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Spin dynamics in Kapitza-Dirac scattering of electrons from bichromatic laser fields
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Kapitza-Dirac scattering of nonrelativistic electrons from counterpropagating bichromatic laser waves of linear
polarization is studied. The focus lies on the electronic spin dynamics in the Bragg regime when the laser fields
possess a frequency ratio of 2. To this end, the time-dependent Pauli equation is solved numerically, both in
coordinate space and momentum space. Our numerical results are corroborated by analytical derivations. We
demonstrate that, for certain incident electron momenta, the scattering crucially relies on the electron spin which
undergoes characteristic Rabi-like oscillations. A parameter regime is identified where the Rabi oscillations reach
maximum amplitude. We also briefly discuss spin-dependent Kapitza-Dirac scattering of protons.
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I. INTRODUCTION

The interaction between electrons and the electromagnetic
fields of a laser wave mainly relies on the electron charge. In
addition, the electronic spin degree of freedom can couple to
the laser field via the electron’s magnetic moment. Accord-
ingly, when a free electron is exposed to a plane-wave laser
pulse, the electronic spin vector performs a precessive motion.
However, after the laser pulse has passed, the electron will
end up in the same spin state as it was before the interaction
started [1].

Nontransient electron spin transitions can occur only if the
electron undergoes a scattering process inside the laser field.
Then, the electronic spin state may differ before and after
the interaction with the field. Corresponding spin transitions
have been studied theoretically, e.g., in multiphoton Compton
scattering [2–4], strong-field photoionization [5,6], and laser-
assisted Mott scattering [7,8]. Typically, spin effects can
become sizable at very high field frequencies or very high
field strengths.

Spin effects may also arise in Kapitza-Dirac scattering
[9–13]. The Kapitza-Dirac effect as originally proposed
denotes the quantum-mechanical diffraction of an electron
beam on the periodic potential generated by a standing
wave of light [14–16]. The latter can be formed by two
counterpropagating laser beams. In its original version [14]
the effect can be understood as a combined absorption and
emission process involving two photons: The incident electron
absorbs one photon of momentum k from one of the laser
beams and emits another photon of momentum −k into the
counterpropagating beam (stimulated Compton scattering),
resulting in a momentum transfer of 2k. An experimental
realization of Kapitza-Dirac diffraction in its original form was
accomplished some years ago, utilizing optical laser intensities
of the order of ∼109 − 1011 W/cm2 [17]. Related experiments
observed the Kapitza-Dirac effect on atoms [18–20].

Distinct spin effects in Kapitza-Dirac scattering were pre-
dicted when a moderately relativistic electron beam impinges
under the (generalized) Bragg angle on a standing x-ray
laser wave [10]. In contrast to the original work [14], this
spin-dependent Kapitza-Dirac effect relies on a three-photon
process, where two photons are absorbed and one photon is
emitted (or vice versa). The interaction may be considered to
arise from an e2 A2 term in the Hamiltonian, in combination

with a σ · B term. Hence, the coupling involves both the
electric charge and the magnetic moment of the electron.
While the theory in [10,11] was based on the Dirac equation, a
relativistic treatment of the Kapitza-Dirac effect based on the
Klein-Gordon equation may be found in [21].

Electron-laser interaction dynamics can be enriched further
in bichromatic fields containing two different frequency
components [22]. In particular, characteristic quantum inter-
ferences may arise when the frequencies are commensurate.
Two-color effects have been studied for a variety of processes,
comprising strong-field photoionization [23], laser-assisted
electron-atom scattering [24], and x-ray Thomson scattering
[25]. Quantum interference and relative phase effects have
recently also been revealed for Kapitza-Dirac scattering in
bichromatic and multichromatic standing laser waves [26,27].

Bichromatic laser fields may be exploited to facilitate
spin effects in Kapitza-Dirac scattering. Recently, it has been
demonstrated [12] that spin flips in three-photon processes
similar to those in [10,11] can arise in the nonrelativistic regime
of low electron energies and field frequencies when the elec-
tron scatters from two counterpropagating laser beams which
possess a frequency ratio of 2 (see also [28]). The spin effects
are most pronounced when the incident electron momentum is
perpendicular to the linear field polarization. Otherwise, three-
photon scattering involving the p · A interaction term would
generally dominate [29]. The occurrence of coherent electron
scattering in this field configuration may be understood by
noting that the system can be Lorentz transformed into a frame
of reference where the counterpropagating waves possess
equal frequencies and form a standing wave.

We point out that spin effects in the original (two-photon)
Kapitza-Dirac effect were found to be very small [9] but can
become distinct when elliptically polarized fields are applied
[13]. In this case, however, the spin-flip transitions compete
with spin-preserving electron scattering and are suppressed by
a relative factor of �k/mc.

In this paper, we study spin-dependent Kapitza-Dirac
scattering of nonrelativistic electrons from counterpropagating
bichromatic laser fields of linear polarization. The electron
spin dynamics is revealed by numerically solving the Pauli
equation, both in coordinate space and in momentum space.
Our main goal is to demonstrate the time evolution of the
spin-dependent scattering probabilities. This way, the recent
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results in [12] are extended. We show that the electron
spin undergoes characteristic Rabi-like oscillations and derive
an analytical formula for the corresponding Rabi frequency
within the framework of time-dependent perturbation theory.
A parameter regime is identified where the Rabi oscillations
reach their full amplitude. In addition, we briefly discuss spin-
dependent Kapitza-Dirac scattering of protons and highlight
the relevance of the particle’s g factor for the process.

