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algorithms on highly symmetric graphs

M. Štefaňák* and S. Skoupý
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Perfect state transfer between two marked vertices of a graph by means of a discrete-time quantum walk is
analyzed. We consider the quantum walk search algorithm with two marked vertices, sender and receiver. It is
shown by explicit calculation that, for the coined quantum walks on a star graph and a complete graph with
self-loops, perfect state transfer between the sender and receiver vertex is achieved for an arbitrary number of
vertices N in O(

√
N ) steps of the walk. Finally, we show that Szegedy’s walk with queries on a complete graph

allows for state transfer with unit fidelity in the limit of large N .
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I. INTRODUCTION

Quantum walks [1] have emerged as quantum analogs of
a classical random walk on a discrete lattice or a graph. Both
discrete-time [2] and continuous-time [3] quantum walks were
proposed. Soon, the potential of quantum walks in quantum
information processing was identified [4]. In fact, it was found
that both continuous-time [5] and discrete-time [6] quantum
walks are universal models of quantum computation.

One of the most prominent applications of quantum walks
in quantum information processing is the spatial search of
the unsorted database of N items represented by a graph
with a marked vertex. Marking the vertex corresponds to
different dynamics on that node, i.e., a different coin operator
in the discrete-time quantum walk or different on-site energy
in the continuous-time quantum walk. The discrete-time
quantum walk search algorithm was shown to be optimal for
a hypercube [7] and for lattices [8] of dimensions d greater
than 2; i.e., it finds the marked node after O(

√
N ) steps of

the walk. The continuous-time quantum walk was shown to be
optimal [9] for search on the complete graph, the hypercube,
and lattices with d > 4. Moreover, including the coin degree of
freedom the continuous-time quantum walk search is optimal
for lattices with d > 2 [10]. Later it was found that high
symmetry or connectivity of the graph is in fact not required
for the optimal runtime of the continuous-time quantum walk
search algorithm [11–13]. In fact, Chakraborty et al. [14]
have shown that the continuous-time quantum walk search
algorithm is optimal for almost all graphs. Another variant
of a discrete-time coinless quantum walk capable of optimal
search was proposed by Szegedy [15]. Szegedy’s walk on a
complete graph finds the marked vertex with probability 1/2.
Recently, Santos [16] found that adding queries to Szegedy’s
walk on the complete graph increases the probability of finding
the marked vertex to 1 in the limit of large N .

Another promising application of quantum walks is the
perfect state transfer between two vertices of a graph or a
lattice. There exist two different approaches to the problem.
In the first, one defines dynamics at each individual vertex in
order to achieve state transfer between two selected vertices.

*martin.stefanak@fjfi.cvut.cz

This approach was pursued by Kurzynski and Wojcik [17],
who have designed the local coin operators to achieve perfect
state transfer with discrete-time quantum walk on a circle.
The method of [17] is essentially the discrete-time variant
of the engineered coupling protocol [18] in spin chains. In
a similar way, Zhan et al. [19] have designed paths using
local coin operators of a discrete time quantum walk, either
identity matrices or a tensor product of Pauli σx , which leads
to state transfer on a square lattice. Yalcinkaya and Gedik [20]
have analyzed the state transfer on a circle with a fixed coin
operator. They have shown that only identity or Pauli σx

achieves state transfer with unit fidelity over arbitrary distance,
while the Hadamard operator or other mixing coins allow
for perfect state transfer over finite distances only. In these
models [17,19,20] the transfer of the internal coin state is also
possible. The second approach, where one modifies the dynam-
ics only at vertices which want to communicate the quantum
state, was proposed by Hein and Tanner [21]. The authors have
considered a discrete-time quantum walk search algorithm on
a lattice with two marked vertices, sender and receiver, and
showed that by initializing the algorithm on the sender vertex
the walk will reach the receiver vertex with high probability.
In this scenario only the transfer of a particle from one vertex
to the other is considered, instead of the transfer of an arbitrary
internal coin state. For finite graphs, especially cycles and their
variants, this approach was analyzed [22,23] in both discrete-
time and continuous-time models. More recently, Chakraborty
et al. [14] have shown that in the continuous-time quantum
walk scenario it is possible to achieve perfect state transfer for
almost any graph in the limit of large size of the graph, N .

