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Estimation of effective temperatures in quantum annealers for sampling applications:
A case study with possible applications in deep learning
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and Instituto de Matemáticas Aplicadas, Universidad de Cartagena, Bolı́var 130001, Colombia

Rupak Biswas
Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, California 94035, USA

Alejandro Perdomo-Ortiz*

Quantum Artificial Intelligence Laboratory, NASA Ames Research Center, Moffett Field, California 94035, USA
and University of California, Santa Cruz, at NASA Ames Research Center, Moffett Field, California 94035, USA

(Received 27 March 2016; revised manuscript received 7 June 2016; published 9 August 2016)

An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on
deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as
a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies
from being used effectively. One of the main limitations is that, while the device may indeed sample from a
Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an instance-dependent
effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled,
it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose
a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a
systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted
Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning
architectures. We also provide a comparison to k-step contrastive divergence (CD-k) with k up to 100. Although
assuming a suitable fixed effective temperature also allows us to outperform one-step contrastive divergence
(CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of
CD-100 for the case studied here.
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I. INTRODUCTION

The use of quantum computing technologies for sam-
pling and machine-learning applications has attracted increas-
ing interest from the research community in recent years
[1–16]. Although the main focus of the quantum annealing
computational paradigm [17–19] has been on solving discrete
optimization problems in a wide variety of application domains
[20–27], it has been also introduced as a potential candidate
to speed up computations in sampling applications. Indeed,
it is an important open research question whether or not
quantum annealers can sample from Boltzmann distributions
more efficiently than traditional techniques [4,5,9].

There are challenges that need to be overcome before
uncovering the potential of quantum annealing hardware for
sampling problems. One of the main difficulties is that the
device does not necessarily sample from the Boltzmann distri-
bution associated with the physical temperature and the user-
specified control parameters of the device. Instead, there might
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be instance-dependent corrections leading, in principle, to
instance-dependent effective temperature [4,28,29]. Bian et al.
[4] used the maximum-likelihood method to estimate such
an instance-dependent temperature and introduced additional
shifts in the control parameters of the quantum device; this was
done for several realizations of small eight-qubit instances on
an early generation of quantum annealers produced by D-Wave
Systems. The authors showed that, with these additional
estimated shifts in place, the empirical probability distribution
obtained from the D-Wave appears to correlate very well with
the corresponding Boltzmann distribution. Further experimen-
tal evidence of this effective temperature can be found in
Ref. [29], where its proper estimation is needed to determine
residual bias in the programmable parameters of the device.

Recent works have explored the use of quantum annealing
hardware for the learning of Boltzmann machines and deep
neural networks [4,5,9,14,30]. Learning of a Boltzmann
machine or a deep neural network is, in general, intractable
due to long equilibration times of sampling techniques like
Markov chain Monte Carlo (MCMC) [31–33]. One of the
strategies that have made possible the recent spectacular
success [34] of these techniques is to deal with less general
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architectures that allow for substantial algorithmic speedups.
Restricted Boltzmann machines (RBMs) [35,36] are an impor-
tant example of this kind that, moreover, serve as a suitable
building block for deeper architectures. Still, quantum anneal-
ers have the potential to allow for learning more complex
architectures.

When applying quantum annealing hardware to the learning
of Boltzmann machines, the interest is in finding the optimal
control parameters that best represent the empirical distribu-
tion of a data set. However, estimating additional shifts for
the control parameters, as done by Bian et al. [4], would not
be practical since it is, in a sense, similar to the very kind
of problem that a Boltzmann machine attempts to solve. One
could then ask what is the meaning of using a quantum annealer
for learning the parameters of a distribution if to do so we need
to use standard techniques to learn the corrections to the control
parameters.

Here we explore a different approach by taking into account
only the possibility of an instance-dependent effective temper-
ature without the need to consider further instance-dependent
shifts in the control parameters. We devise a technique to
estimate the effective temperature associated with a given
instance by generating only two sets of samples from the
machine and performing a linear regression. The samples
used in our effective-temperature estimation algorithm are
the same ones used towards achieving the final goal of the
sampling application. This is in contrast to the approach taken
in Ref. [4], which needs many evaluations of the gradient of
the log likelihood of a set of samples from the device, making
it impractical for large problem instances.

We test our ideas in the learning of a special class of
restricted Boltzmann machines. In the next section we shall
present a brief overview of Boltzmann machines and discuss
how quantum annealing hardware can be used to assist their
learning. Afterwards, we discuss related work. In the section
that follows we introduce our technique to estimate the
effective temperature associated with a given instance. We
then show an implementation of these ideas for our quantum-
assisted learning (QuALe) of a chimera-RBM on the bars and
stripes (BAS) data set [37–39], implemented in the D-Wave 2X
device (DW2X) located at the NASA Ames Research Center.
Finally, we present the conclusions of the work and some
perspectives of the future work we shall be exploring.

II. GENERAL CONSIDERATIONS

A. Boltzmann machines

Consider a binary data setD = {v1, . . . ,vD} whose empiric
distribution is Q(v); here each data point can be represented
as an array of Ising variables, i.e., vd = (vd

1 , . . . ,vd
N ), with

vd
i ∈ {−1, + 1} for i = 1, . . . ,N . A Boltzmann machine mod-

els the data via a probability distribution P (v) = ∑
u PB(u,v),

where PB(u,v) is a Boltzmann distribution on a possibly
extended sample space {u,v}. Here u = (u1, . . . ,uM ) are
the “unobservable” or “hidden” variables that help capture
higher-level structure in the data [40], and v = (v1, . . . ,vN )
are the “visible” variables that correspond to the data them-
selves. More precisely, denoting these variables collectively

by s = (u,v), we can write

PB(s) = e−E(s)

Z
, (1)

where

E(s) = −
∑
ij∈E

Wij sisj −
∑
i∈V

bisi (2)

is the corresponding energy function and Z is the normaliza-
tion constant or partition function. Notice that in this case we
do not need a temperature parameter since it only amounts
to a rescaling of the model parameters Wij and bi that we
want to learn. Here V and E are the set of vertices and edges,
respectively, that make up the interaction graph G = (V,E).

The task is then to find the model parameters that make
the model distribution P as close as possible to the data
distribution Q. This can be accomplished by minimizing the
Kullback-Leibler (KL) divergence [39]

DKL(Q||P ) =
∑

v

Q(v) ln
Q(v)

P (v)
(3)

between Q and P or, equivalently, by maximizing the average
log likelihood

Lav = 1

D

D∑
d=1

ln P (vd ) (4)

with respect to the model parameters Wij and bi .
Gradient ascent is a standard method to carry out this

optimization via the rule

W
(t+1)
ij = W

(t)
ij + η

∂Lav

∂Wij

, (5)

b
(t+1)
i = b

(t)
i + η

∂Lav

∂bi

, (6)

where η > 0 is the learning rate, and the gradient of the average
log-likelihood function is given by [39]

∂Lav

∂Wij

= 〈sisj 〉D − 〈sisj 〉M, (7)

∂Lav

∂bi

= 〈si〉D − 〈si〉M. (8)

Here 〈·〉D denotes the ensemble average with respect to the
distribution P (u|v)Q(v) that involves the data. Similarly, 〈·〉M
denotes the ensemble average with respect to the distribution
P (u|v)P (v) = PB(u,v) that involves exclusively the model.
Such averages can be estimated by standard sampling tech-
niques, such as MCMC. Another possibility, explored in this
work, is to rely on a physical process that naturally generates
samples from a Boltzmann distribution.