It is worth mentioning that analogies of Kapitza-Dirac
scattering also exist in other systems, for example, electron
scattering from traveling waves in dielectric media [30]
or coherent electron scattering by optical near fields in
transmission microscopes [31]. In addition, the application
of counterpropagating bichromatic laser waves with specific
frequency difference has been proposed as an interferometric
beam splitter [32].

Our paper is organized as follows. In Sec. II we present
our theoretical formalism based on the Pauli equation. Also
a perturbative treatment of the spin-dependent three-photon
Kapitza-Dirac effect is provided in Sec. II B, resulting in
an analytical formula for the spin-flip Rabi frequency. In
Sec. II C and Appendix B, the latter result is confirmed by
an alternative treatment which relies on a Magnus expansion
of the time-dependent Pauli equation and a third approach
involving relativistic Volkov states of the Dirac equation. Our
numerical results are presented in Sec. III. First, we show
the spin-resolved time evolution of an electron wave packet
in the counterpropagating bichromatic laser waves. Then we
present Rabi oscillation dynamics for various field parameters
using plane-wave electrons. We generalize our results with a
parameter scan to identify regions of different behavior. In
Sec. IV, a comparison between spin-dependent Kapitza-Dirac
scattering of electrons and protons is drawn. We finish with
concluding remarks in Sec. V.

II. THEORETICAL FRAMEWORK

A. Basic equations

The nonrelativistic domain of electron-light scattering,
including the spin degree of freedom, is described by the
time-dependent Pauli equation

i
∂

∂t
ψ =

[
1

2m

(
−i∇ + e

c
A
)2

+ μB σ · B
]
ψ, (1)

where m is the electron mass, −e is its charge, c is the speed
of light, μB = e

2mc
is the Bohr magneton, and ψ is the electron

wave function. We have set �, the reduced Planck constant, to
unity for convenience. Also, A denotes the vector potential of
the light field, with corresponding magnetic field B = ∇ × A
in Gaussian units. The latter couples to the electronic spin
magnetic moment which involves the vector of Pauli matrices
σ = (σx,σy,σz).

In the scenario under consideration, the vector potential is
given by

A(z,t) = f (t)[A1(z,t) + A2(z,t)], (2)

with a right-traveling component

A1(z,t) = a1ε1 cos(ωt − kz) (3)

and a left-traveling component of doubled frequency

A2(z,t) = a2ε2 cos(2ωt + 2kz). (4)

The first wave is characterized by the amplitude a1 and the
fundamental frequency ω = kc. Its wave vector is given by
k = kez. The second wave has amplitude a2 and oscillates with
the second harmonic frequency. Both fields are assumed to be
linearly polarized along the x axis, so that the polarization
vectors are given by ε1 = ε2 = ex . An envelope function
f (t) enters the total field in Eq. (2), which allows switching
on and off the field in the numerical calculations. The
overall laser intensity, when f (t) ≡ 1, is I = ω2(a2

1+4a2
2 )

8πc
in this

configuration.
We choose the incident electron momentum to be in the

y-z plane, so p · A = 0. As mentioned before, this geometry
allows us to highlight spin effects. Having only z dependence
in the potential, Pauli’s equation becomes effectively one-
dimensional in space. It can thus be solved by an ansatz in
the form of an expansion into plane waves or momentum
eigenstates, respectively,

ψ(t,z) =
∑

n

cn(t)einkz+ipzz =
∑

n

cn(t)|n〉 . (5)

The electron spin is encoded in the time-dependent spinor

expansion coefficients cn = (
c
↑
n

c
↓
n

)
. The sum is discrete because,

due to the periodicity of the potential, only the given discrete
subset of momentum eigenstates interacts. Here, pz denotes
the offset in the initial longitudinal electron momentum from
an integer multiple of k. By plugging Eq. (5) into Eq. (1) we
obtain a coupled system of explicitly time dependent ordinary
differential equations:

iċn(t) = Encn(t) + Vn(t) + Wn(t), (6)

with the kinetic energies En = (nk+pz)2

2m
and

Vn(t) = e2

8mc2
f (t)2[a2

2e
4iωt cn−4(t) + 2a1a2e

iωt cn−3(t)

+ a2
1e

−2iωt cn−2(t) + 2a1a2e
3iωt cn−1(t)

+ 2
(
a2

1 + a2
2

)
cn(t) + 2a1a2e

−3iωt cn+1(t)

+ a2
1e

2iωt cn+2(t) + 2a1a2e
−iωt cn+3(t)

+ a2
2e

−4iωt cn+4(t)
]
, (7a)

Wn(t) = ieω

4mc2
σyf (t)

[
2a2e

2iωt cn−2(t) + a1e
−iωt cn−1(t)

− a1e
iωt cn+1(t) − 2a2e

−2iωt cn+2(t)
]

(7b)

to encode the coupling to the neighboring states.

