12	0.37599	0.680923	0.997025	0.715514	0.271968	0.519316	1.068852	1.443309	1.433469	1.333607
122	12	0.489956	0.510331	0.740654	0.538733	0.245925	0.08665	0.761729	1.188631	1.418336	1.89151
154	14	0.748224	-0.080047	-0.117857	0.316126	0.096738	-0.307805	1.210155	1.183015	1.557269	1.745549
157	14	0.677717	-0.099922	-0.055678	0.294502	0.107643	-0.276445	1.070014	1.057304	1.479656	1.646192

TABLE IX. θ^{X} for certain learned schedules. First column gives key indicating particular learned schedule number (the number itself is meaningless and serves only as a key). Second column gives initial schedule for training (see Table I).

Schedule	Initial	θ_{1}^{X}	θ_{2}^{X}	θ_{3}^{X}	θ_{4}^{X}	θ_{5}^{X}	θ_{6}^{X}	θ_{7}^{X}	θ_{8}^{X}	θ_{9}^{X}	θ_{10}^{X}
8	8	0.985164	1.711707	1.308381	1.272364	0.71373	2.073916	1.340572	1.037615	1.217506	0.730447
31	9	1.168114	1.375238	1.350988	1.356165	1.337642	1.091975	1.426565	1.162721	0.885662	0.431466
49	9	1.510793	1.665954	1.205267	1.062189	1.59617	1.481757	1.6141	1.285973	0.903954	0.396039
84	11	1.945308	1.142874	0.875239	0.914909	1.373274	1.191093	2.016909	1.142808	1.104454	0.585
113	12	1.609044	1.459435	1.971842	1.625206	1.537716	1.515011	1.398038	0.983823	0.5701	0.273691
122	12	1.683547	0.979162	1.878078	1.631202	1.16941	1.055429	1.635904	1.172053	0.795996	0.519226
154	14	1.35801	0.955197	1.397257	1.219015	1.396977	1.420552	1.283791	0.889047	0.671747	0.339493
157	14	1.359167	1.060199	1.293059	1.248988	1.328482	1.431533	1.237331	0.854213	0.688784	0.382808

APPENDIX B: EFFECTIVE DYNAMICS

In this Appendix, we give a more quantitative derivation of the minimum gap in the toy model. Let us derive an effective dynamics for the inner spins in the first toy model. Consider a pair of spins, one on the inner and one on the outer ring, connected by a bond, and let $1-s \ll 1$. Consider a pair in which the inner spin has a field. Ignoring the coupling between this pair and the rest of the system, we find that the two lowest energy states are split in energy by an amount equal to $(1 / 4)(1-s)+O\left(s^{2}\right)$: the lowest energy state has the inner spin with $\sigma^{z}=-1$ and the outer spin aligned along the transverse field, while the next energy state has the inner spin with $\sigma^{z}=+1$ and the outer spin with $\left\langle\sigma^{z}\right\rangle=1-O\left[(1-s)^{2}\right]$. Thus, the inner spin feels an effective parallel magnetic field $(1 / 4)(1-s)+O\left[(1-s)^{2}\right]$. The remaining inner spin (the one without a field in the bare Hamiltonian) feels an effective parallel magnetic field $-(1 / 4)+O(1-s)$. Finally, the effective transverse field on the inner spins is $(1 / 4)(1-s) / \sqrt{2}$ where the $1 / \sqrt{2}$ factor arises due to overlap of different states on the outer spin. Studying the effective Hamiltonian, if we ignore the transverse field, there is a ground-state degeneracy at $1-s \propto 1 / N$. Tunneling between these states due to a transverse field strength proportional to $1 / N$ splits this. To understand this splitting, and justify the claim that it is superexponentially small, we use perturbation theory and compare to numerics.

We do this comparison in the second model, where all inner spins have the same magnetic-field strength, using a perturbation theory. At $s=1$, the transverse field strength vanishes, and the ground state is the state with all spins having $\sigma^{z}=+1$. There are 2^{N} first excited states with all inner spins having $\sigma^{z}=-1$ and all outer spins arbitrary. The energy gap between the ground and first excited states is equal to $1 / 2$ (one may verify that this factor of $1 / 2$ arises from the factor of $1 / 4$ that we have chosen in the toy model to make the energy scale match that of the MAX-2-SAT instances, and then this factor of $1 / 4$ is doubled when computing the gap since the ground state has its energy reduced by $1 / 4$ while the first excited state has its energy increased by that). Let us next consider the Hamiltonian projected onto the subspace containing these $2^{N}+1$ states; we will study its energy gap in this subspace for arbitrary s. The state with all spins having $\sigma^{z}=+1$ does not couple to the other states after this projection. The spectrum of the other 2^{N} states can be understood simply: up to a constant energy shift due to the Ising interaction terms and magnetic
field terms on the inner spins, we simply have N decoupled spins (i.e., the outer spins) in a transverse field of strength $(1 / 2)(1-s)$, so the lowest energy state has its energy reduced by $(1 / 2)(1-s) N$. So, the gap in this $\left(2^{N}+1\right)$-dimensional space is equal to