B. Quantum annealing

Quantum annealing is an algorithm that attempts to exploit
quantum effects to find the configurations with the lowest
cost of a function describing a problem of interest [17–19]. It
relies on finding a mapping of such a function into the energy
function of an equivalent physical system. The latter is suitably
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FIG. 1. Chimera-RBM and data representation: (a) D-Wave
hardware embedding of a chimera-RBM with 16 visible and 16 hidden
variables. (b) Mapping of the pixels in the pictures to the visible units
in the chimera-RBM that has been used in this work (cf. [9]).

modified to incorporate quantum fluctuations whose purpose
is to maintain the system in its lowest-energy solution space.

In short, the algorithm consists of slowly transforming the
ground state of an initial quantum system, which is relatively
easy to prepare, into the ground state of a final Hamiltonian
that encodes the problem to be solved. The device produced
by D-Wave Systems [41,42] is a realization of this idea for
solving quadratic unconstrained optimization problems on
binary variables. It implements the Hamiltonian

H (τ ) = A(τ )HD + B(τ )HP , (9)

HD = −
∑
i∈VC

σ x
i , (10)

HP =
∑
ij∈EC

Jijσ
z
i σ z

j +
∑
i∈VC

hiσ
z
i , (11)

where σ
x,z
i are Pauli matrices that operate on spin or qubit i.

The control parameters of the D-Wave machine are composed
of a field hi for each qubit i and a coupling Jij for each
pair of interacting qubits i and j . The topology of the
interactions between qubits in the D-Wave is given by a
so-called chimera graph C = (VC,EC). This is made up of
elementary cells of 4 × 4 complete bipartite graphs that are
coupled as shown in Fig. 1(a). The transformation from the
simple Hamiltonian HD to the problem Hamiltonian HP is
controlled by time-dependent monotonic functions A(τ ) and
B(τ ), such that A(0) � B(0) and A(1) � B(1). Here τ =
t/ta , where t is the physical time and ta is the annealing time,
i.e., the time that it takes to transform Hamiltonian HD into
Hamiltonian HP .

Although quantum annealers were designed with the
purpose of reaching a ground state of the problem Hamiltonian
HP , there are theoretical arguments [28] and experimental
evidence [4,29] suggesting that under certain conditions
the device can sample from an approximately Boltzmann
distribution at a given effective temperature, as described in
more detail in the next section.

C. Quantum annealing for sampling applications

There are many classical computations that are intrinsically
hard and that might benefit from quantum technologies.
Common tasks include the factoring of large numbers into
its basic primes, as is the case with Shor’s algorithm [43]
in the gate model of quantum computation. Another one
described above consists of finding the global minimum of
a hard-to-optimize cost function, where quantum annealing is
the most natural paradigm. As described at the end of Sec. II A,
another computationally hard problem, key for the successful
training of Boltzmann machines and related machine-learning
tasks, is, for example, the estimation of averages 〈·〉M over
probability distribution functions PB(s). In the case of models
with a slow mixing rate, the standard MCMC approaches
would have a hard time obtaining reliable samples from the
probability distribution PB(s) [44,45]. As long as the quantum
annealer can sample more reliably or more efficiently from
this Boltzmann distribution, then we can find value in using it
to solve a problem where MCMC might become intractable.
It has been pointed out in the literature [34,46] by several
experts in the field that, to a large extent, the key to success
of unsupervised learning relies on breakthroughs in efficient
sampling algorithms.

Several key questions arise when considering quantum an-
nealers as potential technologies for providing an algorithmic
speedup in sampling applications. Why is a quantum annealer
expected to sample from a classical Boltzmann distribution
PB(s), given that it is a quantum device? Shouldn’t we expect
the quantum annealer to sample from a quantum distribution
instead? When and why should we expect the quantum
annealer to do better than classical MCMC approaches?

There are several competing dynamical processes happen-
ing at different time scales, with the time per annealing cycle
being one and decoherence and relaxation processes having
their intrinsic time scale as well. For example, if the annealing
time is much larger than the thermal equilibration time scale,
the system will remain in its thermal equilibrium until the
end of the annealing schedule. On the contrary, if it is too
short, diabatic transitions promoting undesirable population
flux from the ground state to excited states would become
relevant, leading it to be in a nonequilibrium state.

For quantum annealers that have a strong interaction
with the environment leading to relatively fast thermalization
and decoherence, theory suggests that the relevant quantum
dynamics during an annealing essentially freezes somewhere
between the critical point associated with the minimum gap
and the end of the annealing schedule [28,47,48]. In a
quasistatic regime [28,48], the system happens to be close to a
Boltzmann distribution, but at a certain effective temperature
that is, in general, different from the physical temperature of
the device. Such a freezing point τfreeze tends to coincide with
the coefficients in Eq. (9) satisfying A(τfreeze) � B(τfreeze),
which suggests that the system being quantum annealed might
end up in a Boltzmann distribution of the classical cost function
encoded in HP .

The intuition behind this phenomenon is that the dominant
coupling of the qubits to the environment or bath degrees of
freedom is via the σ z operator (for details, see the supplemen-
tary material of Refs. [41,49]). Since at the freezing point we
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have A(τfreeze) � B(τfreeze) and the interaction with the bath
lacks a strong σx component capable of causing relaxation
between the states of the computational basis (i.e., eigenstates
of σ z), the system cannot relax its population anymore; in
other words, its population dynamics freezes. Since around
τfreeze the full Hamiltonian driving the dynamics is H (τfreeze) ≈
B(τfreeze)HP , if a Boltzmann distribution is indeed reached, it
would correspond to an effective temperature Teff different
from the physical temperature of the device. Here we will
follow the convention that the units of temperature are given
in a dimensionless energy scale where 1.0 is the maximum
programmable value for the J couplers. According to Eq. (9),
the total Hamiltonian at the end of the annealing (τ = 1) is
given by H (1) = B(1)HP , so J = 1.0 would correspond to
an energy value given by B(1). For the DW2X at NASA,
J = 1.0 corresponds to B(1) = 7.9 GHz. For example, the
physical fridge temperature of this quantum annealer, TDW2X =
12.5 mK, corresponds to TDW2X = 0.033 in the dimensionless
units we follow in this paper. The effective temperature would
be Teff ≡ TDW2XB(1)/B(τfreeze); since B(τfreeze) < B(1), then
Teff > TDW2X. Such an effective temperature is expected to
depend on the specific instance being studied and on the
details of its energy landscape. Some recent unpublished work
of our research team indicates that the effective temperature
could also be influenced by the noise in the programmable
parameters and by its interplay with the specific instance
studied, making an a priori estimation a daunting task. The
approach we take in this work is to estimate this effective
temperature from the same samples that would be eventually
used for the subsequent training process.

