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For a number of noninteracting identical particles entering a multichannel scatterer in various wave-packet
states, we construct a generating function for the probabilities of various scattering outcomes. This is used
to evaluate the mean numbers of particles, nm, scattered into a given (mth) channel, single-channel statistics,
and interchannel correlations. We show that for initially uncorrelated particles, indistinguishability changes
single-channel statistics without altering the value of nm. For uncorrelated bosons and fermions, bunching and
antibunching behavior can be detected in the extreme-case probabilities, to have all particles scattered into the
same channel, or none of particles scattered into a channel, or channels. As an example, we consider a cavity
with a single long-lived resonance accessible to the particles, which allows them to “pile up” inside the scatterer.
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I. INTRODUCTION

The mere fact that the particles are indistinguishable may
lead to significant effects in the statistical predictions of
quantum theory, even in the absence of direct interparticle
interactions. Such effects are currently a subject of exten-
sive studies, both theoretical and experimental [1–25]. One
of the best known examples of quantum statistical effects
is the Hong-Ou-Mandel (HOM) effect [2], where bosons
or fermions, incident on a two-channel scatterer from the
opposite sides, are found more or less likely to leave the
scatterer together than distinguishable particles under the same
conditions.

Recently [26,27], we studied a one-sided version of the
effect, where a train of uncorrelated identical particles impacts
on a two-channel scatterer on the same side. The probabilities
of various scattering outcomes are then affected by indistin-
guishability of the particles, provided the scatterer detains
the particles, causing the one-particle wave-packet states to
“pile up.” Using the approach to probe the tunneling time of a
potential barrier found no appreciable delay in tunneling across
a single rectangular barrier [26], while the expected delay of
order of the lifetime of the metastable state was evident in the
case of a resonance transmission [26]. Moreover, the presence
of several resonances accessible to the transmitted particles
led to possible excitations of the internal frequencies of the
scatterer, due to the “redistribution” of each particle between
different wave-packet states as a result of (anti)symmetrization
[27,28].

Several questions remained unanswered, however, and are
the main subject of this paper. In Ref. [27] it was found
that quantum statistics may not alter the mean number of the
transmitted particles, but only the probabilities of individual
outcomes. Of these, only the probability to have all particles
transmitted clearly exhibits a bunching or antibunching behav-
ior, exceeding its value for distinguishable particles in the case
of bosons and falling below it in the case of fermions. In the
following we ask whether these are essential properties of a
two-channel system, or if they can be extended to the case of
a multichannel scatterer of the type shown in Fig. 1.

Although the system shown in Fig. 1 is similar to the
one used in Ref. [20], our purpose is somewhat different. In
Sec. II we briefly describe a multichannel scattering wave
function. In Sec. III, we construct a generation function for
the scattering probabilities. In Sec. IV we briefly discuss the
limit in which all particles may be considered distinguishable.
Section V evaluates the mean number of particles scattered
into the same channel, should the experiment be repeated many
times. In Secs. VI and VII we analyze the distributions of the
particle numbers, and the joint probabilities for scattering into
several chosen channels. Section VIII is a brief comment on the
origin of the effects. In Sec. IX we illustrate our approach by
considering a simple four-channel model. Section X contains
our conclusions.

Throughout the paper we refer as particles (fermions or
bosons) to bosonic or fermionized cold atoms, and photons of
the same polarization, conventionally treated in the mathemat-
ical framework used below.

II. MULTICHANNEL SCATTERING OF
IDENTICAL PARTICLES

Consider a system having N incoming and outgoing
channels, with Jk = 0,1,2, . . . particles injected in different
wave-packet states into each incoming channel.

The wave function before the scattering takes place is,
therefore,

|�in〉 = C−1/2
N∏

k=1

Jk∏
jk=1

a+
in (jk,k)|0〉, (1)

where the operator a+
in (jk,k,t) creates the jkth incoming wave

packet state |�in(jk,k,t)〉 in the kth channel.
The meaning of Eq. (1) is conveniently illustrated by

the two-dimensional cases shown in Fig. 1, an illustration
easily extended to more complex situations. We assume that
a particle enters in a wave-packet state propagating along
the inlet [there two and four inlets in the cases shown
in Figs. 1(a) and 1(b), respectively]. Its transversal motion
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(a) (b)

FIG. 1. A schematic showing possible scattering setups. (a) A
two-dimensional wave guide with asymmetric narrowings. With the
energies of a particle lying between the first, E0

1 , and third, E3
0 ,

thresholds shown in the inset, there are four open channels, N = 4.
(b) Three particles, J = 3, with energies between E0

1 and E0
2 , enter

the scatterer via inlets 1 and 2, J1 = 1 and J2 = 2, and are distributed
between N = 4 outgoing channels. xk is measured along the axis of
the kth outlet, as shown for x3.