In the present paper we follow the idea of Hein and Tan-
ner [21] for perfect state transfer by means of a discrete-time
quantum walk on highly symmetric graphs. We focus on such
graphs where the discrete-time quantum walk search algorithm
succeeds in finding the marked vertex with certainty, namely
the star graph and the complete graph with self-loops [8,24].
We also consider Szegedy’s walk with queries on the complete
graph [16] where unit success probability is reached in the
limit of large size of the graph, N . We explicitly show that the
algorithms are capable of state transfer between the sender
and the receiver vertices in O(

√
N ) steps. The method is

analogous to the analysis of the search algorithms on the
corresponding graphs [8,16,24,25]. Namely, we determine the
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invariant subspace of the evolution operator of the walk which
includes the sender and the receiver states. Since the distance
between the sender and the receiver vertices in the models
discussed in the present paper is independent of the size of
the graph, N , the dimension of the invariant subspace is also
independent of N . Similar dimensional reduction due to the
high symmetry of the graph [26] was also applied previously
in analysis of anomaly identification on star graphs [27,28]
and continuous-time quantum walk search algorithms [12].
In particular, the invariant subspace has dimension three for
the star graph, five for the complete graph with self-loops,
and seven for Szegedy’s walk with queries on the complete
graph. This fact greatly reduces the complexity of the problem.
Indeed, we only have to deal with the effective evolution
operator which is a fixed-size matrix with matrix elements
depending on the size of the graph, N . For the star graph
and the complete graph with self-loops the effective evolution
operator can be diagonalized analytically and the problem of
state transfer can be solved exactly. We show that for both
graphs the quantum walk achieves perfect state transfer; i.e.,
the particle is transferred with unit probability, for arbitrary
size of the graph, N . In the case of Szegedy’s walk with queries
on a complete graph we show that the particle is transferred
with unit probability in the limit of large N .

Our paper is organized as follows: In Sec. II we analyze
the perfect state transfer in the coined quantum walk on the
star graph. Section III is devoted to perfect state transfer in the
coined quantum walk on the complete graph with self-loops.
Finally, state transfer in Szegedy’s walk with queries on the
complete graph is discussed in Sec. IV. We summarize our
results in the conclusions of Sec. V.

II. STAR GRAPH

Let us begin with the state transfer between two vertices
of a star graph by means of a discrete-time quantum walk.
The discrete-time quantum walk search algorithm on the star
graph is exactly equivalent to the Grover search algorithm [29];
hence, it finds the marked vertex with unit probability. We show
by explicit calculation that the algorithm also achieves perfect
state transfer.

The star graph consists of a central vertex labeled as 0 which
is connected to N external vertices with labels 1 to N . The
discrete-time quantum walk on the star graph can be defined
as a scattering walk [27,28] or as the usual coined quantum
walk. Both models are equivalent [30,31], and since the coined
walk is used in Sec. III we pursue this approach. We consider
a quantum walk where the particle jumps from the external
vertices to the central vertex and back. The position space is
spanned by the vectors |j 〉p , with j = 0, . . . ,N , corresponding
to the particle being at the vertex j . The coin space has to
be defined separately for the external vertices and for the
central vertex. At the external nodes the coin space is one
dimensional, since the particle can jump only to the central
vertex 0. We denote the coin state as |0〉c. At the central node
the coin space has a dimension N , as the particle is allowed to
jump to any external vertex j , with j = 1, . . . ,N . We denote
the corresponding coin states as |j 〉c. The complete Hilbert
space of the discrete-time quantum walk on the star graph is

therefore spanned by vectors

|j 〉p ⊗ |0〉c ≡ |j,0〉,
|0〉p ⊗ |j 〉c ≡ |0,j 〉,

where j runs from 1 to N . The first index corresponds to the
vertex and the second index corresponds to the coin state.

The evolution operator of a single step of the walk can
be written as a product of the step operator S and the coin
operator C

U = SC. (1)

The walk describes the particle hopping between the external
vertices and the central node. Hence, the step operator is given
by

S =
N∑

j=1

(|j,0〉〈0,j | + |0,j 〉〈j,0|).

Let us now turn to the coin operator. At the external nodes,
where the coin space is one dimensional, we choose the coin
operator to act as identity. However, for the sake of state trans-
fer, we have two marked vertices s (sender) and r (receiver),
where the coin acts as a phase shift of π . At the central node
the states |j 〉c form an N -dimensional space, and we choose
the coin operator to act there as the Grover diffusion operator

G = 2|ψS〉c〈ψS | − IN , (2)

where |ψS〉c denotes the symmetric superposition of all basis
states |j 〉c,

|ψS〉c = 1√
N

N∑
j=1

|j 〉c, (3)

and IN is the identity operator on the Hilbert space of
dimension N . Hence, the coin operator is defined as

C = (IN − 2|s〉p〈s| − 2|r〉p〈r|) ⊗ |0〉c〈0| + |0〉p〈0| ⊗ G.

