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Nonresonant two-photon transitions in length and velocity gauges
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We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi
frequencies under the “gauge” transformation from the length to the velocity gauge. It is shown that gauge
invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color
absorption. The arguments leading to this conclusion are supported by analytic calculations which express the
matrix elements in terms of hypergeometric functions, and ramified by a “master identity” which is fulfilled by
off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the
length gauge. The study of the gauge dependence of atomic processes highlights subtle connections between
the concept of asymptotic states, the gauge transformation of the wave function, and infinitesimal damping
parameters for perturbations and interaction Hamiltonians that switch off the terms in the infinite past and future
[of the form exp(−ε|t |)]. We include a pertinent discussion.
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I. INTRODUCTION

A priori, the description of any dynamic process in atomic
physics should be gauge invariant. Yet, there is a caveat.
Namely, one usually calculates atomic transitions by using
wave functions obtained from the solution of the unperturbed
Schrödinger equation and ignores both the gauge transforma-
tion of the wave function as well as the fact that the physical
interpretation of the wave function changes under a gauge
transformation from the velocity to the length gauge. Lamb [1]
has shown that if one insists on using ordinary Schrödinger
wave functions in off-resonant one-photon transition matrix
elements, then the length-gauge form has to be used for the
laser field. Here, we refer to off-resonant transitions as those
where the frequency of the incident radiation is not exactly
equal to the resonance frequency of the atom; generalized to
two-photon transitions, this implies that the sum frequency of
the two photons does not exactly match the energy (frequency)
difference between the ground and excited level.

For off-resonant two-photon transitions, one might think
that the transition matrix element could be equal in the length
and velocity gauges if all possible intermediate, virtual states
are included in the calculation. Here, inspired by Refs. [2–4],
we aim to reinvestigate the status of the gauge invariance
of two-photon transition matrix elements (“length” versus
“velocity” gauges). Note that invariance under the change
from the length to the velocity gauges implies that the gauge
transformation of the wave function is ignored (we also refer to
the invariance of matrix elements under the neglect of the wave
function transformation and under the neglect of any necessary
reinterpretation of physical operators as the “extended gauge
invariance”). In Refs. [5,6], the two-photon transition matrix
element has been examined without any additional condition
enforced upon the laser frequency; the laser might be off
resonance or on resonance. As will be explained below, the
arguments given in Refs. [5,6] appear to be applicable only at
exact resonance. The role of the intermediate, virtual quantum
states in the gauge invariance is analyzed here in terms of
general identities, applicable to various physical processes.
Second, from a conceptual point of view, the role of the
gauge transformation of the wave function and the concomitant

change in its interpretation appears to profit from further
explanatory remarks beyond the problem at hand.

The subject matter of this article is rather basic quantum
mechanics, supplemented with explicit analytic results for the
length and velocity forms of the 1S-2S two-photon transition
matrix element in hydrogen. We start by investigating gauge
transformations and physical interpretations of operators in
Sec. II before reexamining the “gauge invariance” of the ac
Stark shift under a change of the interaction Hamiltonian
from the length to the velocity form (Sec. III). Here, gauge
invariance has to taken with a grain of salt; the invariance of
the theoretical expressions for the ac Stark shift holds even
if the mandatory gauge transformation of the wave function
is neglected, a fact on which we comment in Sec. IV. In
Sec. III, we examine, based on explicit analytic and numerical
calculations, the behavior of a typical two-photon transition
matrix element (namely, of the 1S-2S two-photon transition
in hydrogen) off resonance. We aim to show that the inclusion
of the intermediate states does not solve the problem of gauge
invariance, but the gauge dependence is due to a change in
the physical interpretation of the wave function under the
presence of a nonvanishing vector potential. The physically
correct result for the transition rate off resonance is obtained
in the length gauge.

