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Thermal stability of the two-dimensional topological color code
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Thermal stability of the topological color code in the presence of a thermal bath is studied. We study the
Lindblad evolution of the observables in the weak-coupling limit of the Born-Markov approximation. The
autocorrelation functions of the observables are used as a figure of merit for the thermal stability. We show that
all of the observables autocorrelation functions decay exponentially in time. By finding a lower bound of the
decay rate, which is a constant independent of the system size, we show that the topological color code is unstable
against thermal fluctuations from the bath at finite temperature, even though it is stable at T = 0 against local
quantum perturbations.
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I. INTRODUCTION

The fragility of the qubits in the presence of decoherence
and external noise is the biggest obstacle in realizing a scalable
quantum computer. To overcome such problems, quantum
error correcting codes have been invented [1–9]. The main
idea of the error correcting codes is to encode information in a
many particle system; this many particle system plays the role
of a stable logical qubit. However, error correcting models are
themselves the cause of errors and the error threshold below
which one can perform fault tolerant quantum computation is
very low [10,11].

Topological quantum codes have emerged as the most
promising candidates to achieve fault tolerant quantum com-
putation. In these models information is stored in global
properties of the model, say topologically degenerate ground
states of the system. In particular, this kind of coding is shown
to be robust against local perturbations from the environment
provided they are local in space and time and they occur at
T = 0 temperature. Examples of good topological codes are
Kitaev code [12] and topological color code (TCC) [13]. A
very important figure of merit to assess the goodness of a
topological code is the error threshold. When only qubit errors
occur, the error threshold for the TCC turns out to match the
one by the Kitaev model, namely, 11% [14,15]. However, for
more realistic situations when the measurement process is also
prone to errors, the TCC threshold is 4.5% [16,17], even better
than the one for the Kitaev code, which is 2.9% [18].

Topological color codes have shown very versatile prop-
erties for doing fault-tolerant quantum computation. In 2D, a
TCC can implement the Clifford group of gates in a transversal
way [13]; this implementation of Clifford group with TCC
makes quantum teleportation, distillation of entanglement, and
dense coding possible in a fully topological manner. Moreover,
three-dimensional extensions of TCC can also achieve univer-
sal quantum computation [19]. The first realization of this
model has been done in [20].

An open problem is to find topological codes resilient to
thermal fluctuations from the environment. A first indication
that the behavior of topological codes may be different at
nonzero temperature was advanced in [14,15], and then it
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was confirmed by a rigorous proof in [21,22] within the
setting of the dynamics of quantum open systems governed
by Lindblad dynamics. It has been shown in [21,22] that the
Kitaev model in two spatial dimensions is not a stable memory
in the presence of a thermal bath. Interestingly enough, it is
possible to stabilize topological codes under thermal noise
provided the lattice system can be defined in higher spatial
dimensions. Namely, a thermally robust topological quantum
memory in D = 4 spatial dimensions can be constructed with
the Kitaev code [23], and a fully fledged universal quantum
computer robust to thermal noise can be constructed in D = 6
dimensions with topological color codes [24].

In this paper we address the problem of thermal stability of
TCC in a two-dimensional lattice, based on a mathematically
rigorous analysis of the thermal effects on the model. Accord-
ing to the paper in [25], the color code on a two-dimensional
hexagonal lattice can be mapped to two decoupled Kitaev
models on two-dimensional triangular lattices by local unitary
actions. In the original lattice on which the color code is
defined (hexagonal lattice) qubits lie on vertices of the lattice;
however, on the mapped model the qubits lie on the edges of
the triangular lattices. Although the color code is mapped to
two decoupled toric codes, an error applied from the bath on a
single qubit of the color code corresponds in the mapped model
to errors causing excitations in the two decoupled toric codes,
i.e., the two disjoined lattices. This means that the processes
of creation of excitations in these two disjoined lattices are not
independent from each other; thus, due to the coupling to the
bath, these two disjoined toric codes can be correlated. This
possibility was not taken into account in the previous works
on the stability of Kitaev model and, therefore, by knowing the
thermal stability properties of one toric code one cannot gain
any information about the thermal stability of the color code,
and this problem is not trivial.

The method that we use is similar to the one that is
used in [22]. To this end, we study the dynamics of the
TCC, weakly interacting with a heat bath in the Born-Markov
approximation. The evolution of the observables governed by
Lindblad dynamics and their autocorrelation function in time
is studied as a tool for proving the instability of this model.
We show that all of the observables autocorrelation functions
decay exponentially with a constant decay rate which means
that the model in unstable against thermal noise, although it is
stable against local quantum perturbation at zero temperature.
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The rest of the paper is organized as follows. In Sec. II
we review the main features of the TCC. In Sec. III we
provide some basic results of the Markovian approximation
in the weak-coupling limit. Section IV deals with reviewing
the stability and instability conditions of the topological
memories. In Sec. V these conditions are checked for the case
of TCC and its instability is proved rigorously. Finally, Sec. VI
is devoted to conclusive remarks. In the Appendix, we prove
the negativity of the Lindblad superoperator.

II. TOPOLOGICAL COLOR CODE

Topological color code is a class of topological codes
that can be defined on any three colorable lattice, where
by colorable we mean colorable by face or equivalently
by edge [13]. In the present work, we consider a two-
dimensional hexagonal lattice, 2-colex [26], on which the
periodic boundary conditions are imposed on both sides. This
lattice consists of N plaquettes, 2N vertices, and 3N edges. A
three colorable lattice is a lattice on which one can color its
plaquettes with three different colors (red, green, blue [27]) in
a way that the plaquettes with the same color do not share any
links. Each link connects two plaquettes with the same color
and, therefore, one can ascribe every link with this special
color.