After some algebra we find that the evolution operator (1) can
be rewritten as

U =
N∑

j=1

|0,j 〉〈j,0| − 2|0,s〉〈s,0| − 2|0,r〉〈r,0|

+ 2

N

N∑
i,j=1

|i,0〉〈0,j | −
N∑

j=1

|j,0〉〈0,j |. (4)

We start the walk in the sender vertex; i.e., the initial state is

|ψ(0)〉 = |s,0〉.
The state of the walk after t steps is given by

|ψ(t)〉 = Ut |ψ(0)〉.
We show that after O(

√
N ) steps the particle will be on the

receiver vertex, i.e., in the state |r,0〉. Clearly, the walk is
bipartite, since in the odd steps the particle is at the central
node and in the even steps it is at the external nodes. Since
we want to analyze the possibility of state transfer between
two external nodes s and r we focus only on the square of the
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evolution operator. From expression (4) the action of U 2 on
the states |j,0〉 is then easily found to be

U 2|j,0〉 = 2

N

∑
i �=j

|i,0〉 −
(

1 − 2

N

)
|j,0〉, j �= s,r,

U 2|s,0〉 = − 2

N

∑
i �=s

|i,0〉 +
(

1 − 2

N

)
|s,0〉,

U 2|r,0〉 = − 2

N

∑
i �=r

|i,0〉 +
(

1 − 2

N

)
|r,0〉. (5)

Using these expressions one shows that the following three
orthogonal states,

|α1〉 = |s,0〉,
|α2〉 = |r,0〉,
|α3〉 = 1√

N − 2

∑
j �=s,r

|j,0〉, (6)

form an invariant subspace with respect to U 2. Indeed,
from (5) we find

U 2|α1〉 =
(

1 − 2

N

)
|α1〉 − 2

N
|α2〉 − 2

√
N − 2

N
|α3〉,

U 2|α2〉 = − 2

N
|α1〉 +

(
1 − 2

N

)
|α2〉 − 2

√
N − 2

N
|α3〉,

U 2|α3〉 = 2
√

N − 2

N
(|α1〉 + |α2〉) −

(
1 − 4

N

)
|α3〉.

Hence, the time evolution of the walk for the fixed initial state
|α1〉 is described by the effective evolution operator Ueff, which
is in the |αi〉 basis (6) given by the following 3 × 3 matrix:

Ueff =

⎛
⎜⎝ 1 − 2

N
− 2

N
2
√

N−2
N

− 2
N

1 − 2
N

2
√

N−2
N

− 2
√

N−2
N

− 2
√

N−2
N

1 − 4
N

⎞
⎟⎠.

Diagonalization of Ueff is straightforward. We find that it has
an eigenvector

|χ0〉 = 1√
2

(|α1〉 − |α2〉), (7)

corresponding to the eigenvalue λ = 1. The remaining two
eigenvectors have the form

|χ±〉 = 1

2
(|α1〉 + |α2〉) ± i√

2
|α3〉. (8)

They correspond to a pair of conjugated eigenvalues

λ± = e±iω,

where the phase ω is given by

ω = arccos

(
N − 4

N

)
. (9)

Let us now analyze the evolution of the initial state |α1〉
under the effective evolution operator Ueff. We find that the

initial condition |α1〉 and the desired target state |α2〉 can be
decomposed into the eigenbasis of Ueff as

|α1〉 = 1√
2
|χ0〉 + 1

2
(|χ+〉 + |χ−〉),

|α2〉 = − 1√
2
|χ0〉 + 1

2
(|χ+〉 + |χ−〉).

After t applications of the effective evolution operator Ueff,
i.e., after 2t steps of the walk, we obtain

|ψ(2t)〉 = 1√
2
|χ0〉 + eiωt

2
(|χ+〉 + e−2iωt |χ−〉). (10)

For ωt = π the state reduces to −|α2〉, i.e., the receiver state
up to an irrelevant global phase factor. We conclude that
the walk achieves (almost) perfect state transfer between the
sender and receiver vertices after T steps, provided that we
choose T as the closest integer to 2π/ω, i.e.,

T ≈ 2π

arccos

(
N−4
N

) . (11)

With the Taylor expansion we find that the number of steps
required for the state transfer scales with the size of the star
graph according to

T ∼ π√
2

√
N + O(N− 1

2 ).