II. GAUGE TRANSFORMATION AND PHYSICAL
INTERPRETATIONS

To illustrate that gauge transformations can change the
physical interpretation of operators, let us start from a trivial
example. We consider a wave function ψ(�r) = 1/

√
V where

V is the normalization volume; it describes a particle at rest.
A unitary “gauge” transformation of the form

ψ(�r) → exp

(
i

�
�p0 · �r

)
ψ(�r) (1)

is applied. The momentum operator in the free Hamiltonian
H = �p 2/(2m), with �p = −i �∇, transforms as

�p → e
i
�

�p0·�r �pe− i
�

�p0·�r = �p − �p0. (2)
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The gauge-transformed Hamiltonian thus reads H ′ = ( �p −
�p0)2/(2m), and the interpretation of the momentum operator
�p = −i� �∇ has changed: Namely, the kinetic momentum
operator no longer is �p but �p − �p0. Indeed, �pkin = �p − �p0

is the conjugate variable of the position operator �r (see also
the appendix of Ref. [7]).

A similar situation is encountered in electrodynamics [8].
The time-dependent wave function receives a unitary gauge
transform,

ψ(t,�r) → e
i
�

e�(t,�r)ψ(t,�r). (3)

The momentum operator transforms as

�p → e
i
�

e�(t,�r) �pe− i
�

e�(t,�r) → �p − e �∇�(t,�r), (4)

where e in the final operator is the electron charge. The
following Hamiltonian describes the atom-electromagnetic
field dynamical system consisting of an electron coupled to
a vector potential �A, in the binding (Coulomb) potential �,

H = ( �p − e �A)2

2m
+ e�. (5)

The product e� of electron charge and binding scalar potential
is often denoted as V because it acts as a potential term in
the Hamiltonian. Typically, the vector potential �A describes a
laser. The unitary gauge transformation applied to H leads to
the transformed Hamiltonian H̃ ,

H̃ = e
i
�

e�(t,�r)He− i
�

e�(t,�r) = ( �p − e �A′)2

2m
+ e�, (6)

where �A′ = �A + �∇� is the gauge-transformed vector poten-
tial. Conversely, for �A = �0, and �A′ = �∇� �= �0, one asserts
that the interpretation of the momentum operator �p = −i� �∇
changes; it no longer describes the kinetic momentum. The
place of the latter is taken by the conjugate variable of position;
namely, �pkin = �p − e �A′.

However, under the gauge transformation, the physical
interpretation of the Hamiltonian also changes. A priori, the
Hamiltonian H is equal to the the time-derivative operator
i�∂t . After the gauge transformation, it is equal to a unitarily
transformed time-derivative operator,

i�∂t → e
i
�

e�(t,�r )(i�∂t )e
− i

�
e�(t,�r ) → i�∂t + e∂t�(t,�r ). (7)

The new time-derivative operator is thus obtained by setting
equal the unitarily transformed Hamiltonian and the unitarily
transformed time-derivative operator and reads as

H ′ = H̃ − e∂t� = ( �p − �A′)2

2m
+ e�′, (8)

where �′ = � − ∂t� is the gauge-transformed scalar poten-
tial.

From the above derivation, which in principle recalls
well-known facts, it is immediately obvious that the gauge-
transformed Hamiltonian H ′ cannot be obtained from H by a
unitary transformation. Conversely, the unitarily transformed
H̃ cannot be interpreted any more as the time-derivative
operator when acting on the gauge-transformed wave function.

To fix ideas, it is useful to examine the velocity-gauge
one-photon transition matrix element Mv ,

Mv = 〈φf | − e
�A · �p
m

+ e2 �A 2

2m
|φi〉

→ 〈φf | − e
�A · �p
m

|φi〉 = 〈φf | − e
i

�

�A · [H,�r]|φi〉

= −e
i

�
(Ef − Ei)〈φf | �A · �r|φi〉, (9)

of an initial atomic state |φi〉 and a final state |φf 〉. [We have
made the dipole approximation �A = �A(t) and assumed that
the seagull term e2 �A 2/(2m) does not contribute because of the
angular symmetry of the initial and final states involved in the
dipole transition.] In view of the identity �E = −∂t

�A → iω �A,
the length-gauge one-photon matrix elements M	 is related to
its velocity-gauge counterpart Mv as follows:

M	 = 〈φf | − e �E · �r|φi〉

→ −iω
e

m
〈φf | �A · �r|φi〉 = �ω

Ef − Ei

Mv. (10)

