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Semiclassical spectral function and density of states in speckle potentials
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We present an analytical method for calculating the spectral function and the density of states in speckle
potentials, valid in the semiclassical regime. Our approach relies on stationary phase approximations, allowing
us to describe the singular quantum corrections at low energies. We apply it to the calculation of the spectral
function and the density of states in one- and two-dimensional speckle potentials. By connecting our results with
those of previous work valid in the high-energy sector, we end up with a consistent description of the whole
energy spectrum, in good agreement with numerical simulations.

DOI: 10.1103/PhysRevA.94.022114

I. INTRODUCTION

Anderson localization, the absence of wave diffusion due
to destructive interference between partial waves multiply
scattered by a disordered potential [1], has been observed
in a number of experiments involving atomic matter waves
quasiperiodically kicked by laser pulses [2,3] or subjected to
one-dimensional (1D) [4] and three-dimensional (3D) [5,6]
quenched speckle potentials, as well as ultrasound waves in
3D disordered dielectric media [7]. In cold-atom setups, the
control of atom-atom interactions (through, e.g., Feshbach
resonances) together with a weak coupling to the environment
constitute precious assets for the observation of interference
effects in disorder. Furthermore, atom-optics experiments offer
the possibility to directly probe localization phenomena inside
the atomic system, as well as to follow their evolution in the
course of time [8,9].

If atoms are injected into a disordered potential with an
initial momentum k, they no longer have a well defined
energy ε but rather an energy distribution called the spectral
function, denoted by Ak(ε). The spectral function thus defines
a quasiparticle, and generally speaking can provide important
physical insights to the complex problem of disorder scattering
even without the knowledge of the system’s eigenstates [10].
Even more, it turns out that to achieve a quantitative under-
standing of cold-atom experiments in speckle potentials and
in particular to properly characterize Anderson localization,
a good knowledge of the spectral function is crucial. Indeed,
when disorder is strong enough the spectral function is broad,
which can have important consequences for the global motion
of an atomic cloud. For instance, a cloud of atoms that
are individually diffusive may exhibit a global subdiffusive
behavior as a result of the superposition of the various energy-
dependent atomic diffusion coefficients, thus mimicking the
onset of localization [11,12]. Furthermore, even if the cloud
contains localized atoms, usually a finite part of it remains
diffusive and a precise characterization of the spectral function
is then required in order to pinpoint the location of the mobility
edge [6,13]. Related to the spectral function, the density
of states (DOS) in strong speckle potentials is also poorly
understood. This question is however essential as the DOS
plays a central role in atomic physics, in particular in the
discussion of phases of interacting bosons [14–16].

Despite its importance, the calculation of the spectral
function of speckle potentials in the strong disorder regime

has been little addressed, the main difficulty stemming from
the inapplicability of weak-disorder approximations in this
regime. Recently however, a systematic semiclassical expan-
sion of the spectral function around the classical solution has
been proposed [17]. Although successful in the large-energy
sector, the approach of [17] fails at capturing the singular
quantum corrections at low energies. As far as the DOS is
concerned, important progress has been recently accomplished
by Falco et al. [18], who used a classical approximation for
describing high energies in speckle potentials. Again however,
this approach remains inaccurate to capture the low-energy
sector. As a matter of fact, the difficulty of treating low energies
in speckle potentials lies in the singular nature of quantum
corrections in this region of the spectrum. Such singular
corrections are absent for Gaussian random potentials [17]
frequently used in condensed-matter physics [19]. To our
knowledge, they have not been described yet.

In this paper, we calculate the spectral function and the
density of states in one- (1D) and two-dimensional (2D)
speckle potentials, making use of a semiclassical approach
based on stationary phase approximations, thereby allowing
for a nonanalytic perturbation expansion in �. Our theoretical
predictions are in good agreement with exact numerical sim-
ulations in the low-energy sector where quantum corrections
are singular. By connecting our results with those of [17],
we eventually end up with a consistent description of the
whole energy spectrum. Section II is devoted to the definition
of the relevant quantities and to a discussion of the results
previously obtained in [17]. Our semiclassical approach is
also introduced and discussed. In Sec. III, we derive important
statistical properties of 1D speckles needed to implement our
semiclassical theory. Results for the 1D spectral function and
DOS are presented in Sec. IV. The approach is then extended
to the 2D case in Secs. V and VI. In Sec. VII, we finally
summarize our findings and discuss some open questions.

II. DEFINITIONS AND METHODS

A. Framework

We consider a cloud of noninteracting atoms of mass m,
subjected to a random potential V (r). Its dynamics is governed
by the Hamiltonian

H = p2

2m
+ V (r), (1)
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where p = −i�∇. The coordinate vector r ∈ [0,L]d lies
in a d-dimensional cubic volume of linear size L that
we will eventually make tend to infinity. In the following,
averaging over the random potential will be indicated by an
overline: (. . . ). In practice, speckle potentials are obtained by
transmission or reflection of a laser through a rough plate. The
resulting potential V (r) felt by atoms subjected to this light is
proportional to the square of a complex Gaussian field [20],
with a sign that depends on the laser detuning with respect
to the considered two-level transition. This potential has the
following on-site distribution:

P [V (r)] = 1

V0
θ [±V (r)]exp

[
∓V (r)

V0

]
, (2)

where θ (. . . ) is the Heaviside θ function. The disorder strength
V0 > 0 enters both the average V (r) = ±V0 and the variance

V (r)2 − V (r)
2 = V 2

0 . In Eq. (2), the upper sign refers to a
blue-detuned speckle potential, bounded by zero from below,
and the lower sign to a red-detuned speckle potential, bounded
by zero from above. Another quantity that we will frequently
encounter in the following is the two-point correlation function

V (r)V (r ′) − V (r)
2
. For the isotropic speckles considered in

this paper, the two-point correlation function depends only on
|r − r ′|. It decays over a typical distance σ , referred to as the
correlation length [20]. σ defines an important characteristic
energy scale, the so-called correlation energy [21]:

Eσ = �
2

mσ 2
. (3)

The two-point correlation function can take various forms
depending on the experimental setup [20]. The approach
developed in this paper in principle applies to any shape of the
correlation function, but the results for the spectral function
and the DOS turn out to very weakly depend on it, provided
the proper value of σ is chosen. Consequently, for definiteness
we will only consider the Gaussian case in the following:

V (r)V (r ′) − V (r)
2 = V 2

0 exp

(
−|r − r ′|2

2σ 2

)
. (4)

As an example, we show in Fig. 1 a numerical disorder
realization of both a blue and a red-detuned 1D speckle
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FIG. 1. Numerical realizations of a red- (left) and a blue-detuned
(right) 1D speckle potential. The on-site distribution is given by
Eq. (2) and the two-point correlation function by Eq. (4). The
procedure used to numerically generate the speckle is explained in
the main text.

potential. To generate these realizations, we use a numerical
procedure that precisely describes the experimental scenario:
we first generate a spatially uncorrelated complex random
Gaussian field in Fourier space, simulating the transmission
through the rough plate. This field is then multiplied by a
proper cutoff function—that physically describes the shape
of the plate—which we take Gaussian to reproduce the
two-point correlation function (4). Finally, (the opposite of)
the modulus square of the field in coordinate space gives the
blue-(red-)detuned speckle potential visible in the observation
plane [20].