For illustration we display in Fig. 1 the fidelity between the
state of the walk (10) and the target state |α2〉 as a function of
the number of steps. From (10) we find that it is given by

F(2t) = |〈ψ(2t)|α2〉|2 = sin4

(
ωt

2

)
. (12)

Note that for odd time steps the fidelity is zero since the walk is
bipartite. In Fig. 1 the number of vertices of the star graph was
chosen as N = 100. As follows from (11) the first maximum
of the fidelity is reached after 22 steps of the walk.

0 20 40 60 80
0

0.5

1

t

F

FIG. 1. Fidelity between the state of the walk (10) and the target
state |α2〉 for the walk on the star graph as a function of the number
of steps t . The black dots correspond to the numerical simulation and
the red line is given by (12). Fidelity is plotted only for even numbers
of steps, since it vanishes when t is odd. We have considered the star
graph with N = 100 external vertices. The first maximum of fidelity
is reached after 22 steps, in accordance with (11).
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III. COMPLETE GRAPH WITH SELF-LOOPS

Let us now turn to the state transfer on the complete
graph of N vertices with additional self-loops on each vertex.
The reason we consider the additional self-loops is that the
discrete-time quantum walk search algorithm on the complete
graph does not find the marked vertex with unit probability.
Nevertheless, it was shown [8,24] that adding self-loops makes
two steps of the discrete-time quantum walk equivalent to
the Grover search algorithm and increases the probability of
finding the marked vertex to 1. In the following we show
explicitly that the algorithm achieves state transfer with unit
fidelity independent of the size of the graph.

The Hilbert space of the walk is given by

H = HP ⊗ HC,

where both position space and coin space have dimension N .
We denote the basis vectors ofHP as |1〉p, . . . ,|N〉p. Similarly,
the basis vectors ofHC are denoted as |1〉c, . . . ,|N〉c. The basis
of H is then formed by the vectors |i〉p ⊗ |j 〉c ≡ |i,j 〉, where
the first index corresponds to the position (vertex), and the
second index corresponds to the coin state.

The evolution operator of the walk is given by the product
of the step operator and the coin operator

U = SC.

The step operator reads

S =
N∑

i,j=1

|j,i〉〈i,j |.

As for the coin operator, we choose it to act as the Grover
operator (2) on all nonmarked vertices, with an additional
phase shift of π on the marked vertices s and r . Hence, C can
be written as

C = (IN − 2|s〉p〈s| − 2|r〉p〈r|) ⊗ G,

where G is given in (2).
Concerning the initial state of the walk, we choose the

particle to be localized on the sender vertex s with the

equal-weight superposition of all coin states (3), i.e.,

|ψ(0)〉 = |s〉p ⊗ |ψS〉c = 1√
N

N∑
j=1

|s,j 〉.

We again denote this state as |α1〉 since it will be the first
basis vector of the invariant subspace. We now show that after
O(

√
N ) steps of the walk the particle will be in the state

|α2〉 = |r〉p ⊗ |ψS〉c = 1√
N

N∑
j=1

|r,j 〉,

i.e., localized on the receiver vertex r . Similarly, like for the
star graph, it is sufficient to consider U 2, since it has been
shown [8,24] that two steps of the walk are equivalent to one
iteration of the Grover search algorithm on the position Hilbert
space HP . First, let us determine the invariant subspace of U 2

which includes |α1,2〉. Simple algebra reveals that the following
four orthonormal vectors,

|α′
3〉 = 1√

2(N − 2)