The velocity-gauge expression Mv differs from its length-
gauge counterpart M	 by an additional factor (Ef − Ei)/ω.
Hence, in a remark on p. 268 of Ref. [1], Lamb observed that
the physical interpretation of the wave function is preserved
only in the length gauge, and “no additional factor (Ef −
Ei)/ω actually occurs.” Indeed, the physical interpretation
of the momentum operator in the Schrödinger–Coulomb
Hamiltonian is preserved only in the length gauge after a laser
field is switched on. In other words, the problems off resonance
with the velocity gauge result from the fact that one uses a wave
function, which is an eigenstate of a Hamiltonian that involves
the momentum operator �p, and formulates the interaction
Hamiltonian −e �A · �p/m + e2 �A 2/(2m) with an expression
that also involves the momentum operator �p, but in a situation
where �p loses the original physical interpretation that it
had in the unperturbed Schrödinger–Coulomb Hamiltonian.
Alternatively, one can also argue that the electric field used
in the length-gauge interaction is gauge invariant, while the
vector potential in the velocity-gauge term is not [3,4,9–12].

Within the dipole approximation, the atomic Hamiltonian
reads as follows [we denote the laser field by E(t) and the
binding Coulomb potential by V ]:

HA	 = �p 2

2m
+ V − e �E(t) · �r. (11)

Under the gauge transformation �(t,�r) = �A(t) · �r , this Hamil-
tonian is transformed to

HAv = [ �p − e �A(t)]2

2m
+ V. (12)

As we have seen, the two Hamiltonians HA	 and HAv are not
related by a unitary transformation and, furthermore, matrix
elements of the interaction Hamiltonians

H	 = −e �E(t) · �r (13)

and

Hv = −e
�A(t) · �p

m
+ e2 �A(t) 2

2m
(14)
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differ off resonance. Despite this fact, a number of processes
such as the ac Stark shift are “gauge invariant” (in an extended
sense) under a replacement of the interaction H	 by Hv , even
without any gauge transformation of the wave function.

Before we discuss the reasons why extended gauge invari-
ance holds or fails for a given physical problem, we reexamine
the extended gauge invariance of the ac Stark shift and the
failure of the extended gauge invariance in the case of the
two-photon transition matrix element.

III. GAUGE INVARIANCE OF THE AC STARK SHIFT

The derivation of the ac Stark shift is easiest in a second-
quantized formalism, where the z-polarized laser field in the
dipole approximation is modeled by a field operator, resulting
in a length-gauge interaction

�EL = êz

√
�ω

2ε0VL

(aL + a
†
L) = êzEL, (15a)

H	 = −ezEL. (15b)

Here, the aL and a
†
L are the annihilation and creation

operators for laser photons. The velocity-gauge interaction
is given as

�AL = êz

√
�

2ωε0VL

(iaL − ia
†
L) = êzAL, (16a)

H (1)
v = −eALpz

m
, H (2)

v = e2A2
L

m
. (16b)

The unperturbed Hamiltonian is the sum of the atomic
Hamiltonian HA and the Hamiltonian HEM which describes
the electromagnetic field (laser mode L and modes �kλ other
than the laser field),

H0 = HA + HEM, (17a)

HA =
∑
m

Em|φm〉〈φm|, (17b)

HEM =
∑
�kλ �=L

�ω�kλa
†
�kλ

a�kλ + �ωa
†
LaL. (17c)

The unperturbed state |φ0〉 = |φ, nL〉 with the atom in state
|φ〉 and nL laser photons fulfills the relationships

|φ0〉 = |φ, nL〉, HA|φ〉 = E|φ〉, (18a)

H0|φ0〉 = E0|φ0〉, E0 = E + nL�ω. (18b)

The reduced Green’s function for the combined system of
atom and radiation field is given by

G′(ω) =
(

1

H0 − E0

)′
, (19)

where H0 contains both atomic as well as laser-field terms and
the prime on the Green’s function denotes the omission of the
reference state |φ0〉 of the combined atom + field system from
the sum over intermediate states.

In the length gauge, the second-order ac Stark shift can be
expressed as

�E = −〈φ0|HLG′(ω)HL|φ0〉 = − IL

2ε0
P (φ). (20)

The laser-field intensity is

IL = nL�ωc

VL

, (21)

and the polarizability is given as

α(ω) = e2

3

∑
±

〈φ|�r 1

HA − E ± �ω
�r|φ〉. (22)

(We here assume a radially symmetric reference state |φ〉.) In
the language of second quantization [13], the two terms with
an opposite sign of �ω in the denominator are generated by
paired photon annihilation and photon creation operators from
Eq. (15).