$$
|(1 / 2) s-(1 / 2)(1-s) N|
$$

In this case, the gap closes at $s=N /(N+1)$. For $N=4$, this gives a gap closing at $s=0.8$, which is close to where the minimum gap was observed numerically (the minimum gap was observed at $s=0.77 \ldots$, while for $N=6$, this gives a gap closing at $s=0.857 \ldots$, while the minimum gap was observed at $s=0.84 \ldots$).

The projection onto this $\left(2^{N}+1\right)$-dimensional subspace gives a gap closing. We now consider the Hamiltonian in the full Hilbert space, considering transitions via the other states perturbatively in the transverse field. This will induce an effective tunneling amplitude, that we write $t_{\text {eff }}$, between the two lowest energy states that will open the gap. The lowestorder contribution (fewest number of spin flips) requires flipping all the spins in the inner ring and hence occurs at N th order in perturbation theory. Let us write $h_{\text {eff }}$ for the transverse field strength at the given s. In this case, $h_{\text {eff }}=(1-s)(1 / 2)$. The lowest energy process at this order (the process that involves transitions through the lowest energy intermediate states) involves flipping a single inner spin which creates a pair of domain walls, and then successively flipping additional spins to move the domain walls around the inner ring (without creating any additional domain walls) until the domain walls annihilate against each other with all spins flipped in the inner ring. The additional energy of a pair of domain walls is equal to $4 J_{\text {eff }}$ where $J_{\text {eff }}=(1 / 4) s$ is the strength of the Ising coupling at the given s. Thus, naively the amplitude for such a process would be $h_{\text {eff }}^{N} / J_{\text {eff }}^{N-1}$. However, there is an additional overlap amplitude to take into account: in the initial state, the outer spins are polarized in the z direction while in the final state they are polarized in the x direction; this overlap leads to a factor of $2^{-N / 2}$. Thus, for this process we get an overall amplitude of $2^{-N / 2} h_{\text {eff }}^{N} / J_{\text {eff }}^{N-1}$. We must then sum over possible processes: the first spin flipped is one of N possible spins, and then at each step afterwards (except for the last step) there are two possible spins which can be flipped to move a domain wall without creating additional domain walls. Thus, this gives $N 2^{N-2}$ possible processes, giving $t_{\mathrm{eff}} \approx 2^{N / 2-2} N h_{\mathrm{eff}}^{N} / J_{\mathrm{eff}}^{N-1}$. In fact, this is only an approximation even at leading order in perturbation theory: there are other processes which create
additional domain walls (for example, two pairs of domain walls) which are smaller but which are not parametrically suppressed in $h_{\text {eff }} / J_{\text {eff }}$; we do not estimate the effects of these (we expect them to multiply the final amplitude by c^{N} for some constant c in the large N limit so that the gap is still superexponentially small). Doubling $t_{\text {eff }}$ to get the effective gap, we get the minimum gap $\Delta E_{\text {min }} \approx 2^{N / 2-1} N h_{\text {eff }}^{N} / J_{\text {eff }}^{N-1}$. We emphasize that a similar perturbation theory calculation could be given for the model with one inner spin having vanishing field, but the particular sequences that contributed to tunneling would be slightly different.