The qubits, in this model, live on the vertices. The
Hamiltonian of the model consists of two kinds of plaquette
operators, Bx

p and Bz
p, which are defined as follows:

Bx
p =

∏
i∈p

σx,i , Bz
p =

∏
i∈p

σz,i , (1)

where σx and σz are ordinary Pauli operators and p denotes
a plaquette. Note that Bx

p and Bz
p can be defined for all

the plaquettes and thus we have a total of N distinct Bx
p

operators and N distinct Bz
p operators. The Hamiltonian is

given by

H = −J
∑

p

Bx
p − J

∑
p

Bz
p, (2)

where the summation is done over all of the plaquettes.
All of the operators in the Hamiltonian commute with each
other, since they either share two qubits or none. Thus the
Hamiltonian is exactly solvable. The plaquette operators also
square to identity and, therefore, have ±1 eigenvalues.

One should note that there are 2N qubits and 2N stabilizers
[28] (for further details about stabilizer quantum codes, please
see [29,30]) in the Hamiltonian. Nevertheless, all of these
stabilizers are not independent, because of these constraints
on the torus:∏

p∈R

Bσ
p =

∏
p∈B

Bσ
p =

∏
p∈G

Bσ
p , σ = x,z. (3)

The number of constraints for each type of plaquette
operators ({Bx

p} and {Bz
p}) is 2; therefore, there are 2N − 4

independent stabilizers in the Hamiltonian and the Hamil-
tonian has 22N

22N−4 = 16 degenerate ground states. The ground
subspace of the Hamiltonian is the subspace spanned by the
states which are stabilized by all of the plaquette operators

C1C2

C3

C4

C1C2

C3

C4

(a) (b)

FIG. 1. TCC on a hexagonal lattice. The logical operators are
defined on nontrivial loops shown with Ci’s. (a) The nontrivial loops
C1 and C2 turn around the torus once. (b) The nontrivial loops C1 and
C2 turn around the torus three times and they pass all of the plaquettes
having the same color.

simultaneously (Bx
p|gs〉 = Bz

p|gs〉 = |gs〉) and one of these
states can be represented as

|gs〉 =
∏
p

(
1 + Bx

p

)|0〉⊗N, (4)

up to a normalization factor. To construct the other 15
ground states one needs to define the following logical
operators:

Z1 =
∏
i∈C1

σz,i , Z2 =
∏
i∈C2

σz,i ,

Z3 =
∏
i∈C3

σz,i , Z4 =
∏
i∈C4

σz,i , (5)

X1 =
∏
i∈C4

σx,i , X2 =
∏
i∈C3

σx,i ,

X3 =
∏
i∈C2

σx,i , X4 =
∏
i∈C1

σx,i , (6)

where C1, C2, C3, and C4 are four nontrivial loops in the torus
in the sense that they cannot be written as a tensor product of
some plaquette operators (Fig. 1). One should note that there
are only two nontrivial loops for each nontrivial homology
cycles in a torus, the blue loop and the red loop; the third
nontrivial loop (green) can be written as a tensor product of
the red and the blue ones, i.e.,

CrCbCg ∼ 1, CrCb ∼ Cg, (7)

up to some plaquette operators. Using these logical operators,
all of the 16 ground states can be represented as follows:

|i1,i2,i3,i4〉 = X
i1
1 X

i2
2 X

i3
3 X

i4
4 |gs〉, in = 0,1, n = 1,2,3,4.

(8)
The nontrivial loops can be represented in two ways as shown
in Fig. 1. In Fig. 1(a) they turn around the torus once, while
in Fig. 1(b) they turn around three times (which is a function
of the system size). One should note that the two types of
representing the loops are equivalent in the sense that one can
deform the two representations into each other by using a set
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of appropriate plaquette operators. The second representation
[Fig. 1(b)] will be used in Sec. V.

In a realization of topological color code, information can
be stored in the topologically degenerate ground states of the
system. One can use the ground states to encode four logical
qubits. Due to its topological order, the model is robust against
local perturbations and the only perturbations that may cause
logical error are those with a length equal to the system size.
Moreover, the Clifford group’s generators can be implemented
by this model, which is sufficient for doing quantum distillation
of entanglement without any need to address single qubits and
to braid the quasiparticles [13,19].

III. MARKOVIAN APPROXIMATION IN THE
WEAK-COUPLING LIMIT

Consider a quantum system which is not closed and is
coupled to a thermal bath at temperature T . One can attribute
the following total Hamiltonian to the system and the bath,
which form a closed system together:

H = H sys + H bath + H int, H int =
∑

α

Sα ⊗ fα, (9)

where H sys is the topologically ordered Hamiltonian of the
system whose stability is being studied and H bath is the Hamil-
tonian of the bath of which we do not have any knowledge
and H int is the system-bath interaction Hamiltonian. Sα’s are
operators acting on the system and fα’s are operators acting
on the bath, and without loss of generality we can assume that
they are Hermitian [31].

In the weak-coupling limit of the interaction Hamiltonian,
an operator in the Heisenberg picture evolves as follows [31–
34]:

dX

dt
= G(X) := i[H sys,X] + L(X), (10)

where i is the complex imaginary unit and G is the generator of
the evolution, which consists of two parts. The first part is the
normal generator of the evolution of closed quantum systems
and the second one is the Lindblad generator or the dissipative
part of the evolution, due to existence of the bath. The latter
can be given as [31–34]

L(X) =
∑

α

∑
ω�0

Lα,ω(X)

= 1

2

∑
α

∑
ω�0

hα(ω)(S†
α(ω)[X,Sα(ω)] + [S†

α(ω),X]Sα(ω)

+ e−βωSα(ω)[X,S†
α(ω)] + e−βω[Sα(ω),X]S†

α(ω)),

(11)

where β is the inverse of the temperature of the system
and the factors hα(ω)’s are the Fourier transforms of the
autocorrelation functions of fα’s and we have used the
relations hα(−ω) = e−βωhα(ω). In addition, Sα(ω) is the
Fourier transform of Sα:

Sα(ω) =
∑

ε−ε′=ω

�ε′Sα�ε, (12)

where �ε is the projector onto the subspace with energy ε and
ω’s are the Bohr frequencies of the system Hamiltonian. One
can further check that Sα(−ω) = S†

α(ω) and
∑

ω Sα(ω) = Sα .