The extended gauge invariance of the ac Stark shift in
atomic hydrogen relies on the fact that �E given in Eq. (20)
can alternatively be expressed as

�E = −〈φ0|H (1)
v G′(ω)H (1)

v |φ0〉 + 〈φ0|H (2)
v |φ0〉. (23)

After treating the photons, the extended gauge invariance
is easily shown to be equivalent to the identity

1

m

∑
±

〈φ| �p 1

HA − E ± ω
�p|φ〉 − 3〈φ|φ〉

= ω2
∑
±

〈φ|�r m

HA − E ± ω
�r|φ〉, (24)

where 〈φ|φ〉 = 1 is the normalization integral; the correspond-
ing term originates from the seagull Hamiltonian e2A2

L/(2m).
To show this identity, we generalize the problem somewhat

and write the following two matrix elements:

P (ω) = �
2

m2
〈φf | �p 1

HA − En − ω
�p|φi〉, (25a)

Q(ω) = 〈φf |�r 1

HA − En − ω
�r|φi〉, (25b)

for two (not necessarily equal) atomic states |φi〉 and |φf 〉.
Repeated application of the commutator relations

�p
m

= i

�
[HA,�r], HA = �p 2

2m
− e2

4πε0r
(26)

results in the equality

�
2

m2
〈φf | �p 1

HA − Ei − ω
�p|φi〉

= (Ef − Ei − �ω)(−�ω)〈φf |�r 1

HA − Ei − ω
�r|φi〉

+ (�ω − Ef )〈φf |�r2|φi〉 + 〈φf |�r HA�r|φi〉. (27)

One rewrites this expression by using the operator identity

�rHA�r = 1
2 ([�r,[HA,�r]] + �r2HA + HA�r2), (28)

applies the Hamiltonian HA on either side to an eigen-
state and concludes that the following “master identity”

022117-3



U. D. JENTSCHURA PHYSICAL REVIEW A 94, 022117 (2016)

holds:

P (ω) = (Ef − Ei − �ω)(−�ω)Q(ω)

+ [�ω − 1
2 (Ef − Ei)]〈φf |�r2|φi〉 + 3�

2

2m
〈φf |φi〉.

(29)

For the ac Stark shift, one sets Ef = Ei = E, |φf 〉 =
|φi〉 = |φ〉, and adds two terms with ±ω. One can thus
easily show that Eq. (24) follows from Eq. (29), demonstrating
the extended gauge invariance of the ac Stark shift. Recently,
an analogous derivation has been shown to lead to the extended
gauge invariance of the one-loop correction to the imaginary
part of the polarizability [14].

IV. TWO-PHOTON MATRIX ELEMENT IN LENGTH
AND VELOCITY GAUGE

Here, the situation is different from the ac Stark shift: the
initial state consists of a combined atom + field state where
the atom is in the ground state and nL + 2 photons are in the
laser mode,

|φ1〉 = |φi,nL + 2〉. (30)

The final state has the atom in state |φf 〉 and two fewer photons
in the laser mode,

|φ1〉 = |φf ,nL〉. (31)

The matrix element for the transition is

M = 〈φ2|H	G
′(ω)H	|φ1〉

?= 〈φ2|H (1)
v G′(ω)H (1)

v |φ1〉 + 〈φ2|H (2)
v |φ1〉. (32)

Here, in contrast to the ac Stark shift, only one term
contributes in the electric field; namely, the one with the
annihilation operators. Furthermore, because 〈φf |φi〉 = 0 (the
two states are manifestly different), the seagull term makes no
contribution. After treating the photon degrees of freedom, the
equality of the length and velocity gauge expressions for the
two-photon matrix element is easily shown to be equivalent to
the relation

1

m2
〈φf | �p 1

HA − E − ω
�p |φi〉

?= ±ω2〈φf |�r 1

HA − E − ω
�r |φi〉. (33)

We have allowed for a sign ambiguity on the right-hand side;
both signs would lead to the same Rabi frequency, which is
proportional to the absolute modulus of the transition matrix
element.