Now, we consider how well this estimate of the gap agrees with the numerics. Unfortunately, this agreement is difficult to check: at small values of N, the value $h_{\text {eff }}$ is sufficiently large that higher-order effects are important while at large values of N the exponential dependence on N leads to a gap which becomes small compared to numerical precision. So, in order to achieve the goal of keeping N modest (so that the gap is not too small) while keeping $h_{\text {eff }}$ small (so that this perturbation theory is accurate), we instead further modify the model by changing the inner field strength from $(1 / 4)(N-1) / N$ to $(1 / 4)(0.95)$; for modest values of N, this increases the field strength and moves the transition to larger values of s where $h_{\text {eff }}$ is smaller. Indeed, using the theory above, the minimum gap is now at $s \approx 0.95$. The minimum gap is then roughly 3.64×10^{-6} at $N=4$ and 1.7×10^{-7} at $N=5$. Numerically,
we find that the gap is roughly 4.7×10^{-6} at $N=4$ and 3.1×10^{-7} at $N=5$, giving qualitative agreement between perturbation theory and numerics. When we incorporate other processes into perturbation theory which involve creating additional domain walls, theory agrees much more closely with numerics. For example, at $N=4$, in addition to the 16 processes identified above in which only two domains walls are created ($16=N 2^{N-2}$), there are an additional eight processes which involve flipping a spin at a single inner site ($N=4$ possible such choices) creating a pair of domain walls, then flipping the inner spin diametrically opposite that spin (there is a unique choice of that spin) giving four domain walls, and then finally flipping the remaining two inner spins in either order (two possible such choices). These eight processes give an amplitude which is $(1 / 2) 2^{-N / 2} h_{\text {eff }}^{N} / J_{\text {eff }}^{N-1}$, where the additional factor of $1 / 2$ is due to the larger energy denominator with four domain walls. Including these processes increases the perturbation theory result for the gap; to 4.6×10^{-6}, in close agreement with the numerical result 4.7×10^{-6}; the remaining slight difference may be due to either a slight shift in where the minimum gap occurs, or due to other processes at higher order in $h_{\text {eff }} / J_{\text {eff }}$, or due to numerical error.

This comparison of perturbation theory and numerics supports the picture that the dynamics is governed by an effective Ising model on the inner ring with transverse and parallel magnetic fields.
[1] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028.
[2] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem, arXiv:1412.6062.
[3] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science 292, 472 (2001).
[4] E. Farhi, J. Goldstone, and S. Gutmann, Quantum adiabatic evolution algorithms with different paths, arXiv:quant-ph/0208135.
[5] B. Altshuler, H. Krovi, and J. Roland, Anderson localization casts clouds over adiabatic quantum optimization, Proc. Natl. Acad. Sci. USA 107, 12446 (2010).
[6] I. Hen and A. P. Young, Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems, Phys. Rev. E 84, 061152 (2011); A. P. Young, S. Knysh, and V. N. Smelyanskiy, First order phase transition in the quantum adiabatic algorithm, Phys. Rev. Lett. 104, 020502 (2010).
[7] E. Crosson, E. Farhi, C. Yen-Yu Lin, H.-H. Lin, and P. Shor, Different strategies for optimization using the quantum adiabatic algorithm, arXiv:1401.7320.
[8] D. Wecker, M. B. Hastings, and M. Troyer, Towards practical quantum variational algorithms, Phys. Rev. A 92, 042303 (2015).
[9] D. S. Steiger, Troels F. Rønnow, and M. Troyer, Heavy Tails in the Distribution of Time to Solution for Classical and Quantum Annealing, Phys. Rev. Lett. 115, 230501 (2015).
[10] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential algorithmic speedup by quantum
walk, in Proceedings of the 35th ACM Symposium on Theory of Computing (STOC'03) (ACM, New York, NY, 2003), pp. 59-68; S. Muthukrishnan, T. Albash, and D. A. Lidar, When Diabatic Trumps Adiabatic in Quantum Optimization, Phys. Rev. X 6, 031010 (2016).
[11] The detailed data for instances, annealing times, and overlaps are from E. Crosson (private communication).
[12] In detail, in a random step, each parameter is incremented by a value chosen independently and uniformly from the interval $[-\delta,+\delta]$, where initially $\delta=0.1$. If fewer than three trials improve the objective out of 50 attempts, then δ is multiplied by $1 / 2$, while if more than five improve it, δ is multiplied by 2 .
[13] M. J. D. Powell, Comput. J. 7, 155 (1964).
[14] M. Mézard and R. Zecchina, Random k-satisfiability problem: From an analytic solution to an efficient algorithm, Phys. Rev. E 66, 056126 (2002).
[15] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar, Experimental signature of programmable quantum annealing, Nat. Commun. 4, 3067 (2013).
[16] T. Albash, W. Vinci, A. Mishra, P. A. Warburton, and D. A. Lidar, Consistency tests of classical and quantum models for a quantum annealer, Phys. Rev. A 91, 042314 (2015).
[17] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC'96) (ACM, New York, NY, 1996), pp. 212-219; C. Zalka, Grovers quantum searching algorithm is optimal, Phys. Rev. A 60, 2746 (1999).
[18] M. H. S. Amin, Peter J. Love, and C. J. S. Truncik, Phys. Rev. Lett. 100, 060503 (2008); N. G. Dickson et al., Nat. Commun. 4, 1903 (2013).