∑
i �=s,r

(|i,s〉 + |i,r〉),

|α′
4〉 = 1

N − 2

∑
i,j �=s,r

|i,j 〉,

|α′
5〉 =

√
2

N − 2
|α1〉 −

√
N

2(N − 2)
(|s,s〉 + |s,r〉),

|α′
6〉 =

√
2

N − 2
|α2〉 −

√
N

2(N − 2)
(|r,s〉 + |r,r〉), (13)

complement |α1,2〉 to the invariant subspace of U 2. However,
we can reduce the dimension of the invariant subspace
further from six to five. Indeed, one can show that U 2 has an
eigenvector

|χ〉 = 1√
N

|α′
3〉 +

√
N − 2

2N
|α′

4〉 + 1

2
|α′

5〉 + 1

2
|α′

6〉,

corresponding to the eigenvalue 1, which is orthogonal to
|α1,2〉. Hence, |χ〉 is also orthogonal to U 2|α1,2〉, and thus it
can be subtracted from the invariant subspace. The orthogonal
complement of |χ〉 in the subspace spanned by vectors (13)
then completes |α1,2〉 to the invariant subspace of U 2. We
choose the orthonormal basis as

|α3〉 =
√

N − 2

N
|α′

3〉 −
√

2

N
|α′

4〉 = 1√
2N

N∑
i=1

(|i,s〉 + |i,r〉) −
√

2

(N − 2)
√

N

∑
i,j �=s,r

|i,j 〉,

|α4〉 = 1√
2
|α′

5〉 − 1√
2
|α′

6〉=
1√

N (N − 2)

∑
j �=s,r

(|s,j 〉 − |r,j 〉) +
√

N − 2

4N
(|r,r〉 + |r,s〉 − |s,s〉 − |s,s〉),

|α5〉 = 1√
N

|α′
3〉 +

√
N − 2

2N
|α′

4〉 − 1

2
|α′

5〉 − 1

2
|α′

6〉

= 1√
2N (N − 2)

( ∑
i,j �=s,r

|i,j 〉 +
∑
i �=s,r

(|i,s〉 + |i,r〉) −
∑
j �=s,r

(|s,j 〉 + |r,j 〉)
)

+
√

N − 2

8N
(|s,r〉 + |s,s〉 + |r,s〉 + |r,r〉).
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The effective evolution operator in the |αi〉 basis is given by the matrix

Ueff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(N−4)(N−2)
N2 − 2(N−4)

N2
4
√

2(N−2)
N2 − 2

√
N−2
N

2
√

2(N−4)
√

N−2
N2

− 2(N−4)
N2

(N−4)(N−2)
N2

4
√

2(N−2)
N2

2
√

N−2
N

2
√

2(N−4)
√

N−2
N2

4
√

2(N−2)
N2

4
√

2(N−2)
N2

(N−4)2

N2 0 − 4(N−4)
√

N−2
N2

2
√

N−2
N

− 2
√

N−2
N

0 N−4
N

0

− 2
√

2(N−4)
√

N−2
N2 − 2

√
2(N−4)

√
N−2

N2
4(N−4)

√
N−2

N2 0 N2−16N+32
N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We find that the spectrum of Ueff consists of eigenvalues

λ0 = 1,

λ±
1 = e±iω,

λ±
2 = e±2iω, (14)

where the phase ω is given in (9). The corresponding
eigenvectors are found to be

|χ0〉 = 1

2
|α1〉 + 1

2
|α2〉 + 1√

2
|α3〉,

|χ±
1 〉 = 1

2
|α1〉 − 1

2
|α2〉 ∓ i√

2
|α4〉, (15)

|χ±
2 〉 = 1

2
√

2
|α1〉 + 1

2
√

2
|α2〉 − 1

2
|α3〉 ± i√

2
|α5〉.

The initial state of the walk, |α1〉, and the desired target state
|α2〉 are decomposed into the eigenbasis (15) of effective
evolution operator according to

|α1〉 = 1

2
|χ0〉 + 1

2
(|χ+

1 〉 + |χ−
1 〉) + 1

2
√

2
(|χ+

2 〉 + |χ−
2 〉),

|α2〉 = 1

2
|χ0〉 − 1

2
(|χ+

1 〉 + |χ−
1 〉) + 1

2
√

2
(|χ+

2 〉 + |χ−
2 〉).

0 20 4010 30
0

0.5

1
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F

FIG. 2. Fidelity between the state of the walk (16) and the target
state |α2〉 for the walk on the complete graph with self-loops as a
function of the number of steps, t . The black dots correspond to
the numerical simulation and the red line is given by (17). Fidelity
is plotted only at even numbers of steps. We have considered the
complete graph with self-loops with N = 30 vertices. The first
maximum of fidelity is reached after 12 steps, in accordance with (11).