To investigate whether the identity (33) holds, we specialize
our general “master identity” given in Eq. (29) to the case
|φf 〉 �= |φi〉,

�
2

m2
〈φf | �p 1

HA − En − ω
�p |φi〉

= (Ef − Ei − �ω)(−�ω)〈φf |�r 1

HA − En − ω
�r |φi〉

+
[
�ω − 1

2
(Ef − Ei)

]
〈φf |�r 2|φi〉. (34)

At exact resonance, i.e., for

�ω = �ωR = 1
2 (Ef − Ei), (35)

one has indeed

1

m2
〈φf | �p 1

HA − En − ωR

�p|φi〉

= −ω2
R〈φf |�r 1

HA − En − ωR

�r|φi〉, (36)

which is exactly of the required form given in Eq. (33), for
the case ω = ωR . Again, the minus sign does not influence
the calculation of the Rabi frequency and is physically
irrelevant.

However, for ω �= ωR , i.e., off resonance, the two-photon
transition rate as calculated in the length gauge differs from the
corresponding result in the velocity gauge. The identity (33)
does not hold for ω �= ωR . As already discussed in Sec. II,
the “gauge noninvariance” of one-photon transitions is well
known [see the discussion surrounding Eqs. (9) and (10)].
For two-photon transitions, the role of the inclusion of the
entire spectrum of virtual atomic states has been somewhat
unclear (see Refs. [5,6,13]). The initial conjecture regarding
the equality of the length- and velocity-gauge expressions
can be traced to the paper by Geltman [15], which treats
a manifestly resonant process; namely, the two-photon ab-
sorption and ionization of a ground-state hydrogen atom.
Geltman writes an expression which corresponds to the seagull
term in Eq. (4) of his paper, adds it to the length-gauge
expression which he gives in his Eq. (1), and asserts that the
result is equal to the velocity-gauge result given in Eqs. (3)
and (5) of Ref. [15]. From the presentation, it is clear that
Geltman’s argument applies to a resonant process; namely,
the ionization rate of an initially-ground-state atom by the
absorption of two photons of frequency ν2, into a continuum
state of energy Ef = Ei + 2hν2 > 0 (in the notation of
Ref. [15]).

In view of advances in handling the Schrödinger–
Coulomb propagator [16–18], and the calculation of energy-
dependent matrix elements of the nonrelativistic propagator,
which are necessary for analytic Lamb shift calculations
[19–21], it is feasible to write analytic expressions for the
two-photon transition matrix element in the velocity and
length gauges. We may define the dimensionless matrix
element

Q2S;1S(ω) = (αmc)4

3m�2
Q2S;1S(ω)

= (αmc)4

3m�2
〈2S|�r 1

HA − En − ω
�r|1S〉, (37)

for which we may write the expression

Q2S;1S(ω) = 512
√

2t2

729(t − 2)3(t2 − 1)2(t + 2)2

× (419t7 + 134t6 − 15t5 + 30t4

+ 60t3 − 120t2 − 32t + 64)

−
4096

√
22F1

(
1, − t,1 − t, (1−t)(2−t)

(1+t)(2+t)

)
3(t2 − 2)3(t2 − 1)2

, (38)
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FIG. 1. Comparison of the functions f1(x) (dashed line) and f2(x)
(solid line) in the range 0 < x = �ω/(α2mc2) < 3/8. The overlap
occurs at x = 3

16 , which is the two-photon resonance condition.

where

t =
√

1 − 2�ω

α2mc2
. (39)

(All formulas pertain to atomic hydrogen, where we set the
nuclear charge number equal to Z = 1.) The dimensionless
matrix element in the velocity gauge is

P2S;1S(ω) = m

3�2
P2S;1S(ω)

= 1

3m
〈2S| �p 1

HA − En − ω
�p|1S〉, (40)

for which the expression reads

P2S;1S(ω) = 64
√

2

81

t2(23t3 + 8t2 + t − 2)

(t − 2)2(t2 − 1)(t + 2)

−
256

√
22F1

(
1, − t,1 − t, (1−t)(2−t)

(1+t)(2+t)

)
3(t − 2)2(t2 − 1)(t + 2)2

. (41)