between the walls of the waveguide is, however, quantized
with a known energy E0

n, as shown in the inset of Fig. 1.
Specifying the inlet, and the transversal mode of a particle,
defines a channel. One-particle states propagating in different
channels are, therefore, orthogonal. We can inject several
particles in different wave-packet states into the same channel,
as is shown in Fig. 1(b). Thus, in the kth incoming channel
there may be a total of Jk particles, numbered by the index
jk = 1,2, . . . ,Jk , e.g., in order of their arrival at the scatterer.
The corresponding one-particle states may or may not be
orthogonal, depending on whether the wave packets have
nonzero overlaps. If they do, we call the (anti)symmetrized
multiparticle state initially correlated [27]. Given an initial
state of a general type, we wish to know the final distribution
of particles between all available outgoing channels and, in
particular, the effect indistinguishability of the particles may
have on such a distribution.

The state |�in〉 is normalized to unity so that we have [29]
(the upper sign is always for bosons)

C = S±[Iij ] ≡
∑
σ (N)

(±1)p(σ (N))
N∏

i=1

Iiσi
, (2)

where σ (N ) is a permutation of the indices (0,1, . . . ,N) and
p(σ ) is its parity. Thus, S+[Iij ] and S−[Iij ] are the permanent
(per) and determinant (det) of a square matrix Î , constructed
from the overlaps between the states |�in〉, [m = (jk,k) and
n = (j ′

k,k
′), respectively]:

Imn = δkk′ 〈�in(j ′
k,k,t)|�in(jk,k,t)〉. (3)

The matrix Imn is block diagonal since the incoming states in
different channels are always orthogonal. In the same channel,

the overlaps (3) may be nonzero, indicating initial correlations
which exist between the particles.

In the setup shown in Fig. 1, the one-particle incoming state
|�in(jk,k,t)〉 is given by the product of its translational com-
ponent, |φin(jk,k,t)〉, and a function describing the transversal
motiown, |uk〉:

|�in(jk,k,t)〉 = |φin(jk,k,t)〉|uk〉. (4)

For the translational part we write

〈xm|φin(jk,k,t)〉 = (2π )−1/2
∫ ∞

0
Ain(pk,jk,k)

× exp{−ipk[xk − xin(jk,k)]

− iE[t − tin(jk,k)]} dpk, (5)

where xk is the coordinate along the axis of the kth inlet,
pk is the momentum, and E is the corresponding energy.
The quantities xin(jk,k) and tin(jk,k) define the position and
the time at which a particle with a momentum distribution
Ain(pk,jk,k) is injected into the kth channel. Both are variable
parameters, which also determine the time at which the particle
arrives at the scatterer.

After scattering, each incoming one-particle wave packet
ends up divided between the outgoing channels:

|φin(jk,k,t)〉|uk〉 →
N∑

m=1

|φout(m,jk,k,t)〉|um〉. (6)

The part leaving the scatterer via the mth channel is given by

〈xm|φout(m,jk,k,t)〉 = (2π )−1/2
∫ ∞

0
S̃mk(pm,pk)Ain(pk,jk,k)

× exp{ipmxm − pkxin(jk,k)

− iE[t − tin(jk,k)]} dpm, (7)

where S̃mk(pm,pk) is the probability amplitude for a particle
with a momentum pk in the kth incoming channel to have a
momentum pm in the mth outgoing channel [30]. In Eq. (7)
pm and pk are related owing to conservation of energy,

E(pm) + E0
m = E(pk) + E0

k = E, (8)

where E(pk) and E(pm) are the energies of translational
motion, and the constant “rest energy” terms are the energies
of the corresponding transversal modes. For systems similar
to those shown in Fig. 1, the scattering amplitudes S̃mk can be
evaluated to a very high accuracy, e.g., by the methods reported
in Refs. [32–36]. Thus, after scattering, the wave function is
given by

|�out〉 = C−1/2
N∏

k=1

Jk∏
jk=1

N∑
m=1

a+
out(m,jk,k)|0〉, (9)

where a+
out(m,jk,k) creates, in the mth channel, a particle in

the outgoing state |φout(m,jk,k,t)〉, resulting from scattering
of the jkth incoming wave packet in channel k.

III. FULL COUNTING STATISTICS AND
THE GENERATING FUNCTION

After having been scattered, all J = ∑N
k=1 Jk identical

particles end up distributed between N available exit channels,
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in V different ways (Cn
m is a binomial coefficient):

V = CJ+N−1
N−1 = (J + N − 1)!