After 2t steps of the walk the state can be written as

|ψ(2t)〉 = Ut
eff|α1〉

= 1

2
|χ0〉 + eiωt

2
(|χ+

1 〉 + e−2iωt |χ−
1 〉)

+e2iωt

2
√

2
(|χ+

2 〉 + e−4iωt |χ−
2 〉). (16)

We find that for ωt = π the state reduces to the desired target
state |α2〉. Hence, to achieve perfect state transfer we have
to choose the number of steps, T , as the closest integer to
2π
ω

, which is exactly the same as for the star graph (11).
We note that the perfect state transfer in this model is
possible for arbitrary N thanks to the perfect matching of the
spectrum (14), i.e., the fact that the phases of the eigenvalues
of λ±

2 are exactly twice the phases of the eigenvalues of λ±
1 .

For illustration we display in Fig. 2 the fidelity between the
state of the walk (16) and the target state |α2〉 as a function of
the number of steps, which is given by

F(2t) = |〈ψ(2t)|α2〉|2 = cos2(ωt) sin4

(
ωt

2

)
. (17)

In comparison to the result for the star graph (12) we find that
there is an additional modulation with cos2(ωt) arising from
the eigenvectors |χ±

2 〉 that oscillate at double frequency. In
Fig. 2 the number of vertices was chosen as N = 30. The first
maximum of fidelity is reached after 12 steps of the walk, in
agreement with the analytical prediction of (11).

IV. SZEGEDY’S WALK WITH QUERIES ON THE
COMPLETE GRAPH

Finally, let us consider the state transfer in Szegedy’s walk,
which is a coinless discrete-time quantum walk model driven
by reflection operators in a bipartite graph [32]. In the original
proposal of Szegedy’s walk [15] the search algorithm finds
the marked vertex of the complete graph with probability 1

2 .
However, Santos [16] showed that adding phase shifts of π

on the marked vertices (i.e., queries) increases the success
probability to 1 in the limit of large number of vertices, N .
Therefore, we consider Szegedy’s walk with queries on the
complete graph with two marked vertices s and r . We show
that in the limit of large N the walk achieves perfect state
transfer between the sender and the receiver.

Let us briefly review the definition of Szegedy’s walk [15]
on the graph G(X,E), where X = {1, . . . ,N} is the set of
vertices and E is the set of edges. We turn it into a bipartite
graph of N + N vertices, i.e., duplicate the graph G, remove
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all edges in the original graph and its copy, and add edges
between the vertices in the two sets as in the original graph.
The Hilbert space of Szegedy’s walk is given by the tensor
product of two N -dimensional Hilbert spaces HN ,

H = HN ⊗ HN,

corresponding to the vertices of the original graph and its copy.
We denote the vectors of the computational basis of H as

|i〉 ⊗ |j 〉 ≡ |i,j 〉, i,j = 1, . . . ,N,

where the first index corresponds to the vertex of the original
graph and the second index denotes the vertex in the copy.
Szegedy’s walk [15] is driven by reflections around subspaces
generated by vectors |	i〉 and |
j 〉,

RA = 2
N∑

i=1

|	i〉〈	i | − IN2 ,

RB = 2
N∑

j=1

|
j 〉〈
j | − IN2 ,

which are defined as

|	i〉 = |i〉 ⊗
( ∑

j

√
pij |j 〉

)
,

|
j 〉 =
(∑

i

√
pij |i〉

)
⊗ |j 〉. (18)

Here pij denotes components of a stochastic matrix associated
to the graph G. We consider G to be the complete graph and
for simplicity take the stochastic matrix as

pij = 1

N − 1
(1 − δij ).

Hence, in our model the vectors (18) are given by

|	i〉 = 1√
N − 1

∑
j �=i

|i,j 〉,

|
j 〉 = 1√
N − 1

∑
i �=j

|i,j 〉.

Santos [16] extended the evolution of Szegedy’s walk with
queries, i.e., a phase shift of π on the marked vertices. Since

we have two marked vertices s and r , the action of the queries
is described by the following operator:

RM = (IN − 2|s〉〈s| − 2|r〉〈r|) ⊗ IN .

The complete evolution operator of Szegedy’s walk with
queries is then given by [16]

U = RBRARM. (19)

We show that for large N , starting the walk in the state

|α1〉 = |	s〉 = 1√
N − 1

∑
j �=s

|s,j 〉

and performing O(
√

N ) steps, we obtain with high probability
the state

|α2〉 = |	r〉 = 1√
N − 1

∑
j �=r

|r,j 〉.