B. Definitions, semiclassical regime

The figure of merit of this paper is the spectral function,
defined as

Ak(ε) = 〈k| δ(ε − H ) |k〉. (5)

Physically, the spectral function is the probability density for
a plane wave |k〉 to have energy ε in the potential V (r). At
vanishing disorder, the spectral function is a Dirac δ function
centered at energy �

2k2/2m. Upon increasing the disorder,
this peak acquires a finite width and, at strong disorder,
starts to develop intriguing structures that we wish to explore.
Introducing the Fourier representation of the Dirac δ function
in Eq. (5), it follows that

Ak(ε) =
∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iH t/� |k〉, (6)

which establishes the connection with the evolution operator
e−iH t/�. The spectral function is related to the DOS per unit
volume ν(ε) through the relation

ν(ε) = 1

Ld
Tr δ(ε − H ) =

∫
dd k

(2π )d
Ak(ε). (7)

There are several energy scales in the problem: E, Eσ , V0,
and only their ratio matter. Of special importance is the
parameter

η = V0

Eσ

= mσ 2V0

�2
. (8)

In this paper, we focus on the so-called semiclassical regime
characterized by the condition [17,18]

η � 1. (9)

This inequality has a simple interpretation:
√

η is the ratio of
the disorder correlation length σ to the de Broglie wavelength
of a particle with energy V0, so that, in the semiclassical
regime, the quantum particle can resolve all the potential
fluctuations. Alternatively, a quantum particle with energy V0

encountering a potential barrier of height V0 and thickness σ

will have a vanishingly small probability exp(−√
η) to tunnel

through it, making the dynamics almost classical.
In the deep semiclassical limit η → ∞, the noncommuta-

tion between position and momentum can be neglected, so that
〈k| e−iH t/� |k〉 ≈ e−i�k2t/2m e−iV (r)t/� and Eq. (6) yields

Acl
k (ε) =

∫ ∞

−∞

dt

2π�

ei(ε−εk)t/�

1 ± itV0/�
= P (ε − εk), (10)
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where εk = �
2k2/(2m) and P (ε) is the on-site potential

distribution [Eq. (2)]. In the classical limit, the spectral
function thus mimics the on-site distribution (2) [17]. With this
result in hand, the classical DOS then follows from Eq. (7):

νcl(ε) =
∫ ∞

0
dεkν0(εk)P (ε − εk), (11)

where ν0 is the free-space DOS [17,18].

C. Smooth quantum corrections

For both the spectral function and the density of states,
it is possible to calculate the smooth quantum corrections to
the classical limits (10) and (11) from an analytic expansion
in �. The calculation of the first quantum correction has been
recently carried out in [17] in the energy domain from Wigner-
Weyl formalism [22]. The calculation is also possible in the
time domain from an expansion of the evolution operator, as
we show in Appendix A. In any dimension d, either of the two
approaches leads to

Ak(ε) =
∫ ∞

−∞

dt

2π�

ei(ε−εk )t/�

1 ± itV0/�

×
[

1 + dit3V 2
0 Eσ/�

3

12(1 ± itV0/�)
+ t4V 2

0 Eσ/�
4

12(1 ± itV0/�)
εk

]
,

(12)

with again the + (−) sign for the blue-(red-)detuned speckle.
As was noticed in [17], Eq. (12) is correct only at large
energies. For k = 0, this can be readily seen from the
observation that the first quantum correction term should
remain small for the perturbation theory to be valid. This term
is of the order of t2V0Eσ/�

2 ∼ (t/�)2V 2
0 /η. It is useful to

define the natural frequency unit in this context:

ω0 =
√

V0

mσ 2
= V0

�
√

η
, (13)

which is the typical oscillation frequency in a potential well
of height V0 and size σ. The condition of validity of Eq. (12)
simply reads ω0t  1. The Fourier integral over time is then
well approximated if

ε � �ω0 = V0√
η
. (14)

If one performs the Fourier integral in Eq. (12) at energies
smaller than V0/

√
η, the failure of the perturbation expansion

manifests itself as unphysical singularities (δ functions and
derivatives). One should then resort to another approach, which
is the object of the next section. In fact, as noted in [17], for
speckle potentials the low-energy region is nontrivial. While
the classical spectral function, Eq. (10), has a discontinuity at
ε − εk, the exact spectral function is widely different: for a
blue-detuned speckle, it rigorously vanishes below ε = 0 and,
for k = 0, it rapidly increases between ε = 0 and ε ∼ V0/

√
η.

These difficulties are absent for Gaussian potentials [17].

D. Treatment of low energies

1. Harmonic-oscillator approximation

We now would like to describe the quantum corrections
to the classical limit in the low-energy region ε ∼ V0/

√
η for

speckle potentials. For this purpose, we propose an approach
inspired of Gutwiller theory [23], for which we here sketch the
essential ideas. The starting point is the Van Vleck form of the
propagator, valid in the semiclassical regime [24,25]:

〈r| e−iH t/� |r ′〉 �
∑

α

(. . . )eiSα (r,r ′,t)/�, (15)

where the sum runs over classical trajectories leading from r ′
to r during the time span t . Sα(r,r ′,t) is the classical action
associated with the classical trajectory α. We do not give the
expression of the prefactors here. Their exact value is not
important for the present preliminary discussion, where we
remain at a qualitative level and want only to discuss which
classical trajectories give the most important contributions.
The sum over all classical trajectories is a very complicated
one, obviously different for each disorder realization, making
the averaging a priori rather complex. One can nevertheless
envision that the statistical properties of the potential may
have a strong influence. For a blue-detuned speckle at low
energy, there will be essentially short trajectories trapped in
the potential wells, so that it is easy to understand that the
peculiar distribution of energy minima will play a crucial role.

The spectral function is related to the propagator (15)
through the relation

Ak(ε) =
∫

dt

2π�

∫
dd�r
Ld

eiεt/�−ik·�r〈r| e−iH t/� |r ′〉, (16)

where �r = r − r ′. The integral over time can be performed
by a stationary phase approximation, which restricts the
contributing classical trajectories to those with energy ε [25].
At the low energies ε < �ω0 we are targeting, such classi-
cal trajectories lie in potential wells (respectively inverted
potential wells) for blue-detuned (respectively red-detuned)
speckles. We propose to approximate these wells by inde-
pendent harmonic oscillators [26]. Under this approximation,
the stationary phase approximation becomes exact so one can
simply replace the propagator (15) by the known propagator
of a harmonic oscillator (respectively inverted harmonic
oscillator) [29].

2. Blue-detuned speckle

Within the harmonic oscillator approximation described
above, Eq. (16) simply reduces to a sum of spectral functions of
infinitely many random harmonic oscillators i whose minima
Vi are centered at r i . For the case of a 1D, blue-detuned speckle
potential, this reads

Ak(ε) � 1

L

∑
xi

∞∑
n=0

∣∣ψi
n(k)

∣∣2δ(ε − εi
n

)
, (17)
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where ψi
n(k) is the eigenfunction of the 1D ith oscillator in k

space:

ψi
n(k) = (2π )1/2

√
2nn!

(
�

πmωi

)1/4

e−�k2/2mωi+ikxi Hn

⎛
⎝
√

�k2

mωi

⎞
⎠,

normalized according to
∫

dk/(2π )|ψi
n(k)|2 = 1 and with

associated eigenenergy εi
n = Vi + �ωi(n + 1/2).

We now make use of the assumption that the harmonic wells
are statistically independent, which allows us to take the sum
over xi out of the disorder average. The latter is then over the
random frequency ωi and the potential minimum Vi of a single
oscillator only. By introducing the joint distribution P (Vi,ωi)
of these two random variables, we rewrite Eq. (17) as

Ak(ε) = ρ

∞∑
n=0

∫
dVidωiP (Vi,ωi)

∣∣ψi
n(k)

∣∣2δ(ε − εi
n

)
, (18)

where ρ is the average density of potential minima. Calculation
of the distribution P (Vi,ωi) will be the object of Sec. III.
Note that Eq. (18) is only justified if a typical harmonic well
accommodates many states. In the semiclassical regime (9),
this is indeed the case: as the typical frequency of the oscillator
will be ω0 and the typical depth of a potential well V0,

the number of states contained in the well is ∼ V0/�ω0 =√
η � 1.