Properties of the Lindblad superoperator

In this section we briefly review some of the essential
features of the Lindblad superoperator needed for our study.

(i) Self-adjointness of L. If we define the Liouville scalar
product as follows:

〈X,Y 〉β := tr(ρβX†Y ), (13)

the Lindblad superoperator is self-adjoint with respect to it,
i.e.,

〈X,L(Y )〉β = 〈L(X),Y 〉β. (14)

From here on, in the rest of this paper by scalar product we
mean the Liouville scalar product and we withdraw writing β

symbol.
(ii) Positivity of −L. The Lindblad superoperator is negative

which means that

−〈X,L(X)〉 � 0, ∀X. (15)

The negativity of L is proved in the Appendix.
(iii) Gap of −L. Because of the positivity of −L, its smallest

eigenvalue different from zero is defined as its gap:

G(−L) := min
X

(−〈X,L(X)〉 : ∀X 	= I ). (16)

where I is the identity operator.

IV. STABILITY AND INSTABILITY CONDITIONS FOR
TOPOLOGICAL MEMORIES

(i) Stability. To prove the stability of a memory at finite
temperature and its capability for coding the information,
one should find an observable as the logical operator for
the logical qubit such that by increasing the system size the
autocorrelation function of the observable does not decrease
in time. More rigorously one should find an observable X and
a decay rate ε, such that

〈X,X(t)〉 � e−εt 〈X,X〉, (17)

where ε is the decay rate of the autocorrelation function of the
observable X. In the case of a stable memory the decay rate
should decrease exponentially with system size (ε = e−Na), so
that by increasing the system size the decay rate goes to zero.
This means that the autocorrelation function of an observable,
in the limit of large system size, will not decrease in time
and the memory will be stable and self-correcting [23]. By
substituting X(t) = etLX into Eq. (17), the condition for the
stability recasts into the following:

−〈X,L(X)〉 � ε, (18)

where ε decays exponentially with the system size.
(ii) Instability. To prove the instability of a memory

one should prove that the autocorrelation function of all
of the observables with time decreases faster than an ex-
ponential function, which means that for any observable
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we have

〈X,X(t)〉 � e−εt 〈X,X〉. (19)

By substituting X(t) = etLX into the above equation the
instability condition of a memory recasts into the following:

−〈X,L(X)〉 � ε, (20)

which means that for proving the instability of a memory one
should estimate a lower bound of −〈X,L(X)〉 by minimizing
it over all of the observables. If this quantity is a constant
independent of the system size or is a variable of the system
size that does not decrease with the size of the system, the
memory is unstable, since in finite time the autocorrelation
goes to zero and the encoded information lost (for more details,
please see [22,35]).

Therefore, proving the instability of a memory is nothing
but obtaining the gap of −L, which is denoted by G:

G(−L) := G = min
X

(−〈X,L(X)〉 : ∀X 	= I ). (21)

Applying Eq. (A4) (see the Appendix for further details), one
obtains

G � 1

2
min
α,ω

[hα(ω)] min
X

(∑
α,ω

〈[Sα(ω),X],[Sα(ω),X]〉
)

.

(22)
Moreover, by using Eq. (28) of Ref. [23] which indicates that∑

ω

〈[Sα(ω),X],[Sα(ω),X]〉 =
∑
ω,ω′

〈[Sα(ω),X],[Sα(ω′),X]〉
(23)

and the relation
∑

ω Sα(ω) = Sα , we obtain

G � 1

2
min
α,ω

(hα(ω)) min
X

(∑
α

〈[Sα,X],[Sα,X]〉
)

, (24)

which is easier to estimate. One should note that hα(ω) is
the Fourier transform of the autocorrelation function of fα

and it can be supposed that hα(ω) does not depend on α’s,
which means that the action of the bath and the strength
of interaction Hamiltonian is uniform in the whole system.
Thus the minimum of hα(ω) is equal to e−β	h(	), where 	

is the gap of the Hamiltonian and, for TCC, 	 is equal to
6J . Therefore, the lower bound of the gap recasts into the
following:

G � 1

2
e−β	h(	) min

X

(∑
α

〈[Sα,X],[Sα,X]〉
)

. (25)

V. THERMAL INSTABILITY OF THE TOPOLOGICAL
COLOR CODE

Consider a realization of the topological color code, which
is coupled to a thermal bath at temperature T . Due to this
coupling, errors can be applied from the bath on the system.
The errors usually do not commute with the Hamiltonian and
the system will not remain in the ground states anymore. If
the system is able to correct itself, i.e., it can remove errors to
stay in the ground subspace, it can be considered as a stable
topological memory.

In the present work, thermal stability of TCC at finite tem-
perature is studied. We assume that the interaction Hamiltonian
between the system and the bath is of the following form:

H int =
∑

i

(σx,i ⊗ fx,i + σz,i ⊗ fz,i), (26)

where σx and σz are applied from the bath on each qubit.
To understand the effect of this Hamiltonian on the system,
consider the ith qubit, for example; σx,i (σz,i) anticommutes
with the three z type (x type) plaquette operators that have this
qubit in common. Thus, if σx,i acts from the bath on the ground
state, because of this anticommutation, the eigenvalues of the
three plaquettes operators become −1 and the system leaves
the ground subspace and consequently the code space.