B. Perturbative expansion by Dyson series

Based on the Pauli equation (1), we can perform a
perturbative treatment of the spin-dependent three-photon
Kapitza-Dirac process valid at small field amplitudes. To
this end, we consider energy-conserving transitions from
momentum mode |−2〉 to momentum mode |2〉 assuming a
vanishing initial momentum offset (pz = 0). From here on we
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use the abbreviation

T :=
∫ tf

0
f (t)dt (8)

to denote an effective interaction time including switching
on and off the fields at t = 0 and t = tf , respectively.
Specifically, in this analytical consideration, the envelope
function is set to f (t) ≡ 1. In the Dyson series we need the free
propagator

U0(t − t ′) =
∑

n

e−iEn(t−t ′)|n〉〈n| (9)

and the relevant terms in the potentials V (t) = e2

2mc2 A2 and
W (t) = μBσ · B that can produce products proportional to

e4ikz = ∑
n |n〉〈n − 4| with no time dependence [compare

Eqs. (7a) and (7b)]:

V1(t) = e2

8mc2
a2

1e
−2iωt

∑
n

|n〉〈n − 2|, (10a)

V2(t) = e2

4mc2
a1a2e

iωt
∑

n

|n〉〈n − 3|, (10b)

W1(t) = ieω

4mc2
a1σye

−iωt
∑

n

|n〉〈n − 1|, (10c)

W2(t) = ieω

2mc2
a2σye

2iωt
∑

n

|n〉〈n − 2|. (10d)

Expanding the transition amplitude from |−2〉 to |2〉 in a
Dyson series up to third order in the amplitudes a1,2 gives

〈2|U (T )|−2〉 ≈ −
∫ T

0
dt1

∫ t1

0
dt2〈2|U0(T − t1)[V (t1) + W (t1)]U0(t1 − t2)[V (t2) + W (t2)]U0(t2)|−2〉

+ i

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3〈2|U0(T − t1)[V (t1) + W (t1)]

×U0(t1 − t2)[V (t2) + W (t2)]U0(t2 − t3)[V (t3) + W (t3)]U0(t3)|−2〉

≈ − ie3ω

16m2c4
a2

1a2σy(I+ + I− + J+ + J−) + e3ω3

32m3c6
a2

1a2σy(K1 + K2 + K3). (11)

Note that the matrix element 〈2|U (T )|−2〉 represents only
the partial trace over the spatial dependence. Thus the result
remains in the algebra of Pauli matrices, thereby encoding
the full spin dynamics. Each of I±,J±,K1,2,3 stands for one
allowed combination of interaction terms in V (t) + W (t).
For example, by first applying W2 at t2 and then V1 at t1
or vice versa [see Eqs. (10d) and (10a)] in the second-order
perturbation integral we obtain

I± =
∫ T

0
dt1

∫ t1

0
dt2e

−iE2T e−i(−E2±2ω)t1e−i(E2∓2ω)t2

≈ iT e−iE2T

E2 ∓ 2ω
, (12)

where we have neglected all terms not linearly growing in T .
In the same manner we find

J± =
∫ T

0
dt1

∫ t1

0
dt2e

−iE2T e−i(−E2+E1±ω)t1e−i(E2−E1∓ω)t2

≈ iT e−iE2T

E2 − E1 ∓ ω
(13)

for combinations of V2 and W1 [see Eqs. (10b) and (10c)].
Finally,

K1 =
∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

× e−iE2T e−i(−E2−2ω)t1e−i(E1+ω)t2e−i(E2−E1+ω)t1

≈ −T e−iE2T

(E2 − E1 + ω)(E2 + 2ω)
, (14a)

K2 ≈ −T e−iE2T

(E2 − E1 + ω)(E2 − E1 − ω)
, (14b)

K3 ≈ −T e−iE2T

(E2 − 2ω)(E2 − E1 − ω)
, (14c)

combining twice W1 (10c) and once W2 (10d) in the third order
of the Dyson series. Thus we arrive at

〈2|U (T )|−2〉
≈ e3ω

16m2c4
a2

1a2σyT e−iE2T

[
mc2

ω2 − m2c4
+ 3mc2

9
4ω2 − m2c4

]

− e3ω3

32m3c6
a2

1a2σyT e−iE2T
5m2c4

2
(

9
4ω2 − m2c4

)
(ω2 − m2c4)

= e3ω

4m3c6
a2

1a2σyT e−iE2T
m2c4

9
4ω2 − m2c4

≈ − e3ω

4m3c6
a2

1a2σyT e−iE2T . (15)

From there we see that only the spin-flipping transition is
allowed, and we can deduce its Rabi frequency

�R = e3ω

2m3c6
a2

1a2, (16)

determining the short-time behavior of the spin-dependent
scattering probability. As we shall see below, in certain
parameter regimes the latter adopts the form∣∣c↓

2 (T )
∣∣2 = sin2

(
1
2�RT

)
(17)

if we start from c
↑
−2(0) = 1.
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C. Effective ponderomotive potential

In this section we identify an effective ponderomotive
potential arising from the vector potential (2). Instead of using
a Dyson series, we exactly express the time evolution operator
for Pauli’s equation (1) as a time-ordered exponential

U (T ) = T exp

[
−i

∫ T

0
H (t)dt

]
=: exp [−iM(T )] . (18)

In the second step, the Magnus expansion [33] has been
applied, where M(T ) = ∑

i Mi(T ) is split into orders of
powers of the Pauli Hamiltonian H . EachMi(T ) is Hermitian
on its own. The same approach has been followed in Sec. III
in [13] for two-photon Kapitza-Dirac scattering up to terms in
M2. Relativistic corrections to Pauli’s equation were required
there because elliptically polarized light was considered.
While in the present case of linear field polarization this is
not necessary (see also Appendix B), we need to include the
third order of the Magnus expansion to describe three-photon
interactions. These orders are given by

M1(T ) =
∫ T

0
dt1H (t1), (19a)