We could wonder why a quantum annealer is expected to
help in this computational task. It has been shown that quantum
tunneling [49] might be a powerful computational resource for
keeping the system close to the ground state and to the proper
thermal distribution. It is these quantum resources, available
during the quantum dynamics before the freezing point, that
might assist and speed up the thermalization process, making
sampling more efficient than other classical approaches, such
as MCMC. It is important to mention that such a quantum
advantage is not expected for all energy landscapes; there
will be instances that will be hard for both classical annealers
and quantum annealers. The answer to this question will be
highly dependent on the quantum resources available and
on the complexity of the energy landscape itself. This is an
important and interesting question in its own right that we will
address in future work. In this work we focus on unveiling
the effective temperature that properly defines the distribution
we are sampling from and test our method in the context of a
machine-learning problem related to the training of Boltzmann
machines.

D. Chimera restricted Boltzmann machines

Learning of a Boltzmann machine is, in general, intractable
due to the long equilibration time of sampling techniques like
MCMC. One way to escape this issue is to use less general
architectures. One of the most investigated architectures is
the RBM. The interaction graph G of an RBM is a complete
bipartite graph in which visible and hidden units interact with
each other but not among themselves. This implies that the

conditional distributions P (v|u) and P (u|v) factorize in terms
of single-variable marginals, which substantially simplifies
the problem. One the one hand, data averages 〈·〉D can be
computed exactly in one shot. On the other hand, model
averages 〈·〉M can be approximated by k-step contrastive
divergence (CD-k): first, we start with a data point v(0); then
we sample u(0) from p(u|v(0)) and subsequently sample v(1)

from p(v|u(0)) and so on for k steps. At the end of this process
we obtain samples v(k) and u(k), from which it is possible
to estimate model averages [39]. CD-k is not guaranteed to
give correct results [33,44], nor does it actually follow the
log-likelihood gradient or, indeed, the gradient of any function.
Better sampling methods can have, therefore, a positive impact
on the kind of models learned.

It is, in principle, possible to embed an RBM in quantum
annealing hardware [14]. However, due to limited connectivity
of the device, the resulting physical representation would
involve a number of qubits and couplings between them much
larger than the number of logical variables and weights in
the original RBM being represented. It would be preferable
to use an alternative model that can be naturally represented
in the device. For this reason we will focus on the kinds of
models that are obtained after removing from a given RBM
all the links that are not present in the D-Wave machine [9].
We will call this type of model a chimera restricted Boltzmann
machine. Figure 1(a) shows an example of a chimera-RBM,
and Fig. 1(b) shows a possible embedding of the pixels of an
image into its visible units (cf. Ref. [9]).

III. RELATED WORK

Dumoulin et al. [9] have studied the impact of different
limitations of quantum annealing hardware for the learning
of restricted Boltzmann machines. The authors have focused
on three kinds of limitations: noisy parameters, limited
parameter range, and restricted architecture. The learning
method used was persistent contrastive divergence where the
model ensemble averages were estimated with samples from
simulated quantum hardware while the data ensemble averages
were estimated by the exact mean field.

To assess the impact of limited connectivity, Dumoulin
et al. investigated a chimera-RBM. They found that limited
connectivity is the most relevant limitation in this context. In
a sense this is understandable as RBMs are based on complete
bipartite graphs, while chimera-RBMs are sparse. Roughly
speaking, this means that if the number of variables is of order
N , the number of parameters present in a chimera-RBM is a
vanishing fraction (of order 1/N ) of the number of parameters
in the corresponding RBM. Furthermore, connections in a
chimera-RBM are rather localized. This feature may make
capturing higher-level correlations more difficult.

The authors also found that noise in the parameters of
an RBM is the next relevant limitation and that noise in the
weights Wij is more relevant than noise in the biases bi . This
could happen because the number of biases is a vanishing
fraction of the number of weights in an RBM. This argument
is no longer valid in a chimera-RBM, however. The authors
also mentioned that noise in the weights changes only when
the instance changes, while noise in the biases changes in
every sample generated. If this is indeed the case, this could be
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another reason for the higher relevance of noise in the weights
than noise in the biases.

Finally, an upper bound in the magnitude of the model
parameters, similar to the one present in the D-Wave device,
does not seem to have much impact. In this respect, we
should notice that current D-Wave devices are designed with
the sole aim of consistently reaching the ground state. In
contrast, typical applications of Boltzmann machines deals
with heterogeneous real data which contain a relatively high
level of uncertainty and are expected to exploit a wider range
of configurations. This suggests that in sampling applications
control parameters are typically smaller than those explored in
combinatorial optimization applications. If this is indeed the
case, potential lower bounds in the magnitude of the control
parameters can turn out to be more relevant for sampling
applications. In this respect, it is important to notice that noise
in the control parameters can lead to an effective lower bound.

While Dumoulin et al. modeled the instance-dependent
corrections as independent Gaussian noise around the user-
defined parameter values, Denil and De Freitas [5] devised a
way to bypass this problem altogether. To do this, the authors
optimized the one-step reconstruction error as a black-box
function and approximated its gradient empirically. They
did this using a technique called simultaneous perturbation
stochastic approximation. However, with this approach, it
is not possible to decouple the model from the machine.
Furthermore, it is not clear what the efficiency of this
technique is or how to extend it to deal with the more
robust log-likelihood function instead of the reconstruction
error. In their approach only the hidden layer is embedded
in the D-Wave, and qubit interactions are exploited to build
a semirestricted Boltzmann machine. Although they reported
encouraging results, the authors acknowledged that they are
still not conclusive.

More recently, Adachi and Henderson [14] devised a way
to embed an RBM on a D-Wave chip with chimera topology.
They did this by representing each logical variable by a string
of qubits with strong ferromagnetic interactions. Furthermore,
they implemented a simple strategy to average out the effects
of the noise in the D-Wave control parameters. They used the
quantum annealer to estimate model averages as in Ref. [9]
for pretraining a two-layer neural network. However, the
authors did not evaluate the performance of the quantum
device at this stage; they rather posttrained the model with
(classical) discriminative techniques for learning the labels of a
coarse-grained version of a well-known data set of handwritten
digits called MNIST and computed the classification error.
They reported that this approach outperforms the standard
approach where CD-1, instead of quantum annealing, is used
for pretraining the generative model.