We can assume that in a plaquette with −1 eigenvalue,
an excitation (quasiparticle) has been created. In TCC the
excitations can move freely and cause logical errors. Therefore,
it seems that the model is not self-correcting. By having this
intuition we present a rigorous proof of the instability of this
model, i.e., we shall estimate a lower bound for the gap of
the Lindblad superoperator corresponding to the model as it is
discussed in the previous section.

A. Excitations

If the operators that are applied from the bath on the system
do not commute with the Hamiltonian, they create excitations.
In this section we introduce the generators for having all
possible excitations in TCC. In this model the excitations
appear in many different ways and not necessarily in pairs;
however, all of them can be generated by the use of the
following two kinds of generators.

(i) Open strings. Corresponding to each color, there is a
global open string as shown in Fig. 2(b). The red global open
string, for example, is obtained by inserting a site at the center
of every red plaquette and then connecting the sites through
the red links which have the same orientation [36] [exactly as
the Cr string shown in Fig. 2(b)]. Note that each link of the
global strings corresponds to two nearest neighbor qubits in
the original lattice. Let us refer to the connected subsets of the
global open strings as open strings.

As an example, consider an open string with only one link.
By acting with σx ⊗ σx or σz ⊗ σz on the two qubits that lie

FIG. 2. Open strings Cr,Cb,Cg and branching points bx,bz for
creating all kinds of excitations in TCC.
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on the only link of the string, the two plaquettes that are on the
two ends of the string will be excited [Fig. 2(a)]. By increasing
the length of this string one can move the excitations to any
other two red plaquettes.

In this case, excitations appear in pairs. In a lattice with N

plaquettes and 2N qubits, to generate all of the open string
operators, 2N − 6 qubits are needed; these qubits are located
on Cr, Cb, and Cg global strings.

(ii) Branching points. In TCC it is possible to have three
excitations in three plaquettes with different colors. It is
impossible to create such excitations by using the open strings;
however, by using a single-qubit operator along with the open
string operators, one can have all kinds of excitations. More
rigorously, by acting with σx on one qubit, which we call
branching point, excitations are created in the three plaquettes
that have this qubit in common [37]. By using open strings one
can move the excitations from these three plaquettes to other
plaquettes with the same color.

One should note that because of the relation (3), an arbitrary
number of excitations for different colors are not allowed and
there are certain constraints on the number of excitations of
different colors. For example, a single excitation with red color
is not allowed.

Therefore, all kinds of excitations can be generated by
applying σx ⊗ σx or σz ⊗ σz on the qubits that belong to the
open strings and also σx and σz on the branching points bx and
bz, respectively.

In a hexagonal lattice with 2N qubits, to generate all kinds
of excitations one needs 2N − 6 + 2 = 2N − 4 qubits. Thus
four qubits are left [q1, q2, q3, and q4 shown in Fig. 2(b)]. This
is consistent with having 16 degenerate ground states and 4
logical qubits.

B. Observables

All of the observables corresponding to a two-dimensional
Hilbert space can be generated by σx and σz. Therefore, the
algebra of the observables for a system consisting of N qubits
may be written as

O = Q1 ⊗ Q2 ⊗ · · · ⊗ QN, (27)

where Qi is the algebra of the observables of the ith qubit
which is generated by σx,i and σz,i . However, one can construct
all of the observables in another way by the use of the
operators present in the Hamiltonian, the logical operators
and the generators needed to create all kinds of excitations.
The latter depends on the form of the Hamiltonian. For the
case of TCC, the generators of the algebra of the observable
are of the following three types.

(i) The x and z type plaquette operators in the Hamiltonian,
Bx

p , Bz
p operators.

(ii) The logical operators defined in Eqs. (5) and (6) [38].
(ii) The generators of the excitations: σx ⊗ σx or σz ⊗ σz

acting on two nearest-neighbor qubits that lie on Cr , Cb, and
Cg strings (Fig. 2); σx acting on bx and σz acting on bz.

C. Gap of generator of the topological color code

In this section, to prove the thermal instability of the TCC,
we obtain a lower bound for the gap of generator of the

evolution, due to the coupling to the thermal bath, and show
that it is a constant independent of the system size. To this
end we refer to Eq. (25) which for the interaction Hamiltonian
defined in Eq. (26) recasts into the following form:

G � 1

2
e−β	h(	) min




×
(∑

i

〈[σx,i ,
],[σx,i ,
]〉 + 〈[σz,i ,
],[σz,i ,
]〉
)

.

(28)

The minimization in Eq. (28) is performed over all of the
observables. However, if one wants an observable to be
a logical observable acting on the code space, it should
commute with the Hamiltonian. Therefore, we do not need
to do the minimization over all of the observables on Hilbert
space explained in the previous section; the observables
that commute with the Hamiltonian would suffice. One can
restrict the domain of the minimization even more; the logical
observables Z and X for one logical qubit should anticommute
and square to identity. Therefore, all of the observables of our
interest belong to the following algebra:

O = (
Z

μ1
1 X

ν1
1

)(
Z

μ2
2 X

ν2
2

)(
Z

μ3
3 X

ν3
3

)(
Z

μ4
4 X

ν4
4

)(
Bz

p ⊗ Bx
p

)
,

μi = 0,1 and νi = 0,1, (29)

where Bz
p and Bx

p are the algebras generated by all of the z

and x type plaquette operators, respectively, and the mini-
mization is over different possibilities of μi’s and νi’s and also
the two algebras Bx

p and Bx
p. By putting an observable 
 ∈ O

(some observable of our interest) into Eq. (28), one finds that

G � 1

2
e−β	h(	)

(
min

z

( ∑
i

〈[σx,i ,
z],[σx,i ,
z]〉
)

+ min

x

( ∑
i

〈[σz,i ,
x],[σz,i ,
x]〉
))

. (30)

Here by 
z and 
x we mean operators belonging to the
following subalgebras, respectively:

O‡ = (
Z

μ1
1 Z

μ2
2 Z

μ3
3 Z

μ4
4

)
Bz

p, (31)