In Fig. 1, we compare the expressions

f1 = P2S;1S(ω), (42a)

f2 = (E2S − E1S − �ω)(−�ω)

(α2mc2)2
Q2S;1S(ω) (42b)

in the range ω ∈ (0,E2S − E1S) and as a function of x =
�ω/(α2mc2). The difference of the results given in Eqs. (41)
and (38),

� = f1 − f2

= m

�2

[
�ω − 1

2
(E2S − E1S)

]
〈2S|�r 2|1S〉

= −512
√

2

729

(
x − 3

16

)
, (43)

is plotted in Fig. 2. At exact resonance, one has

x = xR = 3

16
, � = 0, (44)

FIG. 2. Gauge difference �(x) = f1(x) − f2(x). The zero occurs
at x = 3

16 .

as well as

Q2S;1S(ωR) = −
(

16

3

)2

Q2S;1S(ωR)

= −215

36

[
19

√
2 + 16

√
5 + 64

√
2

× φ

(
−19 + 6

√
10,1, − 2

√
2

5

)]
= −7.853 655 422. (45)

Here,

φ(z,s,a) =
∞∑

k=0

zk

(k + a)s
(46)

is the Lerch φ transcendent.
With Lamb [1] and Kobe [3], we note that the electric

field is a gauge-independent quantity, use the length-gauge
expression, and supply the prefactors in SI units to write the
following expression for the Rabi frequency [22]:

� = 2(2πβ2S;1S)IL, (47)

β2S;1S(ω) = − e2
�

α4m3c5(4πε0)
Q2S;1S(ω). (48)

An expansion of the Rabi frequency about resonance leads to
the result

β2S;1S(ω) = β2S;1S(ωR) + ∂β2S;1S(ω)

∂ω

∣∣∣∣
ω=ωR

(ω − ωR) (49)

= [3.681 11 × 10−5 + 2.322 93 × 10−4(x − xR)]

× Hz m2

W2
, (50)

where x = ω/(α2m) and xR = 3/16.
A remark on two-color absorption is in order. If an atom

is simultaneously subjected to two laser fields of different
frequencies ω1 and ω, which fulfill the resonance condition
ω1 + ω2 = Ef − Ei , then gauge invariance is restored. On
the basis of Eq. (29), this is verified (again for two-photon
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resonance) as follows:

P (ω1) + P (ω2) = (Ef − Ei − �ω1)(−�ω1)Q(ω1)

× (Ef − Ei − �ω2)(−�ω2)Q(ω2)

+ [
�ω1 − 1

2

(
Ef − Ei

)]〈φf |�r2|φi〉
+ [

�ω2 − 1
2

(
Ef − Ei

)]〈φf |�r2|φi〉
= −(�ω1)(�ω2)[Q(ω1) + Q(ω2)]. (51)

The relation P (ω1) + P (ω2)= − (�ω1)(�ω2)[Q(ω1)+Q(ω2)]
is equivalent to the gauge invariance of the resonant two-color,
two-photon transition. In Tables I and II of Ref. [2], the authors
present resonant two-color, two-photon matrix elements which
in our notation would read

Q2c;2γ (ω1) = 3
4 [Q2S;1S(ω1) + Q2S;1S(ω2)], (52)

where, again, ω2 = Ef − Ei − ω1. For example, the gauge-
invariant resonant two-color result at frequency 28

15ωR

reads

Q2c;2γ

(
ω1 = 28

15
ωR = 7

20

α2mc2

�

)
= −160 000

343

{
157

√
2 + 56

√
15 + 2

√
190

+ 560
√

2φ

[
1

7
(−263 + 48

√
30),1, −

√
10

3

]

+ 64
√

2φ

[
1

7
(−848 + 87

√
95),1, − 2

√
5

19

]}
= −62.659 473 633, (53)

verifying the fifth entry in the last row of Tables I and II
of Ref. [2]. Diagrammatically, the two terms in Eq. (52)
correspond to photon absorption processes with two different
possible time orderings of the absorptions of photons with
frequencies ω1 and ω2.