J !(N − 1)!
. (10)

Accordingly, we may wish to evaluate V probabilities
W (n1,n2, . . . ,nN ) to have exactly ni particles in the ith
channel. To do so we construct a generating function

G±(α) = 〈�out|�(α1, . . . ,αN )〉, (11)

where α ≡ α1, . . . ,αN , and

|�(α)〉 = C−1/2
N∏

k=1

Jk∏
jk=1

N∑
m=1

αma+
out(m,jk,k)|0〉. (12)

The function G is a polynomial of order J in each of the αm’s
and has certain useful properties. Expanding the products in
the right-hand side (rhs) of Eq. (12) yields terms where a
factor α

n1
1 α

n2
2 · · ·αnN

N multiplies the state containing exactly
ni particles in the ith channel. The states corresponding to
different sets of ni are orthogonal, but not normalized, and
their norms are precisely the probabilities W (n1,n2, . . . ,nN ).
At the same time, |�out〉 is the sum of the same states, albeit
without the factors αi . Thus, W (n1,n2, . . . ,nN ) coincide with
the factors multiplying α

n1
1 α

n2
2 · · · αnN

N if G(α) is expanded in
powers of αi ; i.e.,

W±(n1,n2, . . . ,nN ) = ∂n1
α1

∂n2
α2

· · · ∂nN
αN

G(α)|α=0

n1!n2! · · · nN !
, (13)

where ni = 0,1, . . . ,J . We note that W (n1,n2, . . . ,nN ) ≡ 0
for

∑
ni �= J is as it should be, since all the particles leave

the scatterer as t → ∞. It is readily seen that the probabilities
(13) are correctly normalized,

J∑
n1,n2,...,nN =0

W±(n1,n2, . . . ,nN ) = 〈�out|�out〉 = 1, (14)

where we have used the fact that since the evolution is unitary,
〈�out|�out〉 = 〈�in|�in〉.

We proceed with the calculation of the matrix element in
Eq. (11), following the steps in Sec. II, to obtain

G±(α) = S±[T̂ (α)]/S±[Î ], (15)

where i = (jk,k) and j = (j ′
k,k

′), respectively, and

Tij (α) =
N∑

m,m′=1

αm〈φout(m
′,j ′

k,k,t)|φout(m,jk,k,t)〉. (16)

Note that, once the scattering is completed, Tij do not depend
on the time t , because after scattering each |φout〉 undergoes a
unitary evolution, propagating along a particular outlet. Since
the states in different outgoing channels are orthogonal, we
finally have

Tij (α) =
N∑

m=1

αmQij (m), (17)

with Qij (m) being the matrix of the overlaps between all
outgoing wave packets in the mth channel. It is explicitly

given by [i = (jk,k) and j = (j ′
k,k

′)]

Qij (m) ≡ 〈φout(m,j ′
k,k

′)|φout(m,jk,k)〉

=
∫ ∞

0
S̃∗

mk′(pm,pk′)S̃mk(pm,pk)

×A∗
in(pk′ ,j ′

k,k
′)Ain(pk,jk,k)

× exp[ipk′xin(jk‘,k
′) − pkxin(jk,k)]

× exp[−iE(pm)[tin(jk′ ,k′) − tin(jk,k)]]dpm,

(18)

where pk = pk(pm) and pk′ = pk′(pm), as prescribed by
Eq. (8). This completely defines the generating function in
Eq. (11).

IV. THE DISTINGUISHABLE PARTICLES (DP) LIMIT

Consider next the case where the particles described by dif-
ferent wave packets can be distinguished, so that the outgoing
states in the same channel are automatically orthogonal, unless
k = k′, and jj = j ′

k . With the matrices in Eqs. (16) and (18)
now diagonal, Qij ,Tij ∼ δkk′δj ′

kjk
, Eq. (15) reduces to

GDP(α) =
N∏

k=1

Jk∏
jk=1

N∑
m=1

αmw(m,jk,k), (19)

where

w(m,jk,k) = 〈φout(m,jk,k)|φout(m,jk,k)〉 (20)

is the probability for a single particle prepared in the jkth
wave-packet state in the kth channel to be scattered into the
mth channel.

From Eq. (18) it is clear that G±(α) would reduce to
GDP(α) if, for example, the momentum distributions of
different wave packets in the same outgoing channel do
not overlap: A∗

in(pk′(pm),j ′
k,k

′)Ain(pk(pm),jk,k) ≡ 0. The DP
statistics will also be recovered if the wave packets are well
separated in time and space, allowing the rapid oscillations of
the exponential factors in Eq. (18) to destroy the integral. Next
we consider the types of observable effects one may encounter
whenever G±(α) �= GDP(α).