O§ = (
X

ν1
1 X

ν2
2 X

ν3
3 X

ν4
4

)
Bx

p. (32)

Therefore, we have

G � 1
2 (gx + gz), (33)

where gx (gz) comes from σx (σz) part of the interaction
Hamiltonian:

gx = e−β	h(	) min

z

(∑
i

〈[σx,i ,
z],[σx,i ,
z]〉
)

, (34)

gz = e−β	h(	) min

x

(∑
i

〈[σz,i ,
x],[σz,i ,
x]〉
)

. (35)
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By symmetry we know that gx and gz are equal to each other.
Thus the lower bound of the gap reduces to G � gx , i.e.,

G � e−β	h(	) min

z

(∑
i

〈[σx,i ,
z],[σx,i ,
z]〉
)

. (36)

To obtain a lower bound of the gap, one can partition the
algebra of all of the observables into different sectors (different
possibilities of μi’s) and obtain a lower bound for each sector
and, at the end, perform the minimization over all of the sectors.

1. Sector of �z = Z1Bz
p or �z = Z2Bz

p

Let us show the minimum of the decay rate in this sector
by G1. By symmetry, we know that the effect of the external
bath on Z1Bz

p is exactly the same as its effect on Z2Bz
p. Thus

it is enough to consider only one of them, say Z1Bz
p:

G1 � e−β	h(	) min

z

(∑
i

〈[
σx,i ,Z1Bz

p

]
,
[
σx,i ,Z1Bz

p

]〉)
.

(37)

From now on, we use the notation used in [22], and show
the terms 〈[σx,i ,Z1Bz

p],[σx,i ,Z1Bz
p]〉 as L1

x,i for example.
Therefore, we have∑

i

〈[
σx,i ,Z1Bz

p

]
,
[
σx,i ,Z1Bz

p

]〉
=

∑
i

L1
x,i = L1

x,q1
+ L1

x,q2
+ L1

x,q3
+ L1

x,q4
+ L1

x,bx

+L1
x,bz

+ L1
x,Cb

+ L1
x,Cg

+ L1
x,Cr

� L1
x,Cb

+ L1
x,Cg

+ L1
x,Cr

, (38)

where by L1
x,Cb

we mean
∑

i∈Cb
L1

x,i and so on. To obtain the
inequality in Eq. (38), we have used the positivity of each term
Lx,i , which is proved in the Appendix. Now we calculate the
terms Lx,Cb

, Lx,Cg
, and Lx,Cr

separately as follows:

L1
x,Cb

=
∑
i∈Cb

〈[
σx,i ,Z1Bz

p

]
,
[
σx,i ,Z1Bz

p

]〉
=

∑
i∈Cb

〈
Z1

[
σx,i ,Bz

p

]
,Z1

[
σx,i ,Bz

p

]〉
=

∑
i∈Cb

tr
(
ρβ

[
σx,i ,Bz

p

]†
Z

†
1Z1

[
σx,i ,Bz

p

])
=

∑
i∈Cb

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉
, (39)

where the second line is the consequence of the fact that Z1

commutes with all of σx,i ,i ∈ Cb [Fig. 1(b) and Fig. 2(b)],
because the support of Z1 and Cb do not have any common
qubit.

One can further check that the same arguments as above
also hold for L1

x,Cg
. On the contrary, the term L1

x,Cr
leads to

a different result, since the support of Z1 and Cr meet each
other and, therefore, Z1 does not commute with σx,i’s, i ∈ Cr .
However, as shown in Eq. (7) in TCC a nontrivial loop with
a specific color, say red, is equivalent to the tensor product
of two other nontrivial loops that have different colors, green
and blue, but are in the same homology class as the red one.
Therefore, one can write Z1, (denoted as Zr ) as the tensor
product of Z2 (denoted as Zb) and another logical operator
that is defined on a green nontrivial loop (denoted as Zg), i.e.,

ZrZbZg ∼ 1, Zr ∼ ZgZb, (40)

up to some plaquette operators. Thus

ZrBz
p = ZgZbBz

p, (41)

where we have absorbed the extra plaquette operators, in the
algebra of all of the plaquette operators. Because ZgZb does
not meet Cr at any point, the same result asL1

x,Cg,b
also holds for

the last term L1
x,Cr

. Suppose that A and B have their minimum
values at X1 and X2, respectively; since A + B would, in
general, have its minimum at X3 which is different from X1

and X2, one arrives at

min
X

(A + B) � min
X

(A) + min
X

(B). (42)

By using this inequality the lower bound of the gap of Lindblad
in this sector recasts into the following:

G1 � 3e−β	h(	) min

z

L1
x,Cb

. (43)

Here, 
z ∈ Bz
p. Obtaining the gap of this new model is simpler,

because by knowing the effect of the bath on this new model
one can map it to a known model so that its Lindblad gap is
known. The new model is nothing but the Ising model. The
reason is that in TCC when σx is applied on one qubit, say
qubit number 1 in Fig. 3(a), it can create three excitations in
three plaquettes that have this qubit in common; by acting
another σx on the next qubit, qubit number 2, two of these
excitations will be annihilated and a new one can be created
in the next blue plaquette [Fig. 3(a)]. On the other hand,
consider another model, one-dimensional Ising model, with
inhomogeneous couplings as follows:

HIsing = −J
∑
i=odd

σz,iσz,i+1 − 2J
∑

i=even

σz,iσz,i+1, (44)

1 2

σx,1 σx,2

σx,2σx,1

(a)

(b)
1 2

FIG. 3. Equivalence of the process of creation of excitation in the blue sublattice in the TCC, as shown in (a), and the inhomogeneous Ising
model, as shown in (b).