M2(T ) = − i

2

∫ T

0
dt1

∫ t1

0
dt2[H (t1),H (t2)], (19b)

M3(T ) = −1

6

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

×{[H (t1),[H (t2),H (t3)]] + [[H (t1),H (t2)],H (t3)]}.
(19c)

With the help of computer algebra we find that in our spe-
cific setup, where H (t) = − 1

2m
∂2

∂z2 + V (t) + W (t) [assuming
f (t) ≡ 1] and p lies in the y-z plane, M1(T ) + M2(T ) +
M3(T ) is asymptotically equal to HeffT with the time-
independent effective Hamiltonian

Heff = − 1

2m

∂2

∂z2
+ e3ω

2m3c6
a2

1a2σy sin(4kz). (20)

The latter consists of the well-known kinetic-energy term and
an effective ponderomotive potential. Note that we neglected
spatially constant ponderomotive terms that can be removed by
a gauge transformation. The effective ponderomotive potential
accounts for the spin-flipping transition from |−2〉 to |2〉 (or
vice versa) with the same Rabi frequency �R = e3ω

2m3c6 a
2
1a2 as

before [see Eq. (16)].
We note that the quantum dynamics of the two-state system

satisfying the Bragg condition, which arises from this effective
Hamiltonian, is governed by the system of coupled differential
equations

iċ−2(t) = E2c−2(t) + i

2
�Rσyc2(t), (21a)

iċ2(t) = E2c2(t) − i

2
�Rσyc−2(t). (21b)

It resembles the two-state dynamics of the usual Kapitza-
Dirac effect in the Bragg regime [see Eq. (8) in [16]] and, in
the present case, gives rise to the spin-flipping Rabi oscillation
mentioned in Eq. (17).

III. NUMERICAL RESULTS

In this section, we present our numerical results on spin-
dependent Kapitza-Dirac scattering in bichromatic counter-
propagating laser fields, as described by the vector potential
(2). Our main goal is to discuss the time evolution of the
scattering probabilities. This way, we extend the results
presented in [12], where total scattering probabilities have
been obtained in counterpropagating bichromatic laser pulses
with Gaussian profiles. While the perturbative consideration
in Sec. II B (see also Sec. II C and Appendix B) has already
revealed the short-time behavior of the scattering probabilities,
our numerical analysis will provide a comprehensive picture
of the electronic time evolution.

We have used two different methods to solve the time-
dependent Pauli equation (1) numerically. On the one hand, we
propagate the equation directly in coordinate space by Fourier
split-step methods. On the other hand, we solve the coupled
system of ordinary differential equations in momentum space
(6) by Runge-Kutta algorithms. In both cases, we use a flat-top
switching function f (t) with sine-squared edges.

A. Scattering of an electron wave packet

To begin with, we consider the one-dimensional dynamics
of an electron wave packet in the bichromatic laser field.
The wave packet is assumed to be Gaussian shaped, having a
central momentum of −2k. Its spin is prepared in the positive
z direction. Its time evolution after entering the laser field is
shown in Fig. 1 in coordinate space. Note that, in contrast to the
interaction time T [see Eq. (8)], small t denotes times during
a single interaction. One can see the electron wave packet
starting in a defined spin state at t = 0. After being partly
scattered into the spin-flipped state at t ≈ 104 laser cycles, it
is scattered back and forth between the two states.

The corresponding time evolution in momentum space is
shown in Fig. 2. By comparing the solid and dashed lines,
one can see that, first, the spectrum of momenta is slightly
broadened by switching on the electromagnetic field. This can
be understood as dressing by virtually absorbing and emitting

z
[e

V
−

1
c]

z
[e

V
−

1
c]

t [104 laser cycles]

−1

0

1

−1

0

1

0 1 2 3 4

FIG. 1. Spin-dependent Kapitza-Dirac scattering of an electron
wave packet with central momentum −2k and width 0.1 eV−1 c.
The spatial occupation probabilities of the upper (incident) and
lower (scattered) spinor components of the electron wave function
are shown in the corresponding panels. The field parameters are
ω = 103 eV and ea1 = ea2 = 2 × 104 eV.
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t [104 laser cycles]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

FIG. 2. Probabilities for the electron to be in the incident spin
state and around the incident momentum −2k (solid line) as well
as to be in the flipped spin state with the scattered momentum 2k

(dotted line). The interaction parameters are the same as in Fig. 1.
Note that these probabilities add up to 1 only before switching on and
after switching off the fields. Also shown are the total probabilities
(summed over momenta) to be in the incident spin state (dashed line)
and in the flipped spin state (dash-dotted line).

photons. Then a Rabi oscillation with simultaneous spin and
momentum flip develops. The amplitude of this oscillation is
damped over time. In the end, when switching off the fields,
the dressing ceases, and the electron is left in a quantum state
where its momentum is entangled with its spin.

The dampening of the Rabi cycle can be readily understood
by the fact that the wave packet with resonant central momen-
tum involves also components with off-resonant momenta. The
latter contribute with slightly different Rabi frequencies.