IV. QUANTUM-ASSISTED LEARNING OF
BOLTZMANN MACHINES

In this work we assume that quantum annealers, like those
produced by D-Wave Systems, sample from a Boltzmann
distribution defined by an energy function as in Eq. (2), with
Wij = Jij /Teff and bi = hi/Teff , where Teff can be instance
dependent. While the control parameters for the D-Wave are
couplings and fields, i.e., Jij and hi , the learning takes place

on the ratio of the control parameters to the temperature, i.e.,
Wij and bi . Inferring temperature is therefore a fundamental
step to be able to use samples from a device like D-Wave
for learning since it provides a translation from {Wij } to {Jij }
and from {bi} to {hi}. We propose a QuALe technique that
includes an efficient estimation of the effective temperature. It
is initialized as follows:

(i) Pick small initial control parameters J
(0)
ij and h

(0)
i , and

sample from the device.
(ii) Using the samples obtained in the previous item,

estimate the initial temperature T
(0)

eff to compute the initial
model parameters W

(0)
ij = J

(0)
ij /T

(0)
eff and b

(0)
i = h

(0)
i /T

(0)
eff .

Then the technique iterates as follows:
(i) Using the samples and model parameters obtained in

step t , estimate the corresponding temperature T
(t)

eff and update
the model parameters according to Eqs. (5) and (6) to obtain
W

(t+1)
ij and b

(t+1)
i .

(ii) Obtain new control parameters by performing
J

(t+1)
ij ≈ T

(t)
eff W

(t+1)
ij and h

(t+1)
i ≈ T

(t)
eff b

(t+1)
i and sample from

the device.
A few comments are in order. First, for each sample step

we need to generate samples for estimating model and data
ensemble averages. For the former we just need to run the
device with the specified control parameters. For the latter we
need to generate samples with the visible units clamped to
the data points, which can be done by applying suitable fields
to the corresponding qubits. However, in the case of restricted
Boltzmann machines we can avoid this last step as it is possible
to compute exactly the data ensemble averages. Second, notice
that to compute the new control parameters in step t + 1 it
would have been ideal to estimate the temperature T

(t+1)
eff in

the same step. However, to estimate such a temperature we
would need to know what the parameters are at time t + 1. To
escape this vicious cycle we have set T

(t+1)
eff ≈ T

(t)
eff . Finally,

notice that if we think of the learning process in terms of the
control parameters Jij and hi , we may get the impression that
the learning rate is temperature dependent. We would like to
emphasize that the learning operates on the model parameters
Wij and bi , which are the one that actually shape the Boltzmann
distribution through the update rules given by Eqs. (5) and (6).
So the actual learning rate is given by η in the update equations
above; if we fix η to a constant, it would remain so. We need
Teff only to estimate the required control parameters. Still, the
approximation T

(t+1)
eff ≈ T

(t)
eff and the error in their estimation

can introduce noise that may cause the learning process to
deviate from the actual update rules given by Eqs. (5) and
(6). It would be interesting to investigate what the impact
of this noise is in contrast to that due to the estimation of
the log-likelihood gradient with a finite number of samples.
In the next section we discuss a method for estimating this
instance-dependent temperature.

V. TEMPERATURE ESTIMATION

A. Extracting temperature from two sample sets

At a generic inverse temperature β, the probability
of observing a configuration of energy E is given by
Pβ(E) = g(E)e−βE/Z(β). Here g(E) is the degeneracy of
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the energy level E, and the normalization factor Z(β) is the
partition function. We want to devise an efficient method for
estimating the effective temperature associated with a given
instance. To do this, consider the log ratio of probabilities
associated with two different energy levels, E1 and E2, given
by

�(β) ≡ ln
Pβ(E1)

Pβ(E2)
= ln

g(E1)

g(E2)
− β�E, (12)

where �E = E1 − E2. We can estimate this log ratio by
estimating the frequencies of the two energy levels involved;
in practice, we may have to do a suitable binning to have
more robust statistics. Although we cannot control the physical
temperature, we could, in principle, do this for different values
of the parameter β by rescaling the control parameters of the
device by a factor x. This is equivalent to setting a parameter
β = xβeff , where βeff = 1/Teff is the inverse of the effective
temperature Teff associated with the instance of interest. Notice
that this is only true under the assumption that Teff , despite
being generally dependent on arbitrary variations of the control
parameters, does not change appreciably under these small
rescalings. By plotting the log ratio �(xβeff) against the scaling
parameter x, we should obtain a straight line whose slope
and intercept are given by −βeff�E and ln[g(E1)/g(E2)],
respectively. Since we know the energy levels we can, in
principle, infer βeff . However, the performance of this method
was rather poor in all experiments we carried out (not shown).
A reason could be that to perform the linear regression and
extract the corresponding effective temperature, several values
of x need to be explored in a relatively wide range. Next, we
present a proposal that mitigates this limitation, which also
happens to be much more efficient.

The previous approach relied on several values of the
scaling parameter x but only two energy levels. We were not
exploiting all the information available in the other energy
levels sampled from the quantum annealer. We can exploit such
information to obtain a more robust estimate of the temperature
by sampling only for the original control parameters and a
single rescaling of them. The idea is to take the difference
�� ≡ �(β) − �(β ′), with β = βeff and β ′ = xβeff , to eliminate
the unknown degeneracies altogether, yielding

�� = ln
Pβ(E1)Pβ ′ (E2)

Pβ(E2)Pβ ′ (E1)
= �β�E, (13)

where �β = β ′ − β = (x − 1)βeff . In this way, by generating
a second set of samples at a suitable value of x and then taking
the differences of all pairs of populated levels, we can plot
�� against �E. According to Eq. (13), this is expected to
be a straight line with slope given by (x − 1)βeff . In practice,
one has to choose a binning strategy and use the same bin
intervals in both histograms so that the overlap makes sense.
For example, by setting the number of bins to K = 
√2R�,
where R is the number of samples per set, one obtains
O(K2) = O(R) data points for linear regression. Notice that
the raw energies computed before binning refer to the original
values of the control parameters in both cases, not the rescaled
ones. This is because we have already counted the effect
of the rescaling in a different inverse effective temperature

β ′ = xβeff . Finally, the energy levels obtained after binning
correspond to the midpoint of each bin.

The choice of x matters: if it is too small, no informative
changes would be detected, other than noise due to finite
sampling and uncontrolled physical processes in the device. If
it is too large, several levels would become unpopulated, and
we would not be able to compare them at both the original and
rescaled control parameters; moreover, the assumption of the
invariance of Teff under small perturbations around the original
control parameters would be less likely to be valid. Next, we
discuss how to choose the value of x.