022306-6



THERMAL STABILITY OF THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW A 94, 022306 (2016)

where J is the coupling constant. In this model if σx is applied
to qubit number 1 in Fig. 3(b), it excites two of the bonds;
however since one of the coupling strength is twice the other
one, one can suppose that this external perturbation creates
three excitations with the same energy [the excited bonds are
shown with red color in Fig. 3(b)]. By applying another σx on
qubit number 2 the bond with two excitations is not excited
any more, but another bond with one excitation can be excited.
Thus the process of creation and annihilation of excitation in
the TCC is exactly what happens in the Ising model defined
in Eq. (44). It has been shown in [22] that the Ising model
with arbitrary coupling is not a stable memory against thermal
fluctuations, since the gap of Lindblad superoperator for this
model is a constant independent of the system size. Therefore,
one can conclude that for this sector of observables, the
minimum of the decay rate is the following constant, which is
independent of the system size:

G1 � 3e−β	h(	)[G(L)]Ising. (45)

2. Sector of �z = Bz
p

Let us show the minimum of the decay rate in this sector
by G2:

G2 � e−β	h(	) min

z

(∑
i

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉)
. (46)

As in the previous case, the terms like 〈[σx,i ,Bz
p],[σx,i ,Bz

p]〉
are shown as L2

x,i . Therefore, we have∑
i

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉
=

∑
i

L2
x,i = L2

x,q1
+ L2

x,q2
+ L2

x,q3
+ L2

x,q4

+L2
x,bx

+ L2
x,bz

+ L2
x,Cb

+ L2
x,Cg

+ L2
x,Cr

� L2
x,Cb

+ L2
x,Cg

+ L2
x,Cr

. (47)

By symmetry we know that the three terms L2
x,Cb

, L2
x,Cg

, and

L2
x,Cr

are equal to each other. Thus the minimum decay rate
recasts into the following form:

G2 � 3e−β	h(	) min

z

L2
x,Cb

, (48)

which is exactly what was discussed in the previous section
and was equal to the gap of the Lindblad superoperator for the
Ising model defined in Eq. (44). Therefore, we have

G2 � 3e−β	h(	)[G(L)]Ising. (49)

3. Sector of �z = Z3Bz
p or �z = Z4Bz

p

Let us show the minimum of the decay rate in this sector
by G3. By symmetry we know that the effect of the external
bath on Z3Bz

p is exactly the same as the effect of the bath on
Z4Bz

p. Therefore, it is enough to consider only one of them,
say Z3Bz

p:

G3 � e−β	h(	) min

z

(∑
i

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉)
.

(50)

In this sector the terms like 〈[σx,i ,Z3Bz
p],[σx,i ,Z3Bz

p]〉 are
represented by L3

x,i . Therefore, we have

G3 � e−β	h(	) min

z

∑
i

L3
x,i

= e−β	h(	) min

z

(
L3

x,q1
+ L3

x,q2
+ L3

x,q3
+ L3

x,q4

+L3
x,bx

+ L3
x,bz

+ L3
x,Cb

+ L3
x,Cg

+ L3
x,Cr

)
� e−β	h(	) min


z

(
L3

x,Cb
+ L3

x,Cg
+ L3

x,Cr

)
� e−β	h(	)

(
min

z

(
L3

x,Cb

) + min

z

(
L3

x,Cg

) + min

z

(
L3

x,Cr

))
.

(51)

Now we calculate the terms separately as follows:

min

z

L3
x,Cr

= min

z

(∑
i∈Cr

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉)
.

(52)

Since Z3’s support is the closed red string and Cr is also a red
string, in the other homological class, they do not meet each
other at any point. Thus Z3 and σx,i , i ∈ Cr commute with
each other and the above equation reduces to

min

z

L3
x,Cr

= min

z

(∑
i∈Cr

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉)
, (53)

which is exactly what was discussed in the first case, and
is equal to the gap of the Lindblad superoperator for the
Ising model defined in Eq. (44). The only quantities left to
be obtained are Lx,Cb

and Lx,Cg
, which by symmetry we know

to be equal to each other. Thus it is sufficient to consider only
one of them:

min

z

L3
x,Cb

= min

z

⎛
⎝∑

i∈Cb

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉⎞⎠. (54)

We can split the summation
∑

i∈Cb
in two parts, the qubits that

lie on Z3 loop and the qubits that do not lie on Z3 loop:

L3
x,Cb

=
⎛
⎝ ∑

i∈Cb,i /∈Z3

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉⎞⎠

+
⎛
⎝ ∑

i∈Cb,i∈Z3

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉⎞⎠. (55)

We use Lemma 2 in [22] which indicates that a lower bound
of the gap of a superoperator like S that can be written as
summation of two other superoperators, i.e., S = A + B, is
given by

G(S) � G(A)〈ker(A),B[ker(A)]〉
G(A) + ||B|| . (56)

We take A and B to be the Lindblad superoperator when
the bath does not have any effect on the qubits lying on C3

and when the bath is applied only on the qubits lying on
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C3, respectively and ker(A) refers to an operator Ô such that
A(Ô) = 0. Therefore, for the gap of A we have

G(A) = min

z

⎛
⎝ ∑

i∈Cb,i /∈Z3

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉⎞⎠

= min

z

⎛
⎝ ∑

i∈Cb,i /∈Z3

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉⎞⎠. (57)

One should note that the expression in the second line is not
the gap of the Ising model, because perturbations from the bath
are not applied to all of the qubits lying on C3. Nevertheless,
one can see that it is the gap of a one-dimensional Ising model
whose qubits are missing at some of the points. The number of
these points is |C|

2 , where |C| is the length of C3 defined as the
number of qubits that lie on C3 loop. Note that there are |C|

2
distinct blue sublattices in between every two adjacent missing
points. Therefore, using inequality (42), one can expand G(A),
as a summation of |C|

2 terms, where each term is equal to
the minimum of the decay rate for each of these |C|

2 Ising
models that are defined on one of the |C|

2 aforementioned
sublattices. Because the minimum of the decay rate for
these |C|

2 Ising models are equal to each other, therefore one
obtains

G(A) � |C|
2

min

z

⎛
⎝ ∑

i∈C1
b ,i /∈Z3

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉⎞⎠
� 0, (58)

where, by C1
b , we mean that the bath is applying on qubits

that lie on one of these |C|
2 blue sublattices. The reason that

the lower bound for the gap of one of these Ising models
is zero is that one can find an observable belonging to Bz

p,
such that the support of this observable does not have any
point in common with the vertices of one of these |C|

2 blue
sublattices.