3. Red-detuned speckle

For the red-detuned speckle potential, we proceed similarly.
The potential wells which can accommodate a harmonic series
of bound states have energy minima typically of the order of
−V0, that is in a range where the classical approximation works
well (see below). In contrast, we are interested in the energy
range around E = 0, near the maximum allowed potential, and
it is the potential maxima which are relevant. We thus make
use of an inverted harmonic-oscillator approximation. In this
case however, the representation (17) of the spectral function
is not convenient due to the continuous nature of the spectrum
of the inverted harmonic oscillator [30]. We therefore prefer to
work in the time domain, using formulation (6) for the spectral
function (written for a 1D speckle):

Ak(ε) � ρ

∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iHIHOt/� |k〉, (19)

where HIHO = p2/(2m) − Vi − mω2
i (x − xi)2/2. The 1D in-

verted harmonic-oscillator propagator in k space is given
by [29]

〈k|e−iHIHOt/� |k〉

= 2πeiVi t/�

√
i�

2πmωish(ωit)

× exp

{
− i�k2

mωi

[
coth(ωit) − 1

sh(ωit)

]}
. (20)

The disorder average is then carried out as in Eq. (18), by
averaging over Vi and ωi with the help of the joint distribution
P (Vi,ωi). By “returning” the potential V (x) → −V (x), we
are back to the blue-detuned potential so the joint distribution

of the maxima Pred(Vi,ωi) is nothing but the joint distribution
Pblue(Vi,ωi) for the minima of a blue-detuned speckle. This
symmetry also implies that the density of maxima for a red-
detuned speckle is equal to the density of minima ρ for a
blue-detuned speckle.

Note that, in principle, one could use the propagator of
the harmonic oscillator in the time domain for calculating the
spectral function of the blue-detuned speckle potential as well.
This approach turns however inadequate due to the presence
of an infinite number of singularities—when ωit is an integer
multiple of π—arising in the time integral over the propagator.

III. STATISTICS OF 1D SPECKLE POTENTIALS

A. Joint distribution P(Vi ,ωi )

In this section, we calculate the joint probability distribution
P (Vi,ωi) discussed above. From here on we drop the subscript
i and merely write P (V,ω) to lighten the notations. We derive it
for the blue-detuned speckle potential, for which it corresponds
to the joint probability of minima and potential curvature
around minima.

The distribution P (V,ω) is closely related to the joint,
conditional probability distribution P (V (x), V ′′(x)|V ′(x) =
0, V ′′(x) > 0) of V (x) and its second derivative V ′′(x) given
that V ′(x) = 0 and V ′′(x) > 0, that we propose to calculate
first. From here on we use the following abbreviated notation
for the potential and its derivatives at point x:

V ≡ V (x), Vx ≡ V ′(x), Vxx ≡ V ′′(x). (21)

The above distribution follows from

P (V,Vxx |Vx = 0,Vxx > 0) = N × lim
Vx→0

P (V,Vx,Vxx)

P (Vx)
.

(22)

The numerical constant N that appears in Eq. (22) stems
from the fact that only positive curvatures are selected on
the left-hand side, whereas on the right-hand side all possible
values are understood. It will be later determined from
the normalization condition. In order to compute the joint
distribution P (V,Vx,Vxx), we follow Goodman [20] and write
the potential as

V = Re(x)2 + Im(x)2. (23)

Up to a constant multiplicative factor, Re(x) and Im(x)
respectively describe the real and imaginary parts of the laser
electric field at point x, from which the speckle potential
V is built. As for the potential, we introduce the following
short-hand notations:

� ≡ Re(x), �x ≡ d

dx
Re(x), �xx ≡ d2

dx2
Re(x)

(24)

� ≡ Im(x), �x ≡ d

dx
Im(x), �xx ≡ d2

dx2
Im(x).

The motivation for introducing the fields � and � is that
they are independent Gaussian variables with zero mean and
equal variance [20]. Their derivatives are likewise Gaussian,
since any linear transformation of a Gaussian retains Gaussian
statistics. They also have a zero mean. As a consequence, the
six random variables of interest obey the multidimensional
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Gaussian distribution

P (�,�,�x,�x,�xx,�xx) = e−ut C−1u/2

8π3
√

det(C)
, (25)

where ut is a row vector with entries (�,�,�x,�x,�xx,�xx),
and C is the covariance matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�� �� ��x ��x ��xx ��xx

�� �� ��x ��x ��xx ��xx

�x� �x� �x�x �x�x �x�xx �x�xx

�x� �x� �x�x �x�x �x�xx �x�xx

�xx� �xx� �xx�x �xx�x �xx�xx �xx�xx

�xx� �xx� �xx�x �xx�x �xx�xx �xx�xx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The entries of this matrix can be explicitly calculated for a
blue-detuned speckle potential. This yields

C =

⎛
⎜⎜⎜⎜⎜⎝

F (0) 0 0 0 F ′′(0) 0
0 F (0) 0 0 0 F ′′(0)
0 0 −F ′′(0) 0 0 0
0 0 0 −F ′′(0) 0 0

F ′′(0) 0 0 0 F (4)(0) 0
0 F ′′(0) 0 0 0 F (4)(0)

⎞
⎟⎟⎟⎟⎟⎠,

where F (x) is related to the two-point correlation function of
the potential V through

F (x − x ′) = 1
2

√
V (x)V (x ′) − V (x)

2
. (26)

We then introduce in Eq. (25) the change of variables

� =
√

V cos θ, � =
√

V sin θ, (27)

from which we calculate the distribution P (V,θ,Vx,θx,

Vxx,θxx), with a corresponding Jacobian equal to 1/8. By ex-
plicitly evaluating the entries of the C matrix for the Gaussian
correlation function (4) and calculating the remaining integrals
over θ , θx , and θxx with Mathematica [31], we find

P (V,Vx,Vxx)

= σ 4

4
√

2πV 3
0 V

e−[24V +16Vxxσ
2+(V 2

x −2V Vxx )2σ 4/V 3]/16V0

×
{

I−1/4

[(
V 2

x − 2V Vxx

)2
σ 4

16V 3V0

]

+ I1/4

[(
V 2

x − 2V Vxx

)2
σ 4

16V 3V0

]}√( − V 2
x + 2V Vxx

)
V0

V
,

(28)

where I1/4 and I−1/4 are the modified Bessel functions of the
first kind. Note that this expression is valid only when V 2

x −
2V Vxx < 0, a condition fulfilled since only minima of the
potential are considered [32]. The distribution P (V,Vx,Vxx)
is regular with respect to the limit Vx → 0. In Eq. (22),
we can thus take this limit separately in the numerator and
denominator, reducing the latter to a numerical constant which
can be absorbed in the normalization prefactor N .

From the joint distribution (28), we are now in position
to access the probability P (V,Vxx |Vx = 0,Vxx > 0) using
Eq. (22). The result is

P (V,Vxx |Vx = 0,Vxx > 0)

= N
√

Vxx

V
e−(6V 2+4V Vxxσ

2+V 2
xxσ

4)/4V0V

×
[
I−1/4

(
V 2

xxσ
4

4V V0

)
+ I1/4

(
V 2

xxσ
4

4V V0

)]
. (29)

By imposing that the distribution is normalized, we find
N = σ 5/(2cV

5/2
0 ), where c = [

√
3�(1/4)�(5/4) − �(−1/4)

�(7/4)]/(33/4
√

2π ) � 1.006 85, which will be replaced by 1
in the following.

The last stage of the calculation consists of connect-
ing P (V,Vxx |Vx = 0,Vxx > 0) to the sought for distribution
P (V,ω). This amounts to changing the variables from Vx = 0
to x such that Vx(x) = 0, and from Vxx to ω such that mω2 =
Vxx . The associated Jacobian is |dVx/dx × dVxx/dω| =
2m5/2ω3. We finally infer

P (V,ω) = 1

V ω0

(
ω

ω0

)4

e−3/2(V/V0)2−(ω/ω0)2−V0/4V (ω/ω0)4

×
{

I−1/4

[
V0

4V

(
ω

ω0

)4
]

+ I1/4

[
V0

4V

(
ω

ω0

)4
]}

.

(30)

The joint distribution is shown in Fig. 2. At a given potential
minimum V , we observe that it is maximum for ω ∼ ω0. At
smaller ω, the distribution rapidly falls to zero, which supports
our description of the speckle potential landscape in terms of
purely harmonic wells at low energies.