B. A rule of thumb for the scaling factor

We can rely on concepts of information theory to guide the
choice of the scaling factor x. The idea here is to choose the
value of x as close as possible to one that still allows us to
distinguish between the two sets of samples of a given size.
Via Sanov’s theorem, the KL divergence provides a natural
way to characterize the notion of distinguishability in this case
[50–52]. Here we will briefly discuss the main ideas in a rather
informal way; the interested reader can refer to Ref. [52] for
details. We want to know whether we can distinguish between
two Boltzmann distributions at different inverse temperatures
β and β ′ from a set of R samples. To do this, it is useful to
consider that we compute the maximum-likelihood estimate of
the inverse temperature βML from the sample set corresponding
to inverse temperature β. We can consider that we repeat
this procedure many times so we can compute the probability
distribution of βML. The two Boltzmann distributions are said
to be distinguishable from a set of R samples if the probability
of βML being close to β ′ is smaller than a given tolerance P0,
i.e., if

Prob[|βML − β ′| < δ] < P0, (14)

where δ is a suitably small constant. From Sanov’s theorem it
follows that when R is large enough,

Prob[|βML − β ′| < δ] ≈ Ce−RDKL(Pβ′ ||Pβ ), (15)

where the factor C gathers subdominant terms in R. So,
if DKL(Pβ ′ ||Pβ) > ln(C/P0)/R, the two Boltzmann distribu-
tions are distinguishable in the sense defined above.

Assuming that β and β ′ are close enough, the KL divergence
can be expanded up to second order to yield

DKL(Pβ ′ ||Pβ) ≈ 1
2χ (β)�β2, (16)

where

χ (β) = ∂2 ln Z(β)

∂β2
= 〈E2〉 − 〈E〉2 ≡ σ 2

E (17)

is known in information theory as the Fisher information, or
generalized susceptibility; in this case, it is essentially the
specific heat. When R is large enough, the right-hand side in
Eq. (15) becomes appreciable only for very close β and β ′. So
for large R we can replace the KL divergence by the Fisher
information in Eq. (15).

Following these ideas, we propose to choose the scaling
factor x such that 1

2χ (β)(1 − x)2β2
eff = dKL/R, where dKL is
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a given constant (cf. Ref. [53]). Equations (16) and (17) yield

x = 1 ±
√

2 dKL

R β2
eff σ 2

E

. (18)

Some remarks are in order: (i) Eq. (18) gives a rule of thumb
to choose a suitable value of x for estimating βeff ; however, the
latter also appears in this expression. We can initiate βeff by
either making a reasonable guess or using the pseudolikelihood
estimate (see the Appendix). (ii) The sign in Eq. (18) could
be chosen to be positive during the first iterations to avoid the
rescaled control parameters being below the noise level of the
device and negative afterwards to avoid the rescaled control
parameters being above the allowed range. (iii) Equation (18)
has been derived assuming that values of the KL divergence
about dKL/R can be well approximated with the Fisher
information. These assumptions may fail in practice when R

is relatively small or when x is far from the reference value at
x = 1.0. (iv) In principle, as long as the samples generated by
the quantum annealer follow a Boltzmann distribution and the
effective temperature remains constant under rescalings of the
control parameters, our temperature estimation technique is
exact if there are enough samples. Still, the number of samples
needed could grow exponentially with problem size due to the
bias and variance associated with our estimator, whose study
we leave for future work. (v) Finally, the linear regression to
compute our estimator may be affected by noise due to energy
bands with very low frequency; in principle, this could be
mitigated by relying on a weighted linear regression giving
more weight to points associated with higher frequencies.

VI. A FEW GADGETS TO IMPROVE PERFORMANCE

In this section we discuss three techniques that help improve
the performance of our quantum-assisted learning algorithm.
First of all, it is known that the performance of quantum
annealers can be significantly impaired by the presence of both
persistent and random biases between the actual values of the
control parameters and the user-specified values. Perdomo-
Ortiz et al. [29] have developed a technique for determining
and correcting the persistent biases and have shown evidence
that this recalibration procedure can enhance the performance
of the device for solving combinatorial optimization problems.
In the next section we will show evidence that correcting for
persistent biases can also enhance the performance of quantum
annealers for sampling applications.

Second, noise in the control parameters can hinder the initial
stage of learning when they are typically small. In order to
avoid this situation we can run CD-1 for a few iterations until
we find meaningful initial values for the control parameters
that are above the noise level of the device and then restart with
QuALe. This is exclusively due to the current state of quantum
annealing technologies, and it is expected to be further
mitigated in new generations of these devices. We emphasize
that the number of iterations with CD-1 has to be small to keep
the weights within the dynamical range of the device.

Finally, to estimate the effective temperature associated
with a given instance we need to generate two sets of
samples: one corresponding to the actual values of the control
parameters that we are interested in and another corresponding

to these values rescaled by a factor x. According to the
discussion in the previous section, the scaling factor is chosen
in such a way that the two probability distributions are as close
as possible yet distinguishable. So we expect that the samples
obtained at β ′ = xβeff can also be used for the estimation
of the log-likelihood gradient, given by Eqs. (7) and (8), at
β = βeff via the technique of importance sampling [54]. In
short, we can use a set of samples {s1, . . . ,sR} extracted
from a Boltzmann distribution at inverse temperature β ′ to
estimate ensemble averages of an arbitrary observable A with
a Boltzmann distribution at inverse temperature β as

〈A〉β ≈
∑R

r=1 ρ(sr )A(sr )∑R
r=1 ρ(sr )

, (19)

where ρ(s) = e−(β−β ′)E(s) is the ratio between the unnormal-
ized probabilities. The approximation is expected to be good
as long as the two distributions are close enough [54]. In
the next section we will show evidence that including the set
of samples corresponding to the rescaled control parameters
indeed improves the performance of QuALe.

From now on, when referring to the QuALe algorithm,
we imply that these three gadgets are also included, unless
otherwise specified.

VII. LEARNING OF A BOLTZMANN MACHINE
ASSISTED BY THE D-WAVE 2X

Now that we have at our disposal a robust temperature
estimation technique, we can use it for learning Boltzmann
machines. We decided to focus on the learning of a
chimera-RBM for two reasons. On the one hand, although an
RBM can be embedded into quantum hardware [14], it requires
us to represent single variables with chains of qubits coupled
via ferromagnetic interactions of a given strength. Instead of
forcing couplings to take a specific value to meet a precon-
ceived design, it might be better to allow the learning algorithm
itself to find the parameter values that work best for a particular
application. On the other hand, the focus of our work is on
better understanding the challenges that need to be overcome
for using quantum annealers for sampling applications and
taking the necessary steps towards an effective implementation
of deep-learning applications on these quantum technologies.