Therefore, from Eqs. (56)–(58), one finds the following
lower bound for the gap of L3

x,Cb
in the present sector:

L3
x,Cb

= L3
x,Cg

� 0. (59)

Using Eqs. (51)–(59), the minimum of the decay rate for this
sector is given by

G3 � L3
x,Cr

+ L3
x,Cb

+ L3
x,Cg

� e−β	h(	)GIsing. (60)

4. Sector of �z = Z1 Z3Bz
p or �z = Z1 Z4Bz

p or �z = Z2 Z3Bz
p or

�z = Z2 Z4Bz
p

The minimum of the decay rate in this sector is shown
by G4. Using the inequality (42) and the notation L4

Cb,g,r
=∑

i∈Cb,g,r
〈[σx,i ,Z1Z3Bz

p],[σx,i ,Z1Z3Bz
p]〉 we obtain

G4 � e−β	h(	)
(

min

z

(
L4

x,Cb

)
+ min


z

(
L4

x,Cg

) + min

z

(
L4

x,Cr

))
. (61)

Now we calculate the terms L4
x,Cb

, L4
x,Cg

, and L4
x,Cr

separately
as follows:

L4
x,Cb

=
∑
i∈Cb

〈[
σx,i ,Z1Z3Bz

p

]
,
[
σx,i ,Z1Z3Bz

p

]〉
=

∑
i∈Cb

〈[
σx,i ,Z3Bz

p

]
,
[
σx,i ,Z3Bz

p

]〉
, (62)

where the second line is the consequence of commutativity
of Z1 with all of σx,i ,i ∈ Cb. In addition, as we proved in
the previous case, a lower bound of this quantity is given by
Eq. (59) and, by symmetry, it is equal to the lower bound of
L4

x,Cg
. The only term that remains to be obtained is L4

x,Cr
. One

finds that

L4
x,Cr

=
∑
i∈Cr

〈[
σx,i ,Z1Z3Bz

p

]
,
[
σx,i ,Z1Z3Bz

p

]〉
=

∑
i∈Cr

〈[
σx,i ,Z1Bz

p

]
,
[
σx,i ,Z1Bz

p

]〉
=

∑
i∈Cr

〈[
σx,i ,Z2ZgBz

p

]
,
[
σx,i ,Z2ZgBz

p

]〉
=

∑
i∈Cr

〈[
σx,i ,Bz

p

]
,
[
σx,i ,Bz

p

]〉
, (63)

which is what we discussed in the first case and is equal to the
gap of Ising model. Therefore, a lower bound of G4 is given
by

G4 � e−β	h(	)GIsing. (64)

To obtain the gap of L it is enough to consider only the above
sectors of the observables, since each of the other sectors
is equivalent to one of the four mentioned cases, and this is
straightforward to check. Therefore, the minimum of the decay
rate in all of the sectors can be obtained by doing minimization
only over these four sectors. Finally, we arrive at our key
theorem

Theorem. The gap of Lindblad superoperator for topolog-
ical color code due to the coupling to a thermal bath is given
by

[G(−L)]TCC � e−β	h(	)[G(−L)]Ising. (65)

VI. CONCLUSION

In this work, we have studied thermal stability of the
topological color code in the presence of a thermal bath of
the form (26). To this end, we have studied the Lindblad
evolution of the observables in the Heisenberg picture and their
autocorrelation functions. The observables that we studied
commute with the Hamiltonian in order to be regarded as
logical operators acting on the code space. We obtain a lower
bound of the decay rate of these observables as follows:

〈X,X(t)〉 � e−εt 〈X,X〉, (66)

where

ε � e−β	h(	)[G(−L)]Ising, (67)

[G(L)]Ising turns out to be a constant independent of the system
size [22], and 	 is the gap of the TCC model which is equal
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to 6J . Our result means that the autocorrelation function of
the observables decreases exponentially in time faster than
an exponential with a constant decay rate independent of the
system size, i.e., by increasing the system size one cannot
decrease the decay rate to make the memory stable. Thus,
in a finite time, the autocorrelation function becomes very
small and the encoded information will be lost. Therefore,
we can conclude that the topological color code is unstable
against thermal fluctuations from the bath at finite temperature,
even though it is stable at T = 0 against local quantum
perturbations.

Although the conclusion about the thermal instability of
the color code is the same as that of the Kitaev code, notice
however that the derivation of this result is very different in the
case of color code from the case of Kitaev model. For example,
in Kitaev model excitations appear in pairs as opposed to color
code, in which excitations do not appear necessarily in pairs.
Moreover, in the Kitaev model, to have all possible excitations,
one should apply tensor products of σx’s (σz’s) over qubits
belonging to the subsets of the snake (comb), on the ground
states (for further details, see [22]). This is in contrast to the
color code where, to have all possible excitations, one should
apply a completely different procedure using the concepts of
open strings and the branching points as defined in Sec. V A.
As explained in Sec. V B, the generators of the observables for
any stabilizer Hamiltonian are the stabilizers which are in the
Hamiltonian as well as the generators needed for creating all
kind of excitations. Apart from the difference of the stabilizers
in the two models, because the generators needed for creating
all kinds of excitations in the case of color code are different
from that of Kitaev, one can conclude that the generators
needed to have all observables in the case of color code are
different from the Kitaev. The last distinctive point is that the
process of creation of the excitations caused by the external
bath in the TCC can be mapped to the corresponding process
in inhomogeneous one-dimensional Ising model, in contrast
to the case of the Kitaev model which can be mapped to the
one-dimensional homogeneous Ising model [22].