Notice that in the first vector the first index is s, while in the
second vector the first index is r . In this sense, we achieve the
state transfer from vertex s to vertex r .

First, we determine the invariant subspace which includes
the initial and the final states |α1〉 and |α2〉. Using the definition
of the evolution operator (19) we find that the invariant
subspace includes five additional orthonormal vectors:

|α3〉 = 1√
(N − 2)(N − 3)

∑
i,j �= s,r

i �= j

|i,j 〉,

|α4〉 = 1√
(N − 1)(N − 2)

∑
j �=s,r

|s,j 〉 −
√

N − 2

N − 1
|s,r〉,

|α5〉 = 1√
(N − 1)(N − 2)

∑
j �=s,r

|r,j 〉 −
√

N − 2

N − 1
|r,s〉,

|α6〉 = 1√
N − 2

∑
i �=s,r

|i,s〉,

|α7〉 = 1√
N − 2

∑
i �=s,r

|i,r〉.

The effective evolution operator is in the |αi〉 basis given
by the following 7 × 7 matrix:

Ueff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N−3
N−1 − 2(N−2)

(N−1)2
2(N−3)3/2

√
N−2

(N−1)5/2 0 2
√

N−2
(N−1)2

4(N−2)3/2

(N−1)5/2
2(N−3)

√
N−2

(N−1)5/2

− 2(N−2)
(N−1)2

N−3
N−1

2(N−3)3/2
√

N−2
(N−1)5/2

2
√

N−2
(N−1)2 0 2(N−3)

√
N−2

(N−1)5/2
4(N−2)3/2

(N−1)5/2

−2
√

(N−3)(N−2)
(N−1)3 −2

√
(N−3)(N−2)

(N−1)3
(N−5)2

(N−1)2
2
√

N−3
(N−1)3/2

2
√

N−3
(N−1)3/2

2(N−5)
√

N−3
(N−1)2

2(N−5)
√

N−3
(N−1)2

0 − 2
√

N−2
(N−1)2 − 2

√
N−3(N+1)
(N−1)5/2 −N−3

N−1
2

(N−1)2 − 4
(N−1)5/2

2(N−3)N
(N−1)5/2

− 2
√

N−2
(N−1)2 0 − 2

√
N−3(N+1)
(N−1)5/2

2
(N−1)2 −N−3

N−1
2(N−3)N
(N−1)5/2 − 4

(N−1)5/2

0 −2
√

N−2
(N−1)3

2(N−3)3/2

(N−1)2 0 − 2(N−2)
(N−1)3/2 − (N−3)2

(N−1)2
2(N−3)
(N−1)2

−2
√

N−2
(N−1)3 0 2(N−3)3/2

(N−1)2 − 2(N−2)
(N−1)3/2 0 2(N−3)

(N−1)2 − (N−3)2

(N−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Direct diagonalization of Ueff is rather difficult; however,
the eigenvalues can be determined analytically. Indeed, the
characteristic equation

det(Ueff − eiωI7) = 0

can be written in the form

(5 + N (N − 4) + (N − 1)2 cos ω)(−N2 + 8N − 17

+2(N − 4) cos ω + (N − 1)2 cos2 ω) sin

(
ω

2

)
= 0.

We find the solutions

ω0 = 0,

ω1 = arccos

(
4 − N + �

(N − 1)2

)
,

ω2 = arccos

(
4 − N − �

(N − 1)2

)
,

ω3 = arccos

(
4N − N2 − 5

(N − 1)2

)
, (20)

where � is given by

� =
√

N4 − 10N3 + 35N2 − 50N + 33.

The spectrum of the effective evolution operator Ueff is then
given by

λ0 = eiω0 = 1,

λ±
1 = e±iω1 ,

λ±
2 = e±iω2 ,

λ±
3 = e±iω3 .

The eigenvector corresponding to the eigenvalue λ0 = 1 can
be also determined analytically. We find that it reads

|χ0〉 = 1√
2

√
N (N − 3) + 2

N (N − 3) + 3
(|α1〉 − |α2〉)

+ 1√
2(N (N − 3) + 3)

(|α6〉 − |α7〉).

We point out that this eigenvector has a large overlap with the
initial state of the walk, |α1〉, and the desired target state |α2〉.
Indeed, for large N we can write

|χ0〉 = 1√
2

(|α1〉 − |α2〉) + O(N−1). (21)

Notice that for N → ∞ the vector (21) has the same shape as
the eigenvector of the walk on the star graph (7) corresponding
to the eigenvalue λ = 1.