This systematic study provides both an assessment of the
use of the D-Wave in learning Boltzmann machines and
a study of the impact of the effective temperature in the
learning performance. We consider it important to assess the
performance of the different methods by computing the exact
log likelihood during the learning process. Otherwise, we
could not be sure whether a difference in performance is due to
the new learning method or due to errors in the approximation
of the log likelihood. For this reason we tested the method on
a small synthetic data set called bars and stripes and computed
exhaustively the corresponding log likelihood for evaluation.
The BAS data set consists of 4 × 4 pictures generated by
setting the four pixels of each row (or column) to either black
(−1) or white (+1) at random [37–39]. Another reason to focus
on this small synthetic data set is that while generating, e.g.,
2000 samples in the DW2X for a given instance can take about
40 ms, the waiting time for accessing the machine to generate
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FIG. 2. Temperature estimation: (a) Energy histograms obtained
from R = 1000 samples generated by the DW2X for two different
sets of control parameters and K = 
√2R� bins. The blue histogram
that is shifted to the left corresponds to a typical set of control
parameters found during the learning of a chimera-RBM on the BAS
data set (see Fig. 4) using dKL/R = 1/2. The pink histogram shifted
to the right corresponds to these control parameters scaled by a factor
x = 0.72 obtained using Eq. (18). (b) Log-likelihood ratio differences
�� in Eq. (13) plotted against the corresponding energy differences
�E. These are computed using all energy bins in the overlap of
the two histograms in (a). The straight line is obtained by a linear
regression using least squares and predicts, according to Eq. (13), an
effective temperature of Teff ≈ 0.095 and a regression coefficient of
Rcoeff ≈ −0.95. The units of temperature are given in a dimensionless
energy scale where 1.0 is the maximum programmable value for
the J couplers. For the DW2X at NASA, J = 1.0 corresponds to
7.9 GHz. For example, the physical fridge temperature of this
quantum annealer, TDW2X = 12.5 mK, corresponds to TDW2X = 0.033
in the dimensionless units we follow in this paper. The instance plotted
here has Teff ≈ 3TDW2X.

a new set of samples for a different instance can vary widely
depending on the number of jobs that are scheduled. So, while
running QuALe with 2000 samples per iteration on the whole
chip (1097 qubits) for 104 iterations could take, in principle,
about 7 min if we had exclusive access to the device, the
waiting times of the different jobs could increase this time by
several orders of magnitude.

We modeled the BAS data set with a chimera-RBM of
16 visible and 16 hidden units with the topology shown in
Fig. 1(a). The mapping of pixels to visible units is shown in
Fig. 1(b) (cf. [9]). We run all algorithms with learning rate
η = 0.03, which is the best value we found among five values
in the range [0.01,0.1]. To begin with, Fig. 2 shows an instance
of temperature estimation using R = 1000 samples from the
DW2X and dKL = 500 for generic control parameters found
during the learning process (see Fig. 4). This value of dKL is the
one that worked best out of a few trial values. Figure 2(a) shows
the histograms corresponding to K = 
√2R� bins of samples
obtained at the actual control parameters (blue histogram,
shifted to the left) and the rescaled ones (pink histogram,
shifted to the right). Figure 2(b) shows a plot of �� against
�E for all energy values that appear in the overlap of the
two histograms. We can observe a rather clear linear trend as
predicted by Eq. (13), which is confirmed by a relatively high
regression coefficient, Rcoeff ≈ −0.95. From the slope m of
the regression line we can obtain the effective temperature by
solving m = �β = (x − 1)βeff .

0 200 400 600 800 1000
−11

−10

−9

−8

−7

−6

L a
v

(a)

With Bias Correction
Without Bias Correction

0 200 400 600 800 1000
−11

−10

−9

−8

−7

−6

L a
v

(b)

With Importance Sampling
Without Importance Sampling

0 100 200 300 400 500
iteration

−11

−10

−9

−8

−7

−6

L a
v
(c)

QuALe @ TDW2X = 0.033 with Restart
QuALe @ Teff with Restart
CD-1

FIG. 3. Impact of added gadgets: Average performance of the
quantum-assisted learning of a chimera-RBM on the 4 × 4 BAS
data set. The performance is measured in terms of the average
log likelihood Lav, which has been evaluated exhaustively every 50
iterations. (a) QuALe@Teff with (blue crosses) and without (pink
triangles) persistent bias correction. These results are obtained by
implementing a chimera-RBM on five different locations of the
DW2X chip and running the QuALe algorithm three times on each
location, for a total of 15 runs. The points correspond to the average
of Lav over those 15 runs, and the bands correspond to one standard
deviation. (b) QuALe@Teff with (blue crosses) and without (pink
triangles) taking into account the samples obtained at x = 1 for the
estimation of the log-likelihood gradient via importance sampling.
The points correspond to the average of Lav over five runs of QuALe
on a single location of the DW2X chip. (c) QuALe@Teff (blue crosses)
starting after a given number of iterations of CD-1 to escape the noise
level of the DW2X. Each point represents the average of Lav over
five runs of each algorithm, and the error bands correspond to one
standard deviation. Notice the dramatic drop in performance of a
naive suboptimal version of QuALe@TDW2X that uses the physical
temperature instead of estimating Teff as suggested in this work. The
value for QuALe@TDW2X is out of the range of the plot and oscillates
around Lav = −14.

Figure 3(a) shows the impact of bias correction on the
performance of the QuALe algorithm. The performance is
measured in terms of the average log likelihood Lav, which has
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been evaluated exhaustively every 50 iterations. These results
are obtained by implementing the chimera-RBM on five
different locations of the DW2X chip and running the QuALe
algorithm three times on each location for a total of 15 runs.
The points correspond to the average of Lav over those 15
runs, and the error bands correspond to one standard deviation.
We can see that QuALe with persistent bias correction (blue
crosses) outperforms QuALe without it (pink triangles).
Figure 3(b), on the other hand, shows the QuALe algorithm
with (blue crosses) and without (pink triangles) taking into
account the samples obtained at x = 1 for the estimation of the
log-likelihood gradient via importance sampling. The points
correspond to the average of Lav over five runs of QuALe on
a single location of the DW2X chip. Finally, Fig. 3(c) shows
the positive impact of carrying out a few iterations of CD-1 to
generate suitable initial conditions for QuALe.

Figure 4 shows the evolution of Lav during the learning
of a chimera-RBM on the BAS data set under different
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FIG. 4. Comparison of learning algorithms: Average perfor-
mance of different algorithms for the learning of a chimera-RBM
on the 4 × 4 BAS data set. The performance is measured in terms of
the average log likelihoodLav, which has been evaluated exhaustively
every 50 iterations. All points correspond to the average of Lav over
five different runs on the same location in the DW2X chip, and the
bands correspond to one standard deviation. The blue diagonal crosses
correspond to quantum-assisted learning estimating effective temper-
atures (QuALe@Teff ) with the DW2X using R = 1000 samples in
each iteration for the estimation of both log-likelihood gradient and
temperature for actual and rescaled control parameters. The red open
circles correspond to a fixed-temperature quantum-assisted learning
algorithm (QuALe@Tav ≈ 0.1) using the average temperature Tav ≈
0.1 found during the run of QuALe@Teff . The vertical lines and
empty triangles correspond to a fixed-temperature quantum-assisted
learning algorithm using temperatures above and below the average
temperature Tav, namely, T = 0.16 (QuALe@T = 0.16) and T =
0.08 (QuALe@T = 0.08). The filled squares, circles, and triangles
correspond to learning using CD-k for k = 1, 10, 100, respectively.