The impact of these results goes beyond the field of quantum
computation and extends to the new emerging field of topo-
logical orders in condensed-matter system (strongly correlated
spins). In fact, it is known that two-body Hamiltonians in
2D lattices can give rise to topological color codes in the
low-energy sector for certain regimes of the couplings [39,40].
These topological orders are expected to suffer from thermal
instabilities as well.
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APPENDIX: NEGATIVITY OF LINDBLAD
SUPEROPERATOR

Lemma. The Lindblad superoperator is negative which
means that

− 〈X,L(X)〉 � 0, ∀X. (A1)

Proof. In order to prove the positivity of −〈X,L(X)〉 we
use the definition of L(X):

− L(X) = −
∑

α

∑
ω�0

Lα,ω(X)

= 1

2

∑
α

∑
ω�0

hα(ω)(S†
α(ω)[Sα(ω),X]

+ [X,S†
α(ω)]Sα(ω) + e−βωSα(ω)[S†

α(ω),X]

+ e−βω[X,Sα(ω)]S†
α(ω)). (A2)

Since 1
2hα(ω)’s are positive, we prove the positivity of each

term −〈X,Lα,ω(X)〉:
−〈X,Lα,ω(X)〉

= 〈X,S†
α(ω)[Sα(ω),X] + [X,S†

α(ω)]Sα(ω)〉
+ e−βω〈X,Sα(ω)[S†

α(ω),X] + [X,Sα(ω)]S†
α(ω)〉. (A3)

Expanding the above equation and using the relation
ρβSα(ω) = eβωSα(ω)ρβ , one can find that

− 〈X,Lα,ω(X)〉 = 〈[Sα(ω),X],[Sα(ω),X]〉
+ e−βω〈[S†

α(ω),X],[S†
α(ω),X]〉. (A4)

In order to prove the positivity of 〈[Sα(ω),X],[Sα(ω),X]〉 one
needs to use the explicit form of Sα(ω), which for x type errors
is as follows.

(i) Annihilation of three excitations. If there are three
excitations in the three plaquettes that have this qubit in
common, σx,i annihilates all of them [Fig. 4(a)]. Thus the
Fourier transform of σx,i is given by

Sx,i(ω = 6J ) = �−3J σx,i�3J

= 1
8σx,i

(
1 − Bz

p

)(
1 − Bz

p′
)(

1 − Bz
p′′

)
.

(A5)

Here, p, p′, and p′′ are the three plaquettes that have the ith
qubit in common, �3J denotes the projector onto the subspace
with three excitations, and �−3J denotes the projector onto
the subspace with no excitation in these three plaquettes.

(ii) Creation of one excitation and annihilation of two. If
there are two excitations in two of the plaquettes that have
this qubit in common, σx,i annihilates them and creates one
excitation in the other plaquette [Fig. 4(b)]. Thus the Fourier
transform of σx,i is given by

Sx,i(ω = 2J ) = �−J σx,i�J

= 1
8σx,i

((
1 − Bz

p

)(
1 − Bz

p′
)(

1 + Bz
p′′

)
+ (

1 − Bz
p

)(
1 + Bz

p′
)(

1 − Bz
p′′

)
+ (

1 + Bz
p

)(
1 − Bz

p′
)(

1 − Bz
p′′

))
. (A6)
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i
σx,i

σx,i

i i
σx,i

σx,i

i

(a) (b)

FIG. 4. Two possibilities of creation and annihilation of excitations in TCC due to existence of a thermal bath. (a) Creation and annihilation
of three excitations. (b) Creation of one excitation and annihilation of two, and vice versa.

Here, �J denotes the projector onto the subspace with two
excitations and �−J denotes the projector onto the subspace
with one excitation.

Therefore, we have

Sx,i(6J ) = σx,i�3J , S
†
x,i(6J ) = σx,i�−3J ,

(A7)
Sx,i(2J ) = σx,i�J , S

†
x,i(2J ) = σx,i�−J .

All of the above arguments can be done in a similar fashion
for the z type error by substituting σz,i for σx,i and Bx

P for Bz
p.

It is sufficient to prove the positivity of
〈[Sα(ω),X],[Sα(ω),X]〉 for a specific ω, say 6J . For
the other ω’s the procedure is the same. For this case
〈[Sα(ω),X],[Sα(ω),X]〉 is equal to the following:

tr(ρβ�3J [X,σx,i][σx,i ,X]�3J )

= tr

(
�3J ρβ [X,σx,i]︸ ︷︷ ︸

A†

[σx,i ,X]︸ ︷︷ ︸
A

)
. (A8)

Since �3J is a projector onto a subspace of the system’s Hilbert
space it can be written as

�3J =
∑
m

|�m〉〈�m|. (A9)

The thermal state (ρβ) also can be written as a mixture of
eigenstates of the Hamiltonian, i.e.,

ρβ =
∑

k

λk|�k〉〈�k|. (A10)

Therefore, we have

�3J ρβ =
∑
m

λm|�m〉〈�m|. (A11)

If we diagonalize matrix A and expand the eigenstates of the
Hamiltonian as a superposition of the eigenstates of A, i.e.,

|�m〉 =
∑

a

ψm,a|�m,a〉, (A12)

we will end in the following:

tr(ρβ�3J [X,σx,i][σx,i ,X]�3j ) =
∑
m,a

λm|ψm,a|2, (A13)

which is clearly positive.
These arguments are not particular for TCC. For the other

models ω’s and �’s are different; nevertheless, the procedure
of the proof is the same as above.
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