V. CONCLUSIONS

In the current paper, we (re)examine the transformation
from the length to the velocity gauge in Sec. II and recall
that the length- and velocity-gauge Hamiltonians are not
related by a unitary transformation. Furthermore, we show
that the physical interpretation of a quantum-mechanical
operator depends on the gauge, vindicating arguments given
by Lamb [1] and Kobe [3] regarding the applicability of the
length gauge off resonance. In Sec. III, we consider the ac Stark
shift as a paradigmatic example of a physical process invariant
under an “extended” gauge transformation. Specifically, in
atomic hydrogen, we rederive the known result [22,23] that
the ac Stark shift formulated in the length gauge is equal to the
velocity-gauge expression, even if the gauge transformation of
the wave function is ignored. The derivation is based on the
master identity given in Eq. (29). In Sec. IV, we investigate
the two-photon transition matrix element, where the extended
gauge invariance does not hold off resonance. The derivation
again profits from the general identity (29), which can be

applied to both of the problems studied in Secs. III and IV;
its validity is verified on the basis of analytic and numerical
calculations [see Eqs. (38), (41) as well as Figs. 1 and 2].
In retrospect, it would have seemed somewhat surprising
if extended gauge invariance had been applicable to two-
photon transitions (under the inclusion of all possible virtual,
intermediate states) but failed for one-photon transitions [see
Eqs. (9)—(10)]. We conclude that for two-photon transitions,
the length gauge needs to be used off resonance, just as for
one-photon absorption.

Yet, for two-color, two-photon absorption with the sum of
the two photon frequencies adding up to the exact resonance
frequency, extended gauge invariance again holds (see Sec. IV
and Ref. [2]).

A few explanatory remarks are in order. We have seen
that extended gauge invariance is restored at exact resonance,
for both one- as well as (one-color and two-color) two-
photon transitions. Mathematically, extended gauge invariance
is restored at resonance in view of commutation relations,
notably, �p = im

�
[HA,�r ], where HA is the atomic Schrödinger–

Coulomb Hamiltonian. Physically, extended gauge invariance
holds because processes at exact resonance, or processes
which involve energy shifts, can be formulated by using a
form of the interaction where the fields and potentials are
adiabatically switched off in the infinite future and in the
infinite past, by using a damping term of the form exp(−ε|t |).
The gauge transformation of the wave functions (in and out
states) then proceeds in the distant past and future, where the
fields are switched off and the gauge transformation is just the
identity. For one- and two-photon transitions, the necessity to
introduce the damping terms is inherent to the formulation of
Fermi’s golden rule, which describes transition rates at exact
resonance, where the initial and final states fulfill an energy
conservation condition [see Refs. [24,25].

The ac Stark shift can be formulated by using the Gell–
Mann–Low theorem [see Eqs. (19) and (21) of Ref. [23] ],
in which case one uses a time evolution operator that evolves
the wave function from the infinite past to the present, with
the interactions being switched off for t → −∞. Within the
Gell–Mann–Low formalism, the gauge transformation of the
wave function in the infinite past amounts to the identity
transformation, because the interactions are adiabatically
switched off in this limit. The extended gauge invariance
of those physical processes whose description allows such
an adiabatic damping, thus finds a natural explanation. For
one- and two-photon transitions off resonance, however,
the quantum dynamics are instantaneous, and the physical
interpretation of the operators must be carefully restored. In
this case, only the length gauge provides a consistent physical
description (see the discussion in Sec. II).

One might thus ask if the velocity gauge has any advantages
in the physical description of laser-related processes. The
answer can be given as follows: There are S-matrix elements
in the so-called strong-field approximation whose evaluation
becomes easier in the velocity gauge. In this case, the in-
and out-states are asymptotic states (the S matrix is a time
evolution operator from the infinite past to the infinite future).
Indeed, as stressed by Reiss in Eqs. (29) and (31) of Ref. [8],
the Volkov state in a strong laser field is much easier to
formulate in the velocity gauge, and consequently, S-matrix
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calculations should preferentially be done in this gauge (see
also Refs. [8,26,27]). In the formulation of the S matrix,
one canonically uses infinitesimal damping parameters (see
Ref. [28]), and thus, extended gauge invariance is restored.
We conclude that the choice of gauge in these cases should
be made according to practical considerations, and in strong

laser fields, the velocity gauge provides for the most simple
computational framework.
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