B. Rabi oscillation dynamics

The oscillating population dynamics visible in Figs. 1
and 2 can be highlighted more strongly when scattering of
plane-wave electron states with definite, resonant momentum
is considered. An example is shown in Fig. 3, which illus-
trates the temporal evolution of the occupation probabilities
|c↑

−2(t)|2 and |c↓
2 (t)|2 during the interaction in the presence

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

t [104 laser cycles]

FIG. 3. Time evolution of the occupation probabilities |c↑
−2(t)|2

(solid line) and |c↓
2 (t)|2 (dashed line) for Kapitza-Dirac scatter-

ing from bichromatic counterpropagating waves with ω = 103 eV,
ea1 = ea2 = 2 × 104 eV. The combined laser intensity is I = 6.82 ×
1021 W/cm2. The electron is incident with a longitudinal momentum
of −2k; its transverse momentum is oriented perpendicularly to the
field polarization and has an arbitrary magnitude.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

T [104 laser cycles]

FIG. 4. Final occupation probabilities |c↑
−2(T )|2 (solid line) and

|c↓
2 (T )|2 (dashed line) for Kapitza-Dirac scattering from bichromatic

counterpropagating laser waves as a function of the interaction time
T . The electron and field parameters are chosen as in Fig. 3. Every
plotted data point corresponds to a full interaction with switching on
and off of 8 × 102 laser cycles each.

of the bichromatic laser field. The electron starts with initial
longitudinal momentum −2k and spin polarization along the z

direction. While the effect of dressing in the field is still clearly
pronounced, the damping of the Rabi cycle with the passage
of time is no longer visible.

An even cleaner picture of the Rabi oscillation dynamics is
obtained when the dependence of the occupation probabilities
|c↑

−2(T )|2 and |c↓
2 (T )|2 as a function of the interaction time

T is considered. Our corresponding results are shown in
Fig. 4, where each plotted data point represents a full
interaction including switching on and off the fields. We
note that the Rabi cycle is not fully developed and that the
frequency is substantially higher than �R = 3 × 10−2 eV =
1.9 × 10−4 [laser cycles]−1, as predicted by (16). The laser
cycles always refer to the fundamental frequency ω.

Nevertheless, to a very good approximation, the scattering
probability can be described by

∣∣c↓
2 (T )

∣∣2 = C sin2

(
1

2
�T

)
(22)

instead of (17), where C is the maximally reached scattering
probability. Here, an effective Rabi frequency

� = 1√
C

�R (23)

which accounts for the faster oscillation dynamics [34] has
been introduced. This reestablishes the agreement with (16)
because, for small times T � �−1, the factor C drops out,
and we obtain |c↓

2 (T )|2 ≈ ( 1
2�RT )2 (see also Appendix A).

According to our numerical calculations, this behavior, that the
maximal scattering probability remains less than 1, is rather
typical. In Fig. 4 we have C ≈ 0.474.

Further examples with different values of C are shown in
Figs. 5 and 6. The former is calculated in the same way as
Fig. 4, but with longer laser wavelength and lower amplitude,
leading to more pronounced Rabi oscillations. The latter is an
example with different amplitudes of the counterpropagating
waves. It shows that we can find parameters where C gets
arbitrarily close to 1.
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0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T [106 laser cycles]

FIG. 5. Same as Fig. 4, but with ω = 2 × 102 eV and ea1 =
ea2 = 8 × 103 eV, resulting in a laser intensity of I = 4.36 ×
1019 W/cm2. Note that the Rabi cycles are more developed, here
with C ≈ 0.855.

We have performed a parameter scan in order to reveal
for which values of field amplitude and frequency the Rabi
oscillations are fully developed. Our results are summarized
as a schematic diagram in Fig. 7. It shows that Rabi oscillations
with maximum amplitude C ≈ 1 are found in the bottom re-
gion of small laser amplitudes. Increasing the laser amplitudes
from there lowers C substantially but independently of ω

until the lower dashed line is reached. Crossing that line, C

rises to 1 again and then rapidly decreases to zero, forming a
dykelike structure. Beyond the dyke practically no scattering
takes place. We found that (23) holds for all parameter sets
below and on top of the dyke from ω = 10 eV to 3 × 103 eV
and from ea1,2 = 2 × 103 eV to 4 × 104 eV.

The reduced Rabi amplitudes may be caused by the fact
that an intrinsic detuning develops in the system when the
field amplitudes increase (a corresponding analytical model
is provided in Appendix A; see also [11]). This line of
argument would explain why C ≈ 1 is reached for small
field amplitudes where dressing effects are negligibly small.
In general, the dressings experienced by the incoming and
outgoing electrons, respectively, may slightly differ from
each other since the field configuration is asymmetric. As
a consequence, small mismatches in the energy-momentum
balance can arise when the values of a1,2 increase, leading to
damped Rabi oscillations. However, for very specific values of
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0 0.5 1 1.5 2
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FIG. 6. Same as Fig. 4, but with ω = 2.5 × 102 eV, ea1 = 4 ×
103 eV, and ea2 = 2 × 103 eV, resulting in a laser intensity of I =
6.82 × 1018 W/cm2. Here, the Rabi cycles are almost fully developed
(C ≈ 1).
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FIG. 7. Schematic diagram of the maximal Rabi amplitude C in
the a2

1a2-ω plane, indicating various parameter regimes. The position
of the dyke summit is like e3a2

1a2 ≈ ω2106 eV (order of magnitude).

a1, a2, and ω the dressing effects could be sizable but coincide
for the incoming and outgoing electrons. This circumstance
might explain the appearance of the dykelike structure where
C ≈ 1 is reached again. The position of the dyke summit is
approximately described by e3a2