V. MEAN NUMBERS OF SCATTERED PARTICLES

We start with the mean number of particles, nm′ , scattered
into a chosen channel m′,

n±
m′ ≡

J∑
n1,...,nN =0

nm′W±(n1, . . . ,nN ) = ∂αm′ G
±(α)|α=1. (21)

A brief inspection of the matrix Tij in Eq. (17) shows that nm′

is not affected by Bose-Einstein or Fermi statistics, provided
all particles were uncorrected initially, Iij = δkk′δjkj

′
k
. Indeed,

since the evolution is unitary, we must have

Tij (α = 1) = Iij . (22)

Differentiating Eq. (15) with respect to αi at α = 1 therefore
yields

n±
m′ =

N∑
l=1

S±[Î (l)]/S±[Î ], (23)
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where I (l)
mn is the matrix obtained from Imn by replacing

the elements of the lth row, Il1, . . . ,IlN with the quantities
Ql1(m′), . . . ,QlN (m′), defined in Eq. (18). Thus, with Eq. (22),
the matrix elements of I (l)

mn are nonzero only on the diagonal,
and in the lth row. The permanent and determinant of such a
matrix are both given by the product of its diagonal elements;
hence, we obtain

n±
m′ = nDP

m′ =
N∑

k=1

Jk∑
jk=1

w(i,jk,k). (24)

The result is clearly the same for bosons, fermions, or
distinguishable particles. For initially correlated particles,
prepared in overlapping wave-packet states, Iij �= δkk′δjkj

′
k
,

measuring n±
i would give different values, which can be

obtained with the help of Eq. (23). Yet for initially uncorrelated
identical particles, the effects of particles’ indistinguishability
can only be observed in the distributions of particle numbers,
and in the correlations between the channels, as we discuss
next.

VI. SINGLE-CHANNEL STATISTICS

Provided there is more than one outgoing channel, N > 1,
one may be interested in the probabilities W (n|m′) to have nm′

particles ending up in the exit channel number m′, regardless
of how the rest of the particles are distributed. These are given
by

W±(nm′ |m′) ≡
J∑

nm=0

′W±(n1,n2, . . . ,nN )

= [nm′ !]−1∂nm′
αm′ G

±(α)|αi=1−δim′ , (25)

where the prime indicates that the sum is over all nm except
nm′ . Since a unitary evolution preserves a scalar product, we
have

N∑
m=1

Qij (m) = 〈φin(j ′
k,k

′)|φin(jk,k)〉 ≡ Iij , (26)

and after putting all αm except αm′ to unity, Eq. (17) becomes

Tij (1, . . . ,1,αm′ ,1, . . . ,1) = Iij + (αm′ − 1)Qij (m′). (27)

Inserting Eq. (27) into Eq. (15) yields

W±(nm′ |m′) =
J∑

l1<l2<···<ln
m′

S±[Î (l1,l2,...,ln
m′ )]/S±[Î ], (28)

where Î (l1,l2,...,ln) is the matrix obtained from Î − Q̂(m′) by
replacing the elements of the rows l1,l2, . . . ,ln, with the
corresponding rows of the matrix Q̂(m′). We note that in the
two-channel case, N = 2 and particles entering through the
same channel, J1 = 2, J2 = 0, Eq. (28) for the transmission
channel reduces to the result (14) of Ref. [27].

We wish to compare W±(nm′ |m′) in Eq. (28) with the same
quantity in the DP limit. We have

T DP
ij (1, . . . ,1,αm′ ,1, . . . ,1)

= diag[Tij (1, . . . ,1,αm′ ,1, . . . ,1)]

= δkk′δjkj
′
k
[1 + (αm′ − 1)w(m′,jk,k)], (29)

where diag[Â] denotes the diagonal part of a matrix Â, and
[i = (jk,k)]

WDP(nm′ |m′) = [nm′!]−1
∑
σ (J )

nm′∏
i=1

w(m′,σi)

×
J∏

i=nm′ +1

[1 − w(m′,σi)]. (30)

The rhs of Eq. (30) is what one should expect for J independent
events, in which any nm′ out of J particles end up in the
m′th channel, while the rest go elsewhere. The sum over all
permutations of the J indices numbering the incoming wave
packets, σ (J ), is present, since no distinction is made over the
types of the particles scattered into the m′th channel, as long
as their total number is nm′ .

Thus, indistinguishability can lead to observable effects
even for initially uncorrelated particles, Iij = δkk′δjkj

′
k
. In-

deed, in this case the matrix Tij is not diagonal, while
T DP

ij is, and W±(n|m′) �= W±
DP(n|m′). Moreover, the prob-

ability to scatter all J particles into the same chan-
nel is just W±(J |m′) = S±[Q̂(m′)], while for DPs we
have WDP(J |m′) = S±[Q̂DP(m′)] = ∏J

i QDP
ii , with QDP

ij ≡
δkk′δjkj

′
k
w(m′,jk,k). The matrices Qij are positive semidefinite

(PSD) (see the Appendix). Their diagonal entries coincide
with QDP

ii , and by the well-known Hadamard inequality for
determinants [37], and its analog for permanents [38], one has
S+[Q̂] � S±[Q̂DP], and S−[Q̂] � S±[Q̂DP], with the equality
reached when both matrices are diagonal. We, therefore,
have a “bunching” property: Bose-Einstein statistics can only
increase the chance for sending all initially uncorrelated
bosons into the same channel,