learning algorithms, all of them with learning rate η = 0.03.
We can observe that the quantum-assisted learning algo-
rithm with effective-temperature estimation at each iteration
(QuALe@Teff , blue diagonal crosses) outperforms CD-1 (blue
solid squares) after about 300 iterations and CD-10 (green
solid circles) after about 1500 iterations. However, within the
5000 iterations shown in the figure, QuALe@Teff has not yet
been able to outperform CD-100, although there is a clear
trend in that direction. As we did not observe any significant
improvement when using larger values of k, we expect that
CD-100 is close to an exact computation (see Theorem 5.1
in [55]). Interestingly, all CD-k reach their best average
performance after a relatively small number of iterations, while
QuALe@Teff , in contrast, increases slowly and steadily. One
may be inclined to think this is because CD-k estimates the
model averages from samples generated by a k-step Markov
chain initialized at each data point. In this way CD-k is using
information contained in the data from the very beginning
for the estimation of the model ensemble averages, while
QuALe@Teff ignores them altogether. However, if this were
indeed the case, one should expect such a trend to diminish for
increasing values of k, something that is not observed in the
figure. A better understanding of this point has the potential to
considerably improve the performance of QuALe@Teff .

To assess the relevance of temperature estimation for
QuALe@Teff , we also show in Fig. 4 the average performance
under quantum-assisted learning at a fixed temperature. First, it
is worth mentioning that using the physical temperature of the
device, TDW2X = 0.033 (corresponding to TDW2X = 12.5 mK,
as explained in the caption of Fig. 3), leads to a very poor
performance, reaching values Lav < −14 (not shown). Fixing
the temperature to the average QuALe@Tav ≈ 0.1 over all
temperatures found during the run of QuALe@Teff leads to a
better performance (red open circles) but one still well below
that displayed by QuALe@Teff itself. Fixing the temperature to
T0 = 0.08 < Tav (QuALe@T = 0.08) and to T0 = 0.16 > Tav

(QuALe@T = 0.16) leads to a decrease in performance with
respect to that displayed with Tav.

In Fig. 5 we can observe the variation of the effective
temperature estimated during a window of 80 iterations of

2370 2380 2390 2400 2410 2420 2430 2440
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FIG. 5. Variation of effective temperatures during learning: The
green line shows the values of the effective temperature during 80
iterations of QuALe@Teff on the BAS data set, starting from iteration
2365. The blue circles correspond to the median of the effective
temperature estimated 15 times for each instance of the control
parameters found during a learning session. The error bars represent
the first and third quartiles.
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QuALe@Teff (green line). To evaluate whether such a variation
is within the finite sampling error, we estimated the effective
temperature 15 times at each iteration. The blue circles
show the median of Teff , and the error bars represent the
corresponding first and third quartiles. Clearly, this variation
cannot be explained as due to finite sampling error. We
emphasize that during the execution of QuALe the effective
temperature is estimated only once.

VIII. CONCLUSIONS AND FUTURE WORK

Applications that rely on sampling, such as learning
Boltzmann machines, are, in general, intractable due to
long equilibration times of sampling techniques like MCMC
[31,32]. Some authors have conjectured quantum annealing
could have an advantage in sampling applications. In this
work we proposed a strategy to overcome one of the main
limitations when intending to use a quantum annealer to
sample from Boltzmann distributions: the determination of
effective temperatures. The simple technique proposed in
this work uses samples obtained from a quantum annealer
(the DW2X at NASA is our experimental implementation)
to estimate both the effective temperature and the hard-to-
compute term in the log-likelihood gradient, i.e., the averages
over the model distribution; these are needed to determine
the next step in the learning process. We present a systematic
study of the impact of the effective temperature in the learning
of a chimera-RBM model with 16 visible and 16 hidden
units. To do so, we compared the QuALe algorithm with
both instance-dependent effective temperature and different
constant effective temperatures to the performance of a CD-k
implementation, with k equal to 1, 10, and 100.

The chimera-RBM model itself is much less powerful than
the RBM model. While the former is sparse, with the number
of parameters increasing linearly with the number of variables,
the latter is dense, with the number of parameters increasing
quadratically. For instance, the chimera-RBM that we have
studied here, with 16 hidden and 16 visible variables, has
only about 31% of the weight parameters that a corresponding
RBM of the same size has. This is reflected by the fact
that a chimera-RBM, trained either with QuALe or with
standard classical techniques, struggles to generate samples
faithfully resembling the 4 × 4 BAS data set on which it
was trained (not shown). In this study, we have decided to
omit any regularization of the learning process. We have done
this to keep the focus as clear as possible on the potential
gains obtained by using QuALe and to avoid the search for
optimal regularization parameters that could be very expensive
due to the time to access the DW2X. While this may lead
to drops in likelihood [45], we expect that the substantial
reduction in the number of parameters mentioned above may
act as an implicit regularizing sparsity constraint. Since we
have neglected regularization altogether in all the learning
algorithms, we expect the comparison to be fair. Moreover, as
the work by Dumoulin et al. [9] suggests, the chimera-RBM
model we have investigated has a limited expressive power.
So we have decided to delay the investigation of the role of
regularization for when we deal with more expressive models
that can be naturally represented in a chimera topology.

RBMs have the nice feature that sampling in one layer
conditioned to a configuration in the other layer can be done in
parallel and in one step; this is one of the main reasons for their
wide adoption. This feature does not hold true once we have
nontrivial lateral connections in one of the layers, which is the
concept behind more powerful Boltzmann machines [56,57].
We think this is one of the most promising directions to explore
with the quantum-assisted learning algorithm. By restricting
QuALe to study RBM or chimera-RBM models, we are paying
the price of using a device that is, in principle, more powerful,
but we are not taking advantage of having a more general
model. It is important to investigate how to take full advantage
of the DW2X by designing more suitable models based on the
chimera graph. An interesting possibility is the one explored
in Ref. [5], where the chimera graph of the DW2X is used as
a hidden layer to build a semirestricted Boltzmann machine,
which therefore has lateral connections in the hidden layer.
When dealing with more general Boltzmann machines it would
be interesting to compare the performance of QuALe against
mean-field methods. Recently, there has been interest in ap-
plying mean-field techniques for learning restricted Boltzmann
machines too [58,59]. Future work should explore how the per-
formance of mean-field techniques compares with QuALe’s.

However, the goal of this first QuALe implementation on
small chimera-RBMs serves several purposes. When dealing
with large data sets the log likelihood cannot be exhaustively
computed due to the intractability of computing the partition
function. Log likelihood is the gold standard metric, but
it becomes intractable for large systems. In these cases,
other performance metrics such as reconstruction error or
cross-entropy error turn out to be more convenient, but
although widely used, they are rough approximations to the
log likelihood [60]. If we were to use these proxies, we could
not be sure that we would be drawing the right conclusions.
This justifies why we used a moderately small data set with
16 visible and 16 hidden units, and even though computing
the log likelihood was computationally expensive for the study
performed here, having 32 units in total was still a manageable
size. Through the computation of the exact likelihood we were
able to examine in more detail some of the goals proposed
here: being able to assess the best effective temperature fit to
the desired Boltzmann distribution and to show that using a
constant temperature different from the one estimated with our
approach might lead to severe suboptimal performance.