1a2 ≈ ω2106 eV.
Let us put our results into an experimental context. To

be specific, we consider the example shown in Fig. 4.
The corresponding laser field frequencies (ω ∼ 1 keV) and
intensities (I ∼ 1021 W/cm2) can, in principle, be attained
from high-power x-ray free-electron lasers (XFELs) such
as the European XFEL (Hamburg, Germany) or the Linac
Coherent Light Source (LCLS; Stanford, California). The
latter currently reaches x-ray intensities up to 1020 W/cm2

at ∼ 100-fs pulse durations and ∼ 1-μm focal widths [35].
For the present purpose it is important that the spatiotemporal
extension of the laser fields is sufficiently large. For instance,
the most pronounced effect in Fig. 4 occurs after an interaction
time of about T ≈ 50 fs, which corresponds to a focal width of
�y = vT to be traversed by the electron. Here, v denotes the
transverse electron velocity. For electron energies in the eV
range, we obtain �y ∼ 1 μm. The required laser pulse energy,
accordingly, can be estimated by order of magnitude as

E ≈ I�x�y�τ ∼ (mc2)5

αe4a2
1

(
4

a2
1

+ 1

a2
2

)
�x

λe

, (24)

with the pulse duration �τ � T , fine-structure constant α ≈
1

137 , and electron de Broglie wavelength λe.
In order to observe the spin flips, a polarized incident elec-

tron beam can be used. The spin state of the outgoing electrons
can be probed by integrating, e.g., a Mott spectrometer into
the detection system. By varying the interaction time with the
laser fields from run to run, the spin oscillation shown in Fig. 4
can be resolved.

IV. SPIN-DEPENDENT KAPITZA-DIRAC SCATTERING
OF PROTONS

Apart from electrons, other particles can also undergo
Kapitza-Dirac scattering. As an example, we shall consider
Kapitza-Dirac scattering of protons in this section. Being
spin- 1

2 particles like electrons, the scattering dynamics of
protons may be spin dependent as well. Our goal is to
draw a comparison between (spin-dependent) Kapitza-Dirac
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scattering of protons versus electrons. These particles differ
by their mass, charge, and g factor.

Let �p = �p(x,t) denote the two-component spinor wave
function of the proton. In the nonrelativistic regime, its time
evolution is governed by the Pauli equation

i
∂

∂t
�p =

[
1

2mp

(
−i∇ − e

c
A
)2

+ 1

2
gpμNσ · B

]
�p , (25)

with the proton mass mp, proton g factor gp ≈ 5.5857, and
the nuclear magneton μN = e

2mpc
. The vector potential A and

magnetic field B in Eq. (25) are assumed to involve a wave
vector k.

Equation (25) has the same structure as Eq. (1) for the
electron. Their mutual relation can be made explicit by a
scaling transformation of the coordinates, according to

xe = x
ρ

, te = t

ρ
, (26)

with the electron-to-proton mass ratio ρ = me/mp. When
rewritten in the scaled coordinates, the Pauli equation (25)
becomes

i
∂

∂te
� =

[
1

2me

(
−i∇e + e

c
Ae

)2

− 1

2
gpμBσ · Be

]
� , (27)

with the wave function � = �(xe,te) now depending on the
scaled space and time coordinates xe and te. In addition, me

is the electron mass, and μB = e
2mec

the Bohr magneton. The
electromagnetic field parameters after scaling read

Ae = −ρ A, Be = ∇e × Ae = −ρ2 B, ke = ρk . (28)

Equation (27) is almost identical to the Pauli equation
which describes the time evolution of an electron in the
scaled electromagnetic field. In fact, if we ignored the spin
interaction term, the corresponding Schrödinger equations
would coincide. Consequently, the Kapitza-Dirac scattering
dynamics of electrons and protons are fully equivalent to each
other in situations when the particle spin is immaterial. For
instance, the experimental verification of the Kapitza-Dirac
effect on electrons applied optical laser fields of frequency
ωe ≈ 2.3 eV and intensity Ie ∼ 109 W/cm2. An equivalent
setup with protons could be realized with x-ray laser fields
of frequency ω ≈ 4.3 keV and intensity I ∼ 1022 W/cm2.

However, due to the spin-interaction term, there exists one
important difference between Eqs. (27) and (1). The former
still contains the proton g factor gp, which differs from the
electron g factor ge = −2 by almost a factor of 3 in magnitude.
As a consequence, in spin-sensitive interaction processes,
electron and proton dynamics are not fully equivalent. For
the particular case of spin-dependent Kapitza-Dirac scattering
involving three photons (see Sec. II), the proton interacts more
strongly with the (correspondingly scaled) electromagnetic
fields than the electron. The enhanced interaction strength can
be quantified by the Rabi frequency, which amounts to

�p = gp
e3a2

1a2ω

4m3
pc

6
(29)

for protons.

V. CONCLUSION

Spin-dependent Kapitza-Dirac scattering of electrons and
protons from bichromatic laser waves was studied in the
nonrelativistic regime. Our consideration focused on the case
of linearly polarized counterpropagating laser waves with
a fundamental frequency and its second harmonic. On the
one hand, we derived analytical results for the associated
short-time scattering probability in this field configuration.
It was shown that the deflection of electrons with specific
incident momenta is necessarily accompanied by a flip
of the electronic spin components orthogonal to the mag-
netic field direction. This way, a pronounced entanglement
between the outgoing electron momentum and spin state
arises.