W+(J |m′) � WDP(J |m′)

=
K∏

k=1

Jk∏
jk=1

w(m′,jk,k) for any m′. (31)

Fermions, on the other hand, demonstrate a kind of “antibunch-
ing” behavior,

W−(J |m′) � WDP(J |m′), for any m′. (32)

By the same token (see the Appendix), similar inequalities can
also be obtained for “no-particles” probabilities W±(0|m′),

W±(0|m′)��WDP(0|m′)

=
K∏

k=1

Jk∏
jk=1

[1 − w(m′,jk,k)] for any m′. (33)

(In the two-channel case considered in Ref. [27], these
inequalities readily follow from Eqs. (31) and (32), given
that having all the particles scattered into channel 2 also
guarantees that none end up in channel 1.) We note that no
similar estimates can be obtained for the probabilities with
0 < nm′ < J , W±(nm′ |m′), since the corresponding matrices
are no longer PSD [27], and the Hadamard-like inequalities do
not apply.
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VII. INTERCHANNEL CORRELATIONS

Provided there are more than two channels, N > 2, one
may also be interested in the probability to have nm′ and
nm′′ particles scattered into the channels m′ and m′′, m′ �= m′′,
respectively:

W±(nm′ ,nm′′ |m′,m′′)

≡
J∑

nm=0

′′W±(n1,n2, . . . ,nN )

= [nm′ !nm′′!]−1∂nm′
αm′ ∂

nm′′
αm′′ G

±(α)|αm=1−δmm′ −δmm′′ , (34)

where the double prime indicates that the summation is over
all nm except nm′ and nm′′ . Following the steps of Sec. VI yields
(we omit the arguments of Tij which are put to 1)

Tij (αm′ ,αm′′ ) = Iij + (αm′ − 1)Qij (m′) + (αm′′ − 1)Qij (m′′),

(35)

which for DP reduces to

T DP
ij (αm′ ,αm′′ ) = diag[Tij (αm′ ,αm′′ )] = δkk′δjkj

′
k

× [(αm′ − 1)w(m′,jk,k)

+ (αm′′ − 1)w(m′′,jk,k)]. (36)

In the case of DP the expression for the correlation function
(34) is a direct generalization of Eq. (30) [i = (jk,k)],

WDP(nm′ ,nm′′ |m′,m′′)

=
∑
σ (J )

nm′∏
i=1

w(m′,σi)
nm′ +nm′′∏
i=nm′ +1

w(m′′,σi)

×
J∏

i=nm′ +nm′′ +1

[1 − w(m′,σi) − w(m′′,σi)]. (37)

To evaluate W±(nm′ ,nm′′ |m′,m′′) for bosons o fermions we
need to differentiate S±[T̂ ] defined in Eq.(2),

W±(nm′ ,nm′′ |m′,m′′)

= [nm′!nm′′!]−1
∑
σ (N)

(±1)p(σ (N))∂nm′
αm′ ∂

nm′′
αm′′

×
N∏

i=1

Tiσi
(αm′ ,αm′′ )/S±[Î ]. (38)

With Tij given by Eq. (35), each differentiation with respect
to αm′ (αm′′) results in replacing one of the rows of T̂ with
the same row of the matrix Q̂(m′) [Q̂(m′′)]. The end result
is the sum of the permanents or determinants of all matrices
obtained from T̂ by replacing a total of nm′ + nm′′ rows in said
manner. It can be written in a closed form similar to Eq. (28),
but is cumbersome and we leave the matter here.

In general, Bose-Einstein or Fermi statistics do af-
fect the correlation functions, and W±(nm′ ,nm′′ |m′,m′′) �=
WDP(nm′ ,nm′′ |m′,m′′). More detailed estimates can be obtained
in the simplest case nm′ = nm′′ = 0, where W±(0,0|m′,m′′)
yields the probability to have no particles scattered into the
chosen channels. From Eq. (38) we find W±(0,0|m′,m′′) =
S±[T̂ (0,0)]/S±[Î ], and WDP(0,0|m′,m′′) = S±[T̂ DP(0,0)].

Again, T̂ (0,0) is positive semidefinite (see the Appendix) and,
as in Sec. VI, we can apply the Hadamard inequalities to obtain

W+(0,0|m′,m′′) � WDP(0,0|m′,m′′)

=
K∏

k=1

Jk∏
jk=1

[1 − w(m′,jk,k)

−w(m′′,jk,k)] for any m′,m′′, (39)

while for fermions the opposite is true:

W−(0,0|m′,m′′) � WDP(0,0|m′,m′′), for any m′,m′′.