As we are primarily interested in low-energy minima V 
V0, it is instructive to express the distribution P (V,ω) in the

FIG. 2. Joint distribution P (V,ω) of minima and potential curva-
ture around minima, for a 1D, blue-detuned speckle potential with
Gaussian correlation function [Eq. (30)].
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classical limit

blue-detuned

numerics
harmonic oscillator

FIG. 3. Spectral function Ak=0(ε) as a function of energy in a 1D,
blue-detuned speckle potential with Gaussian correlation function, for
η = 128. The harmonic-oscillator approximation, Eq. (36), is shown
as a solid red curve, and the classical limit, Eq. (10), as a solid green
curve. Blue dots are the result of exact numerical simulations.

limit V → 0 [33]:

P (V,ω)V0ω0 ∼
V →0

√
2

π

√
V0

V

(
ω

ω0

)2

e−(ω/ω0)2
. (31)

This asymptotic expression shows that most minima lie at
very low V  V0. This phenomenon is ultimately responsible
for the sharp behavior of the spectral function at low energy.
A broader distribution of energy minima would smooth out
all peaks and oscillations in the spectral function and DOS, as
visible in Figs. 3 and 4.

numerics
harmonic oscillator

classical limit

blue-detuned

FIG. 4. Density of states ν(ε) as a function of energy in a 1D,
blue-detuned speckle potential with Gaussian correlation function.
The harmonic oscillator-approximation, Eq. (37), is shown as a solid
red curve, and the classical limit, Eq. (11), as a solid green curve.
Blue dots are the result of exact numerical simulations.

B. Density of minima

The last unknown quantity is the density of minima ρ. To
evaluate it, we follow [34,35] and consider the general identity∫

dxδ[V ′(x)]f (x) =
∑

n

1

|V ′′(xn)|f (xn), (32)

valid for any function f . The sum is over all points xn where
V ′(x) ≡ Vx vanishes. If we choose f (x) to be |V ′′(x)| ≡ |Vxx |,
then the integral is equal to the number of points at which Vx

vanishes. This defines the density of extrema per unit length
as

δ(Vx)|Vxx |. (33)

The corresponding density restricted to minima of the potential
is

δ(Vx)Vxxθ (Vxx), (34)

with θ the Heaviside function. The disorder-averaged density
of minima then reads

ρ =
∫

dVxdVxxP (Vx,Vxx)δ(Vx)Vxxθ (Vxx). (35)

Using Eq. (28), we obtain ρ = c′/σ , where c′ � 0.284 026.

IV. 1D SPECTRAL FUNCTION AND DOS: RESULTS

A. Spectral function for 1D blue-detuned speckles

We now evaluate the theoretical prediction (18) of the
spectral function for 1D, blue-detuned speckle potentials,
using Eq. (30) for the joint distribution of minima and curvature
around minima. By carrying out the integral over ωi that ranges
from 0 to ∞, we find

Ak(ε) = c′

σ

∑
n

∫ ε

0
dV

|ψn(k)|2
�(n + 1/2)

P

(
V,

ε − V

�(n + 1/2)

)
θ (ε).

(36)
This prediction is shown in Fig. 3 as a function of energy,

for k = 0 and η = 128 (solid red curve). As discussed in
Sec. II D 1, we expect it to describe low energies. At
large energies, the classical limit (10) (solid green curve in
Fig. 3)—and its smooth quantum corrections (12)—is on the
other hand a very good approximation. In order to assess the
accuracy of these two limits, we have performed numerical
simulations of the spectral function. For these simulations
we use a discrete grid of size L = 200σ with 4000 grid
points and periodic boundary conditions, and compute the
spectral function from definition (6), using the same approach
as described in [17] to carry out the time evolution. The results
are averaged over 50 000 disorder realizations, and are shown
in Fig. 3 as blue dots. We see that the harmonic-oscillator
prediction is in excellent agreement with the numerics at
low energies. In particular, the high and narrow peak near
ε/V0 ∼ 0.05 and the secondary “bump” near ε/V0 ∼ 0.25 are
very well described. The peak originates from the ground state
of the harmonic oscillator [term n = 0 in the sum (36)]; its
relatively narrow character originates from the ω distribution
in Eq. (30) rather well peaked around ω = ω0. The bump
comes from the excited states.
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B. Density of states for 1D blue-detuned speckles

From definition (7) and Eq. (36), we can compute the DOS
for 1D blue-detuned speckles. Carrying out the integral over
k, we find

ν(ε) = c′

σ

∑
n

∫ ε

0
dV

1

�(n + 1/2)
P

(
V,

ε − V

�(n + 1/2)

)
θ (ε).

(37)
This prediction is shown in Fig. 4 as a function of energy,

for η = 128 (solid red curve), together with the classical
limit, Eq. (11) (solid green curve). We have also performed
numerical simulations of the DOS, by first computing many
spectral functions for k ranging from 0 to 13σ−1 and then
summing over k, using a number of grid points between 4000
(at small k) and 40 000 (for the largest k). These results are
shown in Fig. 4 as blue dots. The DOS displays a bump at
low energies, which is reminiscent of the narrow peak that
shows up in the profiles of the spectral function; see Fig. 3.
Indeed, upon increasing k the peak of the spectral function
becomes less and less pronounced but remains at the same
energy, which results in a smooth bump after summation over
k. As seen in Fig. 4, at low energies numerical results are very
well captured by the harmonic-oscillator prediction. At larger
energies ε > V0 (not shown in Fig. 4), the harmonic-oscillator
approximation breaks down and the purely classical limit takes
over, eventually leading to ν(ε) � ν0(ε) = √

m/(2ε)/(π�) for
ε → ∞ [18].

C. Validity of the harmonic-oscillator approximation

A simple argument can be used to estimate the energy
range where the harmonic-oscillator approximation is valid.
According to the Virial theorem, equipartition between kinetic
and potential energy imposes that εn = mω2 〈x2〉n for the mean
energy of an eigenstate. In order for the speckle potential to be
correctly described by a harmonic-oscillator approximation,
all states such that εn = ε in Eq. (17) should have an extension√〈x2〉n much smaller than the correlation length σ , which
imposes an upper limit for the energy: ε  mω2σ 2 (in case

this condition is not fulfilled, anharmonic terms would also
come into play). As seen in Sec. III A, the most likely value of
ω is ω0, so the condition becomes

ε  V0. (38)

On the other hand, the classical approximation is expected
to describe well the spectral function down to energies of
order V0/

√
η [17]. Therefore, in the region V0/

√
η  ε  V0

both the harmonic-oscillator and the classical approximation
provide a good description of the spectral function and of the
DOS.

Equation (38) provides a restriction on the high-energy tail
of the spectral function Ak(ε) for the latter to be correctly
described by our harmonic-oscillator approximation. A similar
argument imposes an additional restriction for the momentum
k. Indeed, equipartition between kinetic and potential energy
for the harmonic oscillator also implies

�
2 〈k2〉n
2m

= 1

2
mω2〈x2〉n, (39)

where
√〈x2〉n should be again much smaller than σ for

the harmonic-oscillator approximation to hold. With ω ∼ ω0,
condition (39) reads

�
2 〈k2〉n
m

 V0. (40)

The contribution of each eigenstate to the sum in Eq. (17)
being proportional to |ψn(k)|2, the sum is dominated by
eigenstates having

√〈k2〉n of the order of k, such that
criterion (40) leads to

εk  V0. (41)

In any case, the harmonic oscillator approximation is a good
one in the region ε,εk ∼ �ω0 where the quantum corrections
are important, while the purely classical result (10) takes over
at higher energy ε,εk ∼ V0.

D. Spectral function for 1D red-detuned speckles

For 1D, red-detuned speckle potentials, we make use of the
approach explained in Sec. II D 3 to calculate the spectral
function. Using Eq. (19) and (20) together with the joint
distribution (30) and carrying out the integral over V , we find

Ak(ε) = (2π )2c′σ 4m5/2

√
2V

5/2
0

∫ ∞

−∞

dt

2π�
eiεt/�

∫ ∞

0
dω ω4

[
I 2
−1/4

(
mω2σ 2

2V0

√
3 − 2itV0/�

)
− I 2

1/4

(
mω2σ 2

2V0

√
3 − 2itV0/�

)]

×
√

i�

2πmωsh(ωt)
exp

{
− i�k2

mω

[
coth(ωt) − 1

sh(ωt)

]
− mω2σ 2

V0

}
. (42)

This prediction is shown in Fig. 5 for k = 0 (solid red
curve), together with the classical limit, Eq. (10) (solid green
curve). Both limits are compared with the result of numerical
simulations (blue dots) that use a discrete grid of size L =
200σ with 4000 grid points, periodic boundary conditions,
and 50 000 disorder realizations.