On the other hand, the full time dependence of the
electron dynamics was obtained by solving the time-dependent
Pauli equation numerically. The coherent scattering of the
electrons leads to characteristic Rabi cycles. We emphasize
that, for equal amplitudes of the counterpropagating laser
waves, the same kind of Rabi oscillations were also found
in [10,11] in a strongly Doppler shifted reference frame. By
performing a systematic parameter scan, covering a broad
range from ultraviolet to x-ray laser frequencies, we found and
characterized different interaction regimes in which the Rabi
cycles are either fully developed, only partially developed, or
completely suppressed.

Due to numerical feasibility, we applied laser fields with
rather high frequencies and intensities in our computations.
Radiation sources with corresponding characteristics are, in
principle, available through high-harmonic emission from
laser-irradiated plasma surfaces [36] or at free-electron laser
laboratories, such as the Free-Electron Laser in Hamburg
(FLASH) at Deutsches Elektronen-Synchrotron (DESY;
Hamburg, Germany) [37] and the LCLS at the Stanford Linear
Accelerator Center (SLAC; Stanford, California) [38]. In the
examples shown, the development of a substantial fraction of
a Rabi cycle requires interaction times in the range of several
femtoseconds up to picoseconds.

In a forthcoming study we intend to investigate spin-
dependent Kapitza-Dirac scattering in laser waves with cir-
cular polarization, where the photons carry a definite helicity
(see also [13,28]).
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APPENDIX A: A MODEL FOR FIELD-INDUCED
DETUNING

In Sec. III B we saw that the Rabi oscillations between
the incident electron state and the spin-flipped scattered state
are not always fully developed. The reason was attributed
to an intrinsic, field-induced detuning in the system. In this
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appendix, we provide a simplified model which is able to
demonstrate this behavior.

Let us assume we can model our setup as a quantum
two-state system in the orthonormal basis |−2 ↑〉,|2 ↓〉.
Additionally, we introduce a longitudinal momentum offset
pz to both states giving a detuning in the kinetic energy of

∓ 4kpz

m
. The simplified Hamilton operator then reads

H = 1

2

(
δ �R

�R −δ

)
, δ = � − 4kpz

m
. (A1)

Here, � describes an a priori undetermined intrinsic detuning.
For the time evolution operator we obtain

U (T ) = exp(−iT H ) = cos

(
�

2
T

)
− 2i

�
sin

(
�

2
T

)
H =

(
cos

(
�T

2

) − iδ
�

sin
(

�T
2

) − i�R

�
sin

(
�T

2

)
− i�R

�
sin

(
�T

2

)
cos

(
�T

2

) + iδ
�

sin
(

�T
2

)
)

(A2)

with the effective Rabi frequency

� :=
√

�2
R + δ2 =

√
�2

R +
(

� − 4kpz

m

)2

. (A3)

The off-diagonal terms of (A2) describe the transition ampli-
tude from one state to the other. Therefore we can infer that
the occupation of the states oscillates with the effective Rabi
frequency � and amplitude

C = �2
R

�2
= 1

1 + (
�−4kpz/m

�R

)2 . (A4)

More explicitly, the transition probability is

|〈2 ↓ |U (T )| − 2 ↑〉|2 = C sin2

(
�

2
T

)
. (A5)

Thus the Rabi oscillation amplitude is generally damped. In
Fig. 8 a sweep over the detuning parameter is shown for a
parameter set at moderately high vector potential just below
the dyke in Fig. 7. It can be seen that the numerical simulations
based on Eq. (6) nicely resemble the detuning model described
above and that the intrinsic detuning � is positive. Note that
very similar resonance peaks have been investigated in [11]
for monochromatic two-photon and three-photon Kapitza-
Dirac scattering. Further numerical simulations show that �

decreases with k, reaching the dyke summit when � = 0 and

0

0.5

1

Δ−0.4 −0.2 0 0.2 0.4

ΩR

0

0.25

0.5

C

Ω
[e

V
]

4kpz/m [eV]

FIG. 8. Resonance behavior of the Rabi oscillation of the spin-
flipping Kapitza-Dirac transition from state |−2 ↑〉 to state |2 ↓〉. The
laser parameters read ω = 103 eV and ea1 = ea2 = 2.4 × 104 eV.
The Rabi amplitude C is shown (crosses) with a fit of Eq. (A4) over
� and �R (dashed line). Additionally, the measured frequency �

(pluses) is compared to Eq. (A3) (dash-dotted line) with the same fit
parameters. The latter are marked on the corresponding axes.

drops quite fast beyond the dyke. This is in good agreement
with the structure described in Fig. 7.

Still, for short times, the transition probability is indepen-
dent of the detuning and is given by |〈2 ↓ |U (T )| − 2 ↑〉|2 =
�2

R

4 T 2 + o(�3
RT 3). This behavior is also well known from Rabi

oscillations in two-level systems with permanent detuning
[39].

Our model Hamiltonian (A1) thus catches the basic
phenomenology of detuned Rabi oscillation dynamics. We
point out that it closely resembles the effective Hamiltonian
in Eq. (20) which followed from the Magnus expansion.
As argued in Sec. III, the physical origin of the field-
induced detuning might be connected to the asymmetric field
configuration, with co- and counterpropagating laser waves of
different frequencies (and amplitudes). The relevant value of
the detuning � in the numerical results of Figs. 4 and 5 can
be inferred by comparing Eqs. (23) and (A3) or by measuring
the characteristics of the resonance peak like in Fig. 8.