(40)

The above results are easily extended to the L-channel joint
probabilities W±(nm1 , . . . ,nmL

|m1, . . . ,mL), L � J , i.e., the
probabilities to have nm1 , . . . ,nmL

particles scattered into the
channels m1, . . . ,mL. In particular, for the no-particles proba-
bilities, W±(0, . . . ,0|m1, . . . ,mL), one always has inequalities
similar to Eqs. (39) and (40) (see the Appendix),

W+(0, . . . ,0|m1, . . . ,mL) � WDP(0, . . . ,0|m1, . . . ,mL)

(41)

and

W−(0, . . . ,0|m1, . . . ,mL) � WDP(0, . . . ,0|m1, . . . ,mL).

(42)

Since for L = J − 1 we have W±(0, . . . ,0|m1, . . . ,mJ−1) =
W±(J,N ), the last two inequalities coincide with Eqs. (31) and
(32) for the N th channel into which all particles are scattered.

VIII. A NOTE ON THE ORIGIN OF THE EFFECT

For initially uncorrelated particles, whose initial states do
not overlap, Iij = δij , indistinguishability effects may arise
owing to the fact that while the full one-particle wave functions
remain mutually orthogonal, their scattered parts which end
up in the same outgoing channel, |φout(m,jk,k,t)〉, do not need
to be. If |φout(m,jk,k,t)〉 do remain orthogonal, we may as
well consider the particles distinguishable. Whether or not
the overlaps in Eq. (2) vanish depends on the properties of the
scatterer, as well as on the manner in which the incoming wave
packets enter it. For example, if the time intervals between
the arrivals of different wave packets are large, so that each
wave packet leaves the scatterer before the next one enters,
statistical effects are absent. If the particles enter the scatterer
from different sides, and are timed to meet there, we have
a version of the famous HOM effect [2], for both fermions
and bosons. If a train of well-separated particles enters a
multichannel scatterer from the same side, and the particles
are delayed there, the pile-up effect described in Refs. [26,27]
may lead to significant changes in the way the particles are
distributed between the outgoing channels.

From the above it follows that no quantum statistical effects
may arise in free motion, where the wave packets are not
divided, and remain orthogonal at all times. For the same
reason, such effects are absent in any single-channel scattering
problem. It is easy to show, for example, that the single-particle
density of a train of identical particles reflected off a potential
wall is unaffected by quantum statistics even if the particles
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are detained in a shape resonance near the wall, and several of
them may populate it at the same time.

IX. A SIMPLE MODEL

As a simple illustration, consider, in two dimensions, a
symmetric scatterer with N = 4 identical inlets, similar to the
one shown in Fig. 1(b), and nonrelativistic incident particles
of a mass μ. With a minimal number of parameters, this
simple model is sufficient to illustrate most of the above. Thin
penetrable barriers [dashed lines in Fig. 1(b)] separates the
inlets of a width d from the interior of the square scatterer of
size L, so the scatterer supports narrow resonances with the
energies

Er (
,
′) = (
2 + 
′2)ε0, ε0 = π2

2μL2
, (43)

and the partial widths �k(
,
′), determined by the penetrability
of the barriers. In the vicinity of the 15th resonance, E ≈
Er (3,3), the scattering matrix elements are given by the Breit-
Wigner formula [39],

Smk(p,p) ≈ exp(iδ)

[
δmk − i�/N

[E − Er (3,3)] + i�/2

]
, (44)

where all partial widths are equal by symmetry, �k(
,
′) =
�/N , and δ is the elastic scattering phase, whose precise value
is of no importance for what follows.

Three particles with identical momentum distributions,
Ain(p,jk,k) = Ain(p), are introduced in channels 1 and 2, as
shown in Fig. 1(b), J1 and J2 = 2. They are emitted at the
same place in the corresponding inlet, xin(1,1) = xin(2,1) =
xin(2,2), but at different times:

tin(1,2) − tin(1,1) = τ/2, tin(2,2) − tin(1,1) = τ. (45)

With the central energy of the wave packets chosen to coincide
with Er (3,3) as shown in Fig. 2, a particle is either reflected
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FIG. 2. (a) per[Iij ] and det[Iij ], as functions of the delay τ .
(b) The mean number of particles, scattered into channel 3, n±(3),
vs the delay τ . Also shown by a dot-dashed line is the corresponding
DP limit, independent of τ . The particles may be considered initially
uncorrelated to the right of the vertical dashed line.

FIG. 3. An energy diagram for scattering in a setup shown in
Fig. 1(b), with d/L = 1/3. The energy of the particles lies between
the first, E0

1 = 9ε0 (ε0 ≡ π 2/2μL2), and the second, E0
3 = 36ε0,

thresholds (not shown). The central energy of the wave packet
coincides with that of a metastable state supported by the scatterer,
Er (3,3) ≈ 18ε0, with � = 0.05ε0. Also shown are the energies of the
two neighboring states, Er (4,1) = Er (1,4) ≈ 17ε0 and Er (4,2) =
Er (2,4) ≈ 20ε0.

back or is trapped in the resonance, from which it later escapes
through one of the four outlets. Thus, the second incoming
particle in channel 2 has a chance to catch up with the other
two, provided τ does not greatly exceed the lifetime of the
metastable state, 1/�. There are V = 20 different possible
outcomes. Assuming that detectors are placed in channels 3
and 4, we wish to see how indistinguishability of the particles
affects the scattering statistics.