As seen in Fig. 5, the harmonic-oscillator prediction is
in good agreement with the numerical results for energies

near 0. At smaller energies (ε � −V0), the description of
the speckle potential in terms of inverse harmonic oscillators
becomes poor, while the classical limit provides an excellent
approximation.

E. Validity of the inverted harmonic-oscillator approximation

The breakdown of the inverted harmonic-oscillator ap-
proximation at energies ε � −V0 can be understood from a
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numerics
inverted harmonic oscillator

classical limit

red-detuned

FIG. 5. Spectral function Ak=0(ε) as a function of energy in a 1D,
red-detuned speckle potential with Gaussian correlation function, for
η = 128. The inverted harmonic-oscillator approximation, Eq. (42),
is shown as a solid red curve, and the classical limit, Eq. (10), as a solid
green curve. Blue dots are the result of exact numerical simulations.

reasoning on the classical action that appears in Eq. (15).
Indeed, for the stationary phase approximation to be valid, the
time span t associated with a classical trajectory should be such
that the classical action V0t/� is large, imposing t � �/V0.
Energies corresponding to such long times fulfill

|ε|  V0. (43)

Note that this condition is fully similar to that for blue-detuned
speckles, Eq. (38), though it is here deduced from a slightly
different argument. Then, the motion of a classical atom of
energy ε = εk − mωx2/2 describes well the dynamics in a
red-detuned speckle as long as the excursion x2 remains much
smaller than σ , namely as long as εk + |ε|  mωσ 2/2. Since
ω ∼ ω0 and |ε|  V0, this leads to

εk  V0, (44)

which is the same validity condition as for blue-detuned
speckles.

F. Density of states for 1D red-detuned speckles

We show in Fig. 6 as blue dots the DOS in a 1D, red-detuned
speckle potential, computed from numerical simulations where
we have summed over 208 spectral functions with k ranging
from 0 to 13σ−1, varying the number of grid points from 4000
(for small k) to 40 000 (for the largest k). We also show as the
solid green curve the classical prediction (11). As seen in the
figure, the latter already provides an excellent description of
the exact results. This can be understood qualitatively from the
Gutzwiller trace formula [23,36] which expresses the density
of states as the sum of the classical contribution, Eq. (11),
and of oscillatory contributions coming from periodic orbits.
Around E = 0, the periodic orbits in a red-detuned speckle
are long ones with characteristic properties (action, period...)
which strongly depend on the disorder realization, so that all
oscillatory contributions cancel out. This is in stark contrast
with the blue-detuned speckle where periodic orbits around

red-detuned

numerics
classical limit

FIG. 6. Density of states ν(ε) as a function of energy in a 1D,
red-detuned speckle potential with Gaussian correlation function.
The classical limit, Eq. (11), is shown as a solid green curve. Blue
dots are the result of exact numerical simulations.

E = 0 are short orbits trapped in the deep potential minima
and collectively contribute to “bumps” in the DoS.

In principle, quantum corrections to the DOS can be
obtained from Eq. (42) by evaluating the Fresnel integral
over k; see Eq. (7). The latter can be performed, but the
remaining integral over t displays an ultraviolet divergence.
This divergence already appears in the DOS of the inverted
harmonic oscillator, for which it originates of the continuous
nature of the spectrum. It thus appears that for the DOS of
red-detuned speckles, the description of singular quantum
corrections requires to go beyond the inverted harmonic-
oscillator approximation, a task that we leave for later work.

V. STATISTICS OF 2D SPECKLE POTENTIALS

We now turn to the study of 2D speckle potentials which we
aim to describe, at low energies, by a 2D harmonic-oscillator
approximation. By analogy with the 1D case, we propose to
model the speckle potential around an extremum V (xi,yi) by a
2D harmonic oscillator (respectively inverted harmonic oscil-
lator) of the form ±V ± mω2

x(x − xi)2/2 ± mω2
y(y − yi)2/2

with again the + (respectively −) sign for blue (respectively
red)-detuned speckles, with random frequencies ωx and ωy .
Such a description requires the preliminary knowledge of
the joint probability distribution P (V,ωx,ωy) of extrema and
potential curvature around extrema. Study of this quantity
is the object of the present section. We here focus on blue-
detuned speckle potentials, and then infer the corresponding
distribution for red-detuned speckles by the same symmetry
argument as in one dimension.

A. Density of minima at V = 0

2D speckle potentials have a important difference with 1D
potentials: they present a finite density of points exactly at
V = 0 [34]. In writing the blue-detuned speckle potential as

V (x,y) = Re(x,y)2 + Im(x,y)2, (45)
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(minima at         

(minima at         )

)

FIG. 7. Blue curve: integrated density of minima (density of
minima whose depth is greater than V ) for a 2D, blue-detuned
speckle potential with Gaussian correlation function. The results
have been obtained numerically on a discrete grid of size L × L =
400σ × 400σ.

these points are minima that correspond to the intersections of
the curves Re(x,y) = 0 and Im(x,y) = 0. Before considering
the distribution P (V,ωx,ωy), let us first examine the proportion
of minima at V = 0 and at V �= 0. To this end, we have
numerically computed the integrated density of minima, i.e.,
the density of minima whose depth is greater than V . To
distinguish between minima at V = 0 and minima at V �= 0,
we have exploited the sensitivity (respectively insensitivity) of
the minima at V = 0 (respectively V �= 0) with respect to a
change in the spatial discretization (number of grid points). The
results of these simulations are shown in Fig. 7. They have been
obtained on a discrete grid of size L × L = 400σ × 400σ , by
varying the number of grid points between 18 000 and 26 000
along x and y. The discontinuity of the integrated density of
minima at V = 0 visible in Fig. 7 defines ρ0, the density of
minima at V = 0. We find that approximately ρ0/ρ ∼ 65% of
all minima lie at V = 0 [37]. Note that this result is confirmed
by an analytical prediction derived in [34]:

ρ0 =
[ −4πF (0)

∇2
rF (r)|r=0

]−1

, (46)

where F (r − r ′) =
√

V (r)V (r ′) − V (r)
2
/2. For the Gaussian

correlation function (4), this explicitly gives ρ0 = 1/(4πσ 2) �
0.08/σ 2.

In two dimensions, the majority of minima thus lies at
V = 0. To keep the discussion and the calculation as simple as
possible, as a first approximation, we keep only the minima at
V = 0 in the 2D semiclassical description. We will discuss
the validity of this approximation in Sec. VI A. The joint
distribution of interest P (V,ωx,ωy) reduces to

P (V,ωx,ωy) � P (ωx,ωy)δ(V ), (47)

where P (ωx,ωy) is the 2D joint distribution of potential
curvatures around a minimum (xi,yi) where V (xi,yi) = 0.