The explicit form of the eigenvectors |χ±
i 〉 is quite lengthy.

However, it turns out that for large N only |χ+
1 〉 and |χ−

1 〉, i.e.,
the eigenvectors corresponding to λ±

1 = e±iω1 , are relevant,
since the overlap of |α1,2〉 with |χ±

j 〉 vanishes as O(N− 1
2 ) for

j = 2,3. We find that for large N the eigenvectors |χ±
1 〉 are

given by

|χ±
1 〉 = 1

2
(|α1〉 + |α2〉) ± i√

2
|α3〉 + O(N− 1

2 ). (22)

0 205 10 15 25
0

0.5

1

t

F

FIG. 3. Fidelity for Szegedy’s walk with queries on the complete
graph as a function of the number of steps, t . The black dots
correspond to the numerical simulation and the red line is given
by (24). We have considered the complete graph with N = 30
vertices. The first maximum of the fidelity is reached after six steps,
in accordance with (23).

Again, for N → ∞ the eigenvectors (22) have the same
shape as the eigenvectors of the walk on the star graph (8).
Moreover, we find that the phase ω1 (20) approaches (9) as
N tends to infinity; i.e., also the corresponding eigenvalues
coincide with those for the star graph. Hence, in the limit of
large N the dynamics of Szegedy’s walk with queries on the
complete graph reduces to the dynamics of the coined walk
on the star graph. Since we have shown in Sec. II that the
latter model achieves perfect state transfer, the same applies
to the former, however, only in the limit of large N . We
conclude that Szegedy’s walk with queries on the complete
graph achieves almost perfect state transfer between the sender
and the receiver vertices when we choose the number of steps,
T , as the closest integer to π

ω1
, i.e.,

T ≈ π

arccos

(
4−N+�
(N−1)2

) , (23)

which approaches half the value (11) required for the star graph
and the complete graph with self-loops as N tends to infinity.

For illustration we display in Fig. 3 the fidelity between the
state of the walk and the target state |α2〉 for Szegedy’s walk
with queries on the complete graph with N = 30 vertices.
Within the approximations made in (21) and (22), the fidelity
is given by

F(t) = |〈ψ(t)|α2〉|2 ≈ sin4

(
ω1t

2

)
. (24)

For the complete graph with N = 30 vertices the first max-
imum of fidelity is reached after six steps of the walk, in
agreement with the analytical prediction of (23).

V. CONCLUSIONS

State transfer between two vertices of a graph by means
of a discrete-time quantum walk search algorithm with two
marked vertices was analyzed. In particular, we have shown
that the coined quantum walk on a star graph and a complete
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graph with self-loops achieve perfect state transfer between
the sender and receiver vertices for an arbitrary number of
vertices, N . On the other hand, Szegedy’s walk with queries
on a complete graph achieves perfect state transfer only in the
limit of large N . All three algorithms require O(

√
N ) steps.

The present model does not allow for the transfer of the
internal coin state of the particle which is possible in other
discrete-time models [17,19,20]. Indeed, there is either no
nontrivial internal state as for the walk on the star graph, or it
has to be fixed as for the coined walk on the complete graph
with self-loops and Szegedy’s walk on the complete graph. On
the other hand, the present method requires less control over
the system, since we only have to adjust the coin at the sender
and receiver vertices.

It is of interest to determine additional graphs where perfect
state transfer is possible by means of discrete-time quantum
walks. Our preliminary numerical analysis indicates that the
modification of Szegedy’s walk where the receiver vertex is in
the copy of the original graph also achieves state transfer with
high fidelity. This result suggests that discrete-time quantum
walks are suitable for perfect state transfer on complete

bipartite graphs. We plan to thoroughly investigate this model
in the near future.

Finally, let us point out that in the continuous-time quantum
walk scenario Chakraborty et al. [14] have shown that state
transfer with fidelity approaching unity is achieved for almost
all graphs in the limit of large number of vertices, N . It would
be interesting to prove a similar statement in the discrete-time
case. Moreover, Chakraborty et al. [14] have also considered
entanglement generation between two vertices. The protocol
uses a nonadjacent third-party vertex, which has to tune its
nearest-neighbor couplings. We plan to identify the discrete-
time counterpart of this protocol.
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No. SGS16/241/OHK4/3T/14. M.Š. is grateful for the financial
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