The results are shown in Figs. 3 and 4. Figure 3(a) shows
the determinant and the permanent of the matrix Î , so that to
the right of the dashed vertical line the two incident particles
in the second channel may be considered uncorrelated. The
probabilities W±(3|3) = W±(3|4) to have all three particles
exit via outlet 3, shown in Fig. 3(b), exceeds that for DP, in the

0
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FIG. 4. (a) The “all-particles” probabilities W±(3|3) for channel
3 vs the delay τ . (b) The “no-particles” probabilities W±(3|0) for
channel 3 vs τ . Also shown by a dot-dashed line is the corresponding
DP limit, independent of τ . The particles may be considered initially
uncorrelated to the right of the vertical dashed line.
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case of initially uncorrelated bosons, while for uncorrelated
fermions the opposite is true [cf. Eqs. (31) and (32)]. As
τ increases, the particles no longer meet in the scatterer,
and W±(3,3) tend to WDP(3|3). The no-particles probabilities
W±(0|3) = W±(0|4) to have no particles in channels 3 or 4
also show the (anti)bunching properties predicted by Eq. (33)
for initially uncorrelated particles. The trend does, however,
change if the particles in inlet 2 are prepared in a correlated
state, Iij �= δij . The probabilities W±(0,0|3,4) to have no
particles scattered into outlets 3 and 4, shown in Fig. 4(a)
also exhibit bunching and antibunching behavior, prescribed
by Eqs. (41) and (42) for uncorrelated bosons and fermions.
The probabilities to have just one particle in channel 3,
W±(1|3) = W±(1|4), are shown in Fig. 4(b). To evaluate
them we need to sum three permanent (determinants) of
non-Hermitian matrices in Eq. (28), and there is no simple
way to predict their relation to the WDP(1|3).

To conclude, we note that making more than one resonance
accessible to the particles is likely to produce oscillations in
the probabilities shown in Figs. 3 and 4, as happens in the
two-channel case studied in Ref. [27]. An analysis of such an
effect is, however, beyond the scope of the present paper.

X. SUMMARY AND DISCUSSION

In summary, we have considered a situation in which several
identical particles, fermions, bosons, or fermionized bosons
[15], are injected in different wave-packet states into the
incoming channels of a multichannel scatterer. Our purpose
was to quantify the effect of Bose-Einstein or Fermi statistics
on the distribution of particles between the outgoing channels,
should the particles “meet” at the time each incident wave
packet is being divided between the outgoing channels. We
demonstrated that, for any number of channels available, N ,
the statistics can alter the scattering probabilities, in particular,
those for detecting a given number of particles, nm, scattered
into the chosen (mth) channel, or the joint probabilities
to have numbers nm1 , . . . ,nmL

of outgoing particles in the
channels m1, . . . ,nmL

. Determination of these probabilities
reduces to evaluation of the determinants, or permanents,
of matrices constructed from the initial and final overlaps
between different wave-packet states. The precise nature of the
changes observed depends on the initial state of the particles.

The particles may be prepared in an uncorrelated state,
so that the wave packets in the same entrance channel are
mutually orthogonal (e.g., are well separated in the coordinates
of the momentum space). If so, indistinguishability cannot
alter the mean number of particles scattered into each channel,
averaged over many realizations of the experiment (see Fig. 2),
but may affect distributions of the particles’ numbers. One
instinctively expects the bosons (fermions) to be more (less)
inclined to behave in the same way. For initially uncorrelated
(IU) particles, such a bunching (antibunching) behavior can be
observed in the extreme-case probabilities, e.g., the probability
to have all particles end up in the same channel, or to
have none of the particles scattered into a selected channel
or channels. For IU bosons (fermions), the corresponding
probabilities are found to be always larger (smaller) than
those for distinguishable particles, prepared in the same states,
as is illustrated in Figs. 3 and 4(a). The same cannot be

said about the remaining probabilities, whose values are
not restricted by the Hadamard inequalities [see Fig. 4(b)].
Identical particles, prepared in an initially correlated (IC) state
already affected by quantum statistics, also scatter differently
from their distinguishable counterparts. Initial correlations
may now affect the mean number of particles ending up in
a chosen channel, as shown in Fig. 2(b). At the same time, the
presence of a nontrivial overlap matrix Î in the denominator
of Eq. (15) prevents one from making predictions even about
the values of “all-particles” and “no-particles” probabilities,
similar to those obtained for IU particles, as is illustrated in
Figs. 3 and 4(a).