B. Joint distribution P(ωx,ω y)

The distribution P (ωx,ωy) is closely related to the joint,
conditional probability distribution P (ωx,ωy |V (xi,yi) = 0) of
potential curvatures given that V (xi,yi) = 0. To calculate this
distribution, we first expand V (x,y) up to second order in the
vicinity of (xi,yi) as

V (x,y) � 1
2XAXt, (48)

where X = (x − xi,y − yi) and

A =
(

∂2
xV (x,y) ∂x∂yV (x,y)

∂y∂xV (x,y) ∂2
yV (x,y)

)
. (49)

By diagonalizing the quadratic form (48) (which is possible
since the matrix A is symmetric), we can describe a well
of the speckle potential in terms of two independent 1D
harmonic oscillators, whose curvatures ωx and ωy are related
to the eigenvalues λ1 and λ2 of A through ωx = √

λ1/m and
ωy = √

λ2/m. The calculation of the joint distribution of the
eigenvalues (λ1,λ2) is done in Appendix B for clarity. The
corresponding result for P (ωx,ωy |V = 0) is

P (ωx,ωy |V = 0) = 2

ω4
0

∣∣ω2
y − ω2

x

∣∣e−(ω2
x+ω2

y)/ω2
0 . (50)

The sought for distribution P (ωx,ωy) then follows from the
change of variables from V (xi,yi) = 0 to (xi,yi) such that
V (xi,yi) = 0: P (ωx,ωy) = (d2V/dxdy)P (ωx,ωy |V = 0),
where d2V is the change in the surface element
defined by the 2D curve V (x,y) when x varies from
xi to xi + dx and y varies from yi to yi + dy. Since
V (x,y) � mω2

x(x − xi)2/2 + mω2
y(y − yi)2/2 in the vicinity

of a minimum, we expect this change to be proportional to
ωxωydxdy, such that

P (ωx,ωy) ∝ ωxωyP (ωx,ωy |V = 0). (51)

The unknown prefactor is determined from normalization,
which eventually leads to

P (ωx,ωy) = 4

ω6
0

ωxωy

∣∣ω2
y − ω2

x

∣∣e−(ω2
x+ω2

y)/ω2
0 . (52)

A density plot of P (ωx,ωy) is shown in Fig. 8. As in one
dimension, the distribution rapidly falls to zero at small
frequencies, which again supports our description of the
speckle potential landscape in terms of purely harmonic wells
at low energies. We have confirmed Eq. (52) by numerical
simulations of the distribution P (ωx,ωy), deduced from
numerically generated speckle potentials. We show in Fig. 9
the numerical cut P (ωx,ωy = 1.25ω0) as a function of ωx (blue
dots), together with Eq. (52) (red curve), and find a very good
agreement.

VI. 2D SPECTRAL FUNCTION AND DOS: RESULTS

A. Spectral function for 2D blue-detuned speckles

We are now in position to compute the spectral function
for 2D, blue-detuned speckle potentials. The 2D counterpart
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FIG. 8. Density plot of the joint distribution P (ωx,ωy) at a point
where V = 0 for a 2D, blue-detuned speckle potential with Gaussian
correlation function.

of Eq. (18) reads

Ak(ε) = ρ0

∞∑
nx,ny=0

∫
dωxdωyP (ωx,ωy)

× |ψnx
(kx)|2|ψny

(ky)|2δ(ε − εnx,ny
), (53)

where P (ωx,ωy) is the joint distribution of curvatures around
minima at V = 0 given by Eq. (52), εnx,ny

= �ωx(nx + 1/2) +
�ωy(ny + 1/2) and the eigenfunctions ψnx

(kx) are given by
Eq. (17) with n replaced by nx and k replaced by kx , and
similarly for ψny

(ky). By performing the integral over ωy and

FIG. 9. Cut P (ωx,ωy = 1.25ω0) of the joint distribution of
curvatures around a minima at V = 0 for a 2D, blue-detuned speckle
potential. Blue dots are the results of numerical simulations and the
red curve is Eq. (52).

numerics
harmonic oscillator

classical limit

blue-detuned

corrected harm. osc.

FIG. 10. Spectral function Ak=0(ε) as a function of energy in a 2D,
blue-detuned speckle potential with Gaussian correlation function, for
η = 128. The harmonic-oscillator approximation, Eq. (54), is shown
as a solid red curve, and the classical limit, Eq. (10), as a solid green
curve. The corrected harmonic-oscillator approximation, Eq. (56),
is shown as a solid black curve. Blue dots are the results of exact
numerical simulations.

using that ρ0 = 1/(4πσ 2), we find

Ak(ε) = 1

4πσ 2

∑
nx,ny

∫ ε/�(nx+1/2)

0
dωx

|ψnx
(kx)|2

�(ny + 1/2)
θ (ε)

×|ψny
(ky)|2P (ωx,ωy)|ωy=(ε−�ωx (nx+1/2))/�(ny+1/2).

(54)

This prediction is shown in Fig. 10 as a function of
energy, for k = 0 and η = 128 (solid red curve). The classical
limit (10), expected to describe large energies, is also shown as
a solid green curve. These results are compared to numerical
simulations of the spectral function (blue dots) which use a sys-
tem size L × L = (20πσ )2 with 600 grid points along x and y,
periodic boundary conditions and 40 000 disorder realizations.
Several observations can de made. Like in one dimension, the
harmonic approximation quantitatively describes the spectral
function for energies ∼ V0/

√
η = �ω0. The large peak is at

an energy about twice larger than in one dimension—compare
with Fig. 3—because it is the ground-state energy of a 2D
(instead of 1D) harmonic oscillator. It is also slightly higher
and the minimum around ε/V0 = 0.2 as well as the second
bump above are slightly more visible than in one dimension.
This is because most potential minima are exactly at V = 0
in two dimensions, while this is not true in one dimension, so
that an additional smoothing takes place in the latter case. This
must however be taken with a grain of salt: the 2D low-energy
peak of the spectral function is not entirely controlled by
the ground state of the harmonic oscillator: excited states
also contribute for roughly 25% of the peak height. As seen
in Fig. 10, deviations of the harmonic-oscillator prediction
from the numerical result occur at smaller energy than in
one dimension. This phenomenon can be understood from the
expression of the spectral function in terms of the propagator
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of the 2D harmonic oscillator:

Ak(ε) = ρ0

∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iHHOt/� |k〉, (55)

where HHO = p2/(2m) + mω2
xx

2/2 + mω2
yy

2/2. In two di-
mensions, the propagator 〈k| e−iHHOt/� |k〉 ∝ 1/t at short
times [29]. This singularity is more pronounced than in one
dimension where the propagator diverges as 1/

√
t . In two

dimensions there is thus more weight on short times, which are
by construction not well captured by the harmonic-oscillator
approximation. On the other hand, we know that short times
are fairly well described by the classical limit, Eq. (10). To
improve on the quality of the harmonic-oscillator description,
we thus propose to replace the contribution from the pole at
t = 0 by the classical contribution. The contribution from this
pole is simple to calculate from Eq. (55): we find θ (ε)/V0.
The classical contribution is given in Eq. (10). The above
prescription thus leads to

Acorr
k (ε) � Ak(ε) − θ (ε)

V0
+ θ (ε)

V0
exp

(
−ε − εk

V0

)
, (56)

where Ak(ε) is the prediction of the harmonic-oscillator
description, Eq. (54). Equation (56) is shown in Fig. 10 as
a solid black curve, and is in very good agreement with the
numerical simulations.

The excellent agreement with the numerical calculations
justifies a posteriori the approximation of keeping only the
minima at V = 0. Such an agreement may surprise the
attentive reader as approximately 35% of the minima have
been left aside. The reason for it lies in two mechanisms
reducing the contribution to the spectral function of minima
at V �= 0 as compared to minima at V = 0. First, among the
35% of minima at V �= 0, only a fraction contributes to the
spectral function: as we are interested in very low energies
(ε  V0), we should keep only the harmonic wells with
associated minimum smaller than ε. Second, the smoothing
due to the dispersion in V —compare the 1D oscillations in
Fig. 3 with such a dispersion and the 2D oscillations in Fig. 10
where the dispersion is absent—makes the contribution of
minima at V �= 0 negligible after application of the corrected
harmonic-oscillator prescription [Eq. (56)].

B. Density of states for 2D blue-detuned speckles

From definition (7) and Eq. (54), we can compute the DOS
for 2D blue-detuned speckles. Carrying out the integral over
k, we readily find

ν(ε) = 1

4πσ 2

∑
nx,ny

∫ ε/�(nx+1/2)

0
dωx

θ (ε)

�(ny + 1/2)

×P

(
ωx,

ε − �ωx(nx + 1/2)

�(ny + 1/2)

)
. (57)

This prediction is shown in Fig. 11 as a function of energy,
for η = 128 (solid red curve), together with the classical
limit, Eq. (11) (solid green curve). We have also performed
numerical simulations of the DOS. In two dimensions however,
the strategy of numerically computing first spectral functions at
different k and then summing of k is numerically demanding.
We have thus used a different scheme that consists of

blue-detuned

numerics
harmonic oscillator

classical limit
corrected harm. osc.