APPENDIX B: ALTERNATIVE APPROACH BASED ON
DIRAC-VOLKOV STATES

In this Appendix, we present an alternative derivation of
the spin-flip Rabi frequency in Eq. (16). Our approach is based
on relativistic Volkov states which are solutions to the Dirac
equation in the presence of a plane-wave laser field. Usually,
these states can only be applied to problems involving a single
traveling laser wave. In contrast, the spin-dependent Kapitza-
Dirac effect under consideration occurs in the combined fields
of two counterpropagating waves. However, out of the three
photons which are exchanged in total, only one is emitted
into (or absorbed from) the high-frequency field mode. In the
limit of moderate laser intensities, the influence of this field
mode can thus be treated within the first order of perturbation
theory. The interaction with the low-frequency field mode,
in turn, may be incorporated into dressed electronic states.
While this kind of approach, in principle, allows us to treat the
impact of the low-frequency wave nonperturbatively, we shall
be interested in the perturbative limit where two low-frequency
photons participate in the process. In comparison with standard
perturbation theory (of third order for both fields), this
approach has the advantage of being rather compact.

The Kapitza-Dirac effect may be regarded as stimulated
Compton scattering. We therefore start our consideration from
the usual S matrix describing multiphoton Compton scattering
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(see, e.g., [2–4])

S = ie

c

∫
d4x ψp′,s ′A/2ψp,s . (B1)

Here,

ψp,s(x) =
√

mc2

V Ep

(
1 − ek/A/1(kx)

2c(kp)

)
up,s e−i(px)+i�p , (B2)

where

�p = 1

c(kp)

∫ (kx) [
e(pA1(φ)) + e2

2c
A2

1(φ)

]
dφ (B3)

denotes the Dirac-Volkov state for the incoming electron
dressed by the field A

μ

1 (φ) = a1 cos(φ) εμ. Accordingly, ψp′,s ′

is the Dirac-Volkov state for the scattered electron. We use
the notation (vw) = v0w0 − v · w for the product of two
four-vectors vμ = (v0,v) and wμ = (w0,w). Feynman slash
notation is employed for the four-product with Dirac γ

matrices. The free Dirac spinors up,s are taken from [40],
with the spin quantized along the z axis.

For definiteness, we assume that the incident electron has
a longitudinal momentum component p3 = −2k (zero offset)
and a spin projection s = 1

2 . In order to be scattered into the
mirrored momentum state with p′

3 = 2k, the electron needs
to absorb two photons from the field A

μ

1 and to emit one
photon into the counterpropagating field A

μ

2 . In addition, the
electron momenta are assumed to be nonrelativistic, so that
Ep = Ep′ ≈ mc2 holds.

The integral in (B1) can be evaluated by performing a
Fourier series expansion, according to

ei(�p−�p′ ) ≈ exp

{
ie

c
a1

[
(pε)

(kp)
− (p′ε)

(kp′)

]
sin(kx)

− ie2

8c2
a2

1

[
1

(kp)
− 1

(kp′)

]
sin(2kx)

}

=
∑

n

J̃n(α,β) e−in(kx). (B4)

Here, the abbreviations

α = e

c
a1

[
(p′ε)

(kp′)
− (pε)

(kp)

]
, β = e2

8c2
a2

1

[
1

(kp)
− 1

(kp′)

]
(B5)

have been introduced, and J̃n = J̃n(α,β) denote generalized
Bessel functions [41]. The sum in Eq. (B4) runs over the
number of photons exchanged with the laser field A

μ

1 . The
term with n = 1 (n = 2) corresponds to the absorption of one
photon (two photons) from the wave A

μ

1 .
The relevant contribution to the S matrix thus reads

S ≈ ie

cV

∫
d4x up′,s ′

(
A/

(+)
2 J̃2 ei(p′−p−2k)x − e

2c
A/

(−)
1 k/A/

(+)
2

×
[

1

(kp)
+ 1

(kp′)

]
J̃1 ei(p′−p−k)x

)
up,s . (B6)

Here, A/
(−)
1 = − 1

2a1γ
1 e−i(kx) is understood as the part of A/1

which describes photon absorption. Similarly, A/
(+)
2 is the part

of A/2 responsible for photon emission. Note that A/
(−)
1 k/A/

(+)
2 =

A/
(+)
2 k/A/

(−)
1 . In the perturbative limit of small field amplitudes,

the Bessel functions may be expanded [41]: J̃1 ≈ α
2 , J̃2 ≈

α2

8 + β

2 . Moreover, if we assume that the electron momentum
has no component along the field polarization (i.e., α = 0),
Eq. (B6) further simplifies to

S ≈ ie

2cV
β

∫
d4x up′,s ′A/

(+)
2 up,s ei(p′−p−2k)x. (B7)

By an explicit evaluation one finds that the spinor-matrix prod-
uct vanishes identically if the spin quantum numbers coincide
(s = s ′). In contrast, when the electron transition involves a
spin flip (s ′ = − 1

2 ), one obtains up′,s ′γ 1up,s = p3/(mc). The
space-time integration in Eq. (B7) produces a factor cV T since
we have chosen the outgoing electron momentum p′ to agree
with the energy-momentum conservation in the process. Thus
the S matrix involving a spin flip has the form

Sflip ≈ − i

2
�RT, (B8)

with

�R = − e

2
βa2

p3

mc
≈ e3ω

2m3c6
a2

1a2. (B9)

This result coincides with the Rabi frequency of Eq. (16),
giving confirmation that the Pauli equation is sufficient to treat
the electron dynamics in the considered field configuration. In
contrast, in fields of circular polarization relativistic correc-
tions to the Pauli Hamiltonian need to be taken into account
[13].
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