In order to observe the effects of indistinguishability in
setups similar to those shown in Fig. 1, one requires several
particles be present in the scatter simultaneously. (If not, each
wave packet is scattered individually, and the result is the
same as if the particles were distinguishable.) For particles in
different entrance channels, this can be achieved by correlating
the times of their emissions. If the wave packets enter via the
same channel, especially in the IU case, it is helpful to have
a scatterer which detains the particles before releasing them
again. If so, the pile-up effect ensures that the particles meet
in the scatterer, and leave it in correlated states via different
outgoing channels. One practical way to increase the duration
of the scattering process is to make one of the metastable
states of the scatterer accessible to the incoming particles,
as shown in Fig. 3. With this the scattering probabilities in
Figs. 4 and 5 are affected by correlations between all of the
three particles entering via channels 1 and 2 in Fig. 1. The
presence of more than one metastable state is likely to produce
additional interference patterns in the curves in Figs. 4 and
5, as happens in the two-channel case studied in Ref. [27].
Increasing the number of resonances further, e.g., by making
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FIG. 5. (a) The probabilities W±(0,0|3,4) to have no particles in
either channel 3 or channel 4 vs τ . (b) The probabilities W±(1|3) to
have one particle in channel 3 vs τ . The particles may be considered
uncorrelated for τ ’s lying to the right of the vertical dashed line.
Also shown by a dot-dashed line are the corresponding DP limits,
independent of τ .
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a cavity larger, would allow the wave packets to move freely
inside it, possible in a chaotic manner [20]. Such an analysis
is, however, beyond the scope of the present paper.

To conclude, we note that we are dealing with a basic
interference effect. Like Young’s two-slit experiment, it is
unlikely to be explained in simpler terms. Even though the
simultaneous presence of particles in the scatterer is required in
the setups in Fig. 1, it cannot serve as a physical reason for the
observed changes in statistics caused by indistinguishability of
the particles. For example, the authors of Ref. [4] demonstrated
that, even if two photons in an HOM setup reach the
beam splitter at different times, statistical correlations can be
reinstated by compensating the delay at a later time in one of
the outgoing channels.
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APPENDIX: POSITIVE-SEMIDEFINITE MATRICES

To compare the results obtained for identical and distin-
guishable particles, we may need to check whether a Hermitian
J × J matrix Â is PSD. One way to demonstrate it is to show
that for any complex vector z = (z1,z2, . . . ,zJ ) a quadratic
form z∗Âz ≡ ∑J

i,j=1 z∗
i Aij zj remains non-negative, z∗Âz �

0. To show that a matrix Q̂(m) in Eq. (18) is PSD, consider a
single-particle “cat wave packet state” [28] given by a linear
combination of all incoming wave packets [i = (jk,,k)],

|ψin(z)〉 =
J∑

i=1

zi |φin(i)〉. (A1)

(Such a state may be difficult to realize in practice, but it
is allowed by the general rules of quantum mechanics.) By

linearity, the part of |ψin(z)〉 scattered into the mth channel is

|ψout(z,m)〉 =
J∑

i=1

zi |φout(m,i)〉. (A2)

For the norm of |ψout(z,m)〉 we, therefore, have

〈ψout(z,m)|ψout(z,m)〉 = z∗Q̂(m)z � 0, (A3)

with equality reached in the case nothing is scattered into the
mth channel.

In the same way we can prove the PSD property of a matrix,

R̂(m1,m2, . . . ,mL) ≡ Î −
∑
i=1,L

Q̂(mi), L � J − 1. (A4)

For L = J − 1 the proof is trivial, since in this case R̂ =
Q̂(mJ ), and it is PSD by Eq. (A3). For L < J − 1 we write

〈ψin(z)|ψin(z)〉 −
∑
i=1,L

〈ψout(z,mi)|ψout(z,mi)〉

= z∗R̂(m1,m2, . . . ,mL)z. (A5)

After dividing by 〈ψin(z)|ψin(z)〉, the left-hand side of
Eq. (A5) becomes the probability for the particle to be
scattered into the channels mL+1, . . . ,mN . Thus, we have
z∗R̂(m1,m2, . . . ,mL)z � 0, with equality achieved in the
case nothing is scattered into the remaining channels
mL+1, . . . ,mN .

To evaluate the probability W−(0, . . . ,0|m1, . . . ,mL), for
no particles to be scattered into the channels m1,m2, . . . ,mL,
we require a matrix Tij (αm1 , . . . ,αmL

) = Iij + ∑L
i=1(αmi

−
1)Qij (mi) (cf. Sec. VII), with αmi

= 0, for i = 1,2, . . . ,L.
This matrix is just the R̂ in Eq. (A4) and is, therefore, PSD.
Application of the Hadamard-like inequalities leads then to
Eqs. (41) and (42).
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