FIG. 11. Density of states ν(ε) as a function of energy in a 2D,
blue-detuned speckle potential with Gaussian correlation function.
The harmonic-oscillator approximation, Eq. (57), is shown as a solid
red curve, and the classical limit, Eq. (11), as a solid green curve.
The corrected harmonic-oscillator description, Eq. (60), is shown
as a solid black curve. Blue dots are the result of exact numerical
simulations.

expressing the trace in Eq. (7) in real space rather than in
momentum space:

ν(ε) = 1

L2
Tr δ(ε − H ) = 1

L2

∫
d2r 〈r| δ(ε − H )|r〉. (58)

The system being translation invariant on average, the inte-
grand is in fact independent of r so

ν(ε) = 〈r = 0| δ(ε − H ) |r = 0〉

=
∫ ∞

−∞

dt

2π�
eiεt/�〈0| e−iH t/� |0〉. (59)

From Eq. (59), it thus appears that the DOS can be obtained
by numerically propagating a particle initially located at the
origin, then recording the value of the wave function at
the origin for many different times t , and finally taking the
Fourier transform with respect to time and averaging over
disorder. We have applied this strategy for a system size
L × L = (10πσ )2 with 400 grid points along x and y and
40 000 disorder realizations. Results are shown in Fig. 11
as blue dots. As for the 2D spectral function, we observe
deviations of the theoretical prediction (59) from the numerical
results at relatively small energies due to a pole ∝ 1/t2 in the
propagator in (59). We again correct them by replacing the
contribution of this pole by the classical result (11). This gives

νcor(ε) = ν(ε) − mεθ (ε)

2π�2V0
+ mθ (ε)

2π�2

(
1 − e−ε/V0

)
. (60)

This prediction is plotted in Fig. 11 (solid black curve), and
describes very well the exact numerical results.
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numerics
inverted harmonic oscillator

classical limit

red-detuned

corrected inverted 
harm. osc.

FIG. 12. Spectral function Ak=0(ε) as a function of energy in a 2D,
red-detuned speckle potential with Gaussian correlation function, for
η = 128. The inverted harmonic-oscillator approximation, Eq. (62),
is shown as a solid red curve, and the classical limit, Eq. (10),
as a solid green curve. The corrected inverted harmonic-oscillator
approximation, Eq. (63), is shown as a solid black curve. Blue dots
are the results of exact numerical simulations.

C. Spectral function for 2D red-detuned speckles

To evaluate the spectral function for 2D, red-detuned
speckle potentials, we proceed as in one dimension and write

Ak(ε) � ρ0

∫ ∞

−∞

dt

2π�
eiεt/�〈k| e−iHIHOt/� |k〉, (61)

where HIHO = p2/(2m) − mω2
xx

2/2 − mω2
yy

2/2. Making the
average over disorder explicit, we have

Ak(ε) = 1

4πσ 2

∫ ∞

−∞

dt

2π�
eiεt/�

∫ ∞

0
dωxdωyP (ωx,ωy)

×〈kx | e−i[p2
x/(2m)−mω2

xx
2/2]t/�|kx〉

× 〈ky | e−i
[
p2

y/(2m)−mω2
yy

2/2
]
t/�|ky〉, (62)

where the 1D inverted harmonic-oscillator propagator is given
by Eq. (20).

Equation (62) is shown in Fig. 12 (solid red curve), together
with the classical limit, Eq. (10) (solid green curve). Results
of numerical simulations that use a system size L × L =
(20πσ )2 with 600 grid points along x and y and 40 000 disorder
realizations are also shown (blue dots). As for the blue-detuned
speckle, the pole 1/t in the propagator gives rise to deviations
of the oscillator description from the exact numerical results
that are more significant than in one dimension. We again cure
them by replacing the contribution of the pole by the classical
limit:

Acor
k (ε) = Ak(ε) − θ (−ε)

V0
+ θ (−ε)

V0
e(ε−εk)/V0 . (63)

This prediction is plotted in Fig. 12 (solid black curve), and
describes very well the exact numerical results.

numerics
classical limit

red-detuned

FIG. 13. Density of states ν(ε) as a function of energy in a 2D,
red-detuned speckle potential with Gaussian correlation function. The
classical limit, Eq. (11), is shown as a solid green curve. Blue dots
are the results from exact numerical simulations based on Eq. (59).

D. Density of states for 2D red-detuned speckles

We show in Fig. 13 the DOS in a 2D, red-detuned speckle
potential computed from numerical simulations using a system
size L × L = (10πσ )2 with 2000 grid points in each direction
and 8000 disorder realizations, based on Eq. (59) (blue dots).
As for 1D red-detuned speckles, the oscillator correction to
the DOS diverges due to an ultraviolet divergence in the
propagator; see Sec. IV F. Nevertheless, as seen in Fig. 13, the
classical prediction (11) (solid green curve) already constitutes
an excellent approximation of the exact result.

VII. CONCLUSION

In this paper, we have pointed out that an expansion in
powers of � of the spectral function or the density of states in
speckle potentials is not sufficient at low energies, due to the
discontinuity of the potential distribution. In order to overcome
this difficulty, we have developed an analytical method based
on a semiclassical description of the dynamics combined with
the statistical properties of potential extrema. Applying this
approach to 1D and 2D blue- and red-detuned speckles, we
have carried out the calculation of the spectral function and
the DOS. By connecting our results with those of previous
works valid at high energies [17,18], we have been able to
describe the whole energy spectrum, and have found a good
agreement with exact numerical simulations.

Our semiclassical description additionally provides a sim-
ple interpretation of intriguing features of the spectral function
and DOS. In particular, for blue-detuned potentials we have
shown that the low-energy peak of spectral functions is
essentially associated with the ground state of an atom in
a potential well of the speckle, while the secondary bump
is associated with excited states. We have also emphasized
that in spite of their simple symmetry, red- and blue-detuned
speckles exhibit remarkably different features in the semiclas-
sical regime, coming from the fundamental different nature
of the classical trajectories involved near zero energy: for
blue-detuned speckles, these classical trajectories lie in deep
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potential wells, while for red-detuned speckles they lie in the
vicinity of the top of inverted wells.

As a logical continuation of this work, it would be of
great interest to address the case of three-dimensional speckle
potentials, involved in important questions related to Anderson
localization [5,6,38,39]. This task appears challenging though,
as the isolated points of zero potential in two dimensions
become curves in three dimensions, making the application
of a harmonic-oscillator approximation less obvious.
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APPENDIX A

In this Appendix, we calculate the leading-order smooth
quantum corrections to the classical limit of the spectral
function, Eq. (12), using an alternative approach to the one used
in [17]. The calculation is first carried out for 1D, blue-detuned
speckles, then generalized to any dimension, and finally to
red-detuned speckles by a simple symmetry argument.

The first stage of our approach is a commutator expansion of
the evolution operator based on the Zassenhaus formula [40]:

〈k|e−i[p2/2m+V ]t |k〉
= e−iV (x)t e(i�2t3/3m)[∂xV (x)]2

×e(−�
2t2/4m)[2ik∂xV (x)+∂2

x V (x)]−(it3
�

2/3m)[∂2
x V (x)]εk eO(�3).

(A1)

The second stage consists of carrying out the disorder average.
This can be done by mean of the following cumulant
expansion:

exp(X) = exp

[ ∞∑
n=1

κn(X)

n!

]
, (A2)

where κn denotes the nth cumulant. To evaluate the cumulants
of sums of random variables that appear in Eq. (A2), we make
use of the expansion

κn(X + Y ) =
n∑

j=0

(
n

j

)
κ(X, . . . ,X︸ ︷︷ ︸

j terms

,Y, . . . ,Y︸ ︷︷ ︸
n−j terms

), (A3)

where we have introduced the joint cumulants κ , defined
as [41]

κ(X1, . . . ,Xn) =
∑
π

(|π | − 1)!(−1)|π |−1
∏
B∈π

[∏
i∈B

Xi

]
.

(A4)
Here π runs through the list of all partitions of {1, . . . ,n}, B

runs through the list of all blocks of the partition π , and |π | is
the number of parts in the partition. Joint cumulants have the
following important properties [41]:

(1) they are linear in all variables;
(2) κ(X, . . . ,X) = κn(X);

(3) κ(X1, . . . ,Xn) = 0 if any set of the Xi’s are independent
of the remaining Xj �=i’s.