Another aspect we explored in this study was to go beyond
the conventional CD-1, with the purpose of having a fairer
comparison to the results that might be expected from the
entirely classical algorithm counterpart. Previous results from
our research group [61], as well as those reported by other
researchers [14], are limited to comparing the performance
of quantum annealers to the quick but suboptimal CD-1.
As shown in those studies, even with a suboptimal constant
temperature, one might be drawn to conclude that QuALe
outperforms conventional CD. Similar conclusions might be
drawn from the curves for constant but suboptimal T = 0.08
and Tav ≈ 0.1 vs. CD-1 in Fig. 4. As shown in Fig. 4, this
conclusion does not hold for higher values of k, while the
method using the effective-temperature estimation proposed
here is the only one showing a steady increase in performance,
close to matching the largest value of k tried here, i.e., k = 100.
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Another important point to investigate in the future is
whether the differences observed in performance remain for
larger and more complex data sets. We would expect the
performance of CD-k to degrade with larger instances as
equilibration times are expected to grow fast with the number
of variables once the probability distribution starts having
nontrivial structure. From this perspective, it is important to
notice that QuALe is expected to display a more uniform
exploration of configuration space.

A related important question has to do with the scalability
of our temperature estimation technique, i.e., how should the
number of samples grow with problem size? In principle, as
long as the quantum annealer converges to an approximately
Boltzmann distribution and the effective temperature remains
constant under rescalings of its control parameters, our method
is exact given enough samples. We have left this question for
future work as we consider that there are more pressing issues,
i.e., limited connectivity and noise, that need to be addressed
before we can say something conclusive about scalability.
Needless to say, the validity of the assumptions on which
our work relies should also be investigated in more detail. It
is also important to devise more controlled experiments that
allow us to isolate the different phenomena involved. Recently,
we learned of ongoing work addressing some of these issues
and putting forward other temperature estimation techniques
[62]. Finally, an investigation on the bias and variance of our
effective temperature estimator is an interesting theoretical
question that we expect to address in future work.

There are other ways in which the ideas explored here
could be extended. For instance, we can go beyond restricted
Boltzmann machines to build deep-learning architectures or
beyond unsupervised learning to build discriminative models.
In principle the speed of learning could be increased by adding
a “momentum” term to the gradient-ascent learning rule [39].
Indeed, Adachi and Henderson have started exploring these
ideas in a recent work [14]. Instead, we have focused on
first trying to better understand the basics before adding more
(classical) complexity to the learning algorithms that we feel
have the risk to obscure the actual contributions from our
approach.
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APPENDIX: COMPARISON TO ALTERNATIVE
TEMPERATURE ESTIMATION TECHNIQUES

Here we discuss alternative techniques to approximately
estimate the instance-dependent effective temperature Teff

which are, in principle, efficient too and show evidence that
our method produces superior results.

The estimation of parameters of an Ising model is usually
called in the statistical physics literature the inverse Ising
problem [63–68]. One of the most investigated techniques
for solving the inverse Ising problem relies on mean-field

approximations [64–66] due to its relative simplicity. These
techniques fail, however, for low temperatures where low-
energy configurations are arranged in a nontrivial clustered
phase [68]. On the other hand, the so-called pseudolikelihood
method [67] is recognized as the state of the art in solving
this problem. Recently, it has been suggested that by suitably
introducing information about the clustered phase into mean-
field methods, they can yield results comparable to the
pseudolikelihood method [68].

We first devised a simple strategy to test the feasibility of a
mean-field approach before attempting to develop a technique
specifically targeted to the estimation of Teff alone. Indeed,
since we know the control parameters Jij and hi , we can, in
principle, estimate Teff by first determining Wij and bi using
the Bethe approximation [65] and then finding the value of Teff

that minimizes some distance between the control parameters
and the estimated ones. However, the estimation of Wij and bi

using the samples from the DW2X along the learning path only
produces real values up to about the first hundred iterations (not
shown). This suggests the Bethe approximation is not suitable
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FIG. 6. Comparison with pseudolikelihood estimation: (a) Per-
formance of the quantum-assisted learning of a chimera-RBM
on the 4 × 4 BAS data set using the two different temperature
estimation techniques described in Sec. V: one (blue crosses) based
on linear regression [Eq. (13)] and the other (pink circles) based
on pseudolikelihood maximization [Eq. (A1)]. The performance
is measured in terms of the average log likelihood Lav, which
has been evaluated exhaustively every 50 iterations. The points
correspond to the average of Lav over five runs, and the bands
correspond to one standard deviation. (b) Variation of the effective
temperatures during one of the five runs using linear regression
(blue crosses) and pseudolikelihood maximization (pink circles).
Temperature estimation begins at iteration 100 after restarting from
CD-1.
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for the parameter regime traversed when learning the BAS data
set studied here.

Since, as we mentioned above, the pseudolikelihood
method [67] is considered the state-of-the-art technique for
estimating the parameters of an Ising model, we will focus
from now on on such an approach. We will see that our
method displays a much better performance for the BAS data
set studied here.

Given a set of samples D = {s1, . . . ,sD}, where
sd = (sd

1 , . . . ,sd
N ), with d = 1, . . . ,D, generated by a quan-

tum annealer with control parameters Jij and hi , we can
estimate the effective temperature Teff by maximizing the
average pseudolikelihood [67]

�(Teff)=− 1

N D

N∑
i=1

D∑
d=1

ln

⎧⎨
⎩1+

exp

⎡
⎣−2 sd

i

Teff

⎛
⎝hi +

∑
j∈∂i

Jij sd
j

⎞
⎠
⎤
⎦
⎫⎬
⎭, (A1)

where ∂i denotes the set of neighbors of i.
In contrast to the approach in Ref. [67], here the

only unknown is Teff . We can find a maximum aver-
age pseudolikelihood estimator for the effective tempera-
ture T PL

eff = arg maxTeff �(Teff) via the second-order Newton’s
method [67]. In our experiments, we start from Teff = 1 and
iterate until the update is smaller than a tolerance level of
10−5. Figure 6(a) shows a comparison of the performance of
our quantum-assisted learning algorithm QuALe@Teff with
Teff estimated with the pseudolikelihood method (pink circles)
as described here and estimated with the method introduced in
Sec. V (blue crosses). We can observe that while QuALe@Teff

with the pseudolikelihood method performs better in the first
about 1000 iterations, QuALe@Teff with linear regression
performs better afterwards, reaching higher values for the
likelihood function. Figure 6(b) shows the values of effec-
tive temperatures estimated by the two techniques along
the learning path; interestingly, the effective temperatures
estimated by the pseudolikelihood (pink points on the bottom)
are consistently smaller and have less variability than those
estimated with our linear regression technique (blue points on
the top).
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