After these premises, let us now write the random potential
as

V (x) = E1(x)2 + E2(x)2, (A5)

where E1 and E2 are independent Gaussian variables with
zero mean and equal variance [20]. Defining X = −iV (x)t
and denoting by Yi the � corrections appearing in Eq. (A2),
we obtain for the nth cumulant:

κn

(
X +

m∑
i=1

Yi

)

= κn(X) +
m∑

i=1

nκ(X, . . . ,X︸ ︷︷ ︸
n−1 terms

,Yi)

+
2∑

j=1

(
n

2

)
κ

⎛
⎝X, . . . ,X︸ ︷︷ ︸

n−2 terms

, − �t2

2m

[
∂xE

2
j (x)

]
i�k,

− �t2

2m

[
∂xE

2
j (x)

]
i�k

)
+ O

(
�

3
)
. (A6)

We now need to calculate the various cumulants entering this
equation. For this purpose, we use a theorem due to Leonov
and Shiryaev [42,43]. Before discussing the theorem itself, it
is useful to introduce some terminology. Consider the matrix⎛

⎜⎜⎜⎝
X11 . . . X1J

. .

. .

. .

XJ1 . . . XJJ

⎞
⎟⎟⎟⎠, (A7)

and a partition P1 ∪ P2 ∪ · · · ∪ PM of its entries. We choose
this matrix square for simplicity, but the formalism is straight-
forwardly generalizable to rectangular matrices. If the rows
are denoted by R1, . . . ,RJ , then a partition is said to be
indecomposable if and only if there exist no sets Pm1 , . . . ,PmN

,
(N < M), and rows Ri1 , . . . ,RiP , (P < J ), with

Pm1 ∪ · · · ∪ PmN
= Ri1 ∪ · · · ∪ RiP . (A8)

The theorem then goes as follows [42]. Consider a matrix
of random entries Xij (i,j = 1, . . . ,J ) and the J random
variables

Yi =
J∏

j=1

Xij , i = 1, . . . ,J. (A9)

The joint cumulant κ(Y1,...,YJ ) is then given by

κ(Y1, . . . ,YJ ) =
∑
P

κ(Xi1j1 , . . . ,Ximjm︸ ︷︷ ︸
{i1j1,...,imjm}=P1

)

. . . κ(Xinjn
, . . . ,Xiojo︸ ︷︷ ︸

{injn,...,iojo}=Pp

), (A10)

where the summation is over all indecomposable partitions
P = P1 ∪ · · · ∪ Pp of matrix (A7).

Let us now tackle one of the terms involved in Eq. (A6):
κ(E2

1, . . . ,E
2
1 ,∂

2
xE2

1). It is simpler to work in Fourier space,
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hence defining

Ej (x) =
∫

dpi

2π
eipxEj (p). (A11)

The cumulant of interest then reads

κ
(
E2

1 , . . . ,E
2
1 ,∂

2
xE2

1

)
= −

∫ [
2n∏
i=1

dpi

2π

]
(p2n−1 + p2n)2κ[E1(p1)E1(p2),

. . . ,E1(p2n−3)E1(p2n−2),E1(p2n−1)E1(p2n)]. (A12)

The corresponding matrix (A7) is⎛
⎜⎜⎜⎝

E1(p1) E1(p2)
. .

. .

. .

E1(p2n−1) E1(p2n)

⎞
⎟⎟⎟⎠. (A13)

As E1 is Gaussian distributed, only joint cumulants involving
two fields should be kept in the right-hand side of Eq. (A10).
Our indecomposable partitions are then made of pairs of E1

and all give the same contribution. Let us now count them,
taking into account the two following constraints for making
pairs so to obtain an indecomposable partition:

(i) A pair cannot be formed out of two fields lying on the
same line, i.e., the choice

⎛
⎜⎜⎜⎜⎜⎜⎝

E1(p1) E1(p2)

. .

. .

. .
E1(p2n−1) E1(p2n)

⎞
⎟⎟⎟⎟⎟⎟⎠

(A14)

is forbidden.
(ii) Two pairs right nearby cannot be formed, i.e., the choice

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1(p1) E1(p2)

E1(p1) E1(p2)

. .

. .

. .
E1(p2n−1) E1(p2n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A15)

is forbidden.
Therefore, to form the first pair, we have (2n) choices for the

first field and (2n − 2) choices for the second, and similarly for
the next pairs. This leaves us with 2n(2n − 2)2(2n − 4)2 . . . =
22nn!2/(2n) choices of pairing. There is however a redundancy
in this counting, due to the invariance of the partition with
respect to both swapping of the two fields inside one pair (2n

possibilities) and swapping of different pairs (n! possibilities).
This leaves us with only 2nn!2/(2n2nn!) = 2nn!/(2n) choices
of pairing. Calculating the contribution from one of them, we

obtain

κ
(
E2

1 , . . . ,E
2
1︸ ︷︷ ︸

n−1 terms

,∂2
xE2

1

) = 2nn!

2n
Fn−2(0)2

×[F (0)F ′′(0) + F ′2(0)], (A16)

where F (x) is defined by Eq. (26).
A similar derivation is then performed for all terms in

Eq. (A6) that are not found to vanish on the basis of the
property (3) above [41]. Upon summing various geometric
series and recognizing the expansion of a logarithm, we find

〈k| e−i[p2/2m+V ](t/�) |k〉

= e−iεk t/�

1 ± itV0/�

[
1 + it3V 2

0 Eσ/�
3

12(1 + itV0/�)
+ t4V 2

0 Eσ/�
4

12(1 + itV0/�)
εk

]
.

(A17)

This result is not difficult to generalize to dimension d, where
Eq. (A2) becomes

〈k| e−i[ p2/2m+V ](t/�) |k〉
= e−iV (r)t e(i�2t3/3m)

∑d
i=1 [∂xi

V (r)]2

×e(−�
2t2/4m)[2ik·∇V (r)+∇2V (r)]

×e
−(i�2t3/3m)

∑d
i,j=1[∂xi

∂xj
V (r)](�2kikj /2m)

eO(�3). (A18)

In the sum
∑d

i,j=1 [∂xi
∂xj

V (r)]�2kikj /2m, to leading order in
� the crossed terms (i �= j ) do not contribute to the disorder-
averaged propagator as their contributions are proportional
to first-order derivatives of the field correlation function (26)
evaluated at 0, which vanish. Also, derivatives of the potential
with respect to different directions are independent. Therefore,
the propagator in dimension d is simply the product of d 1D
propagators. Finally, the result for the red-detuned speckle is
deduced by changing m to −m and t to −t (which amounts to
changing the sign of V ). The general result then reads

〈k| e−i[p2/2m+V ](t/�) |k〉

= e−iεk t/�

1 ± itV0/�

[
1+ dit3V 2

0 Eσ/�
3

12(1 ± itV0/�)
+ t4V 2

0 Eσ/�
4

12(1 ± itV0/�)
εk

]
,

(A19)

with the + (respectively −) sign for blue-(respectively red-
)detuned speckles. This immediately leads to Eq. (12) of the
main text.

APPENDIX B

In this Appendix, we derive the joint probability distribution
P (λ1,λ2) of the eigenvalues λ1 and λ2 of the matrix

A =
(

∂2
xV (x,y) ∂x∂yV (x,y)

∂y∂xV (x,y) ∂2
yV (x,y)

)
, (B1)

in the vicinity of a minimum V (x,y) = 0. As in Sec. III A we
write the potential as

V (x,y) = Re(x,y)2 + Im(x,y)2, (B2)
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where Re(x,y) and Im(x,y) are independent Gaussian vari-
ables with zero mean and equal variance σ 2

c = V0/(4σ 2) [20].
Making use of the shorthand notation

�x ≡ ∂xRe(x,y), �x ≡ ∂xIm(x,y),
(B3)�y ≡ ∂yRe(x,y), �y ≡ ∂yIm(x,y),

we rewrite the matrix A as

A = 2

(
�2

x + �2
x �x�y + �x�y

�x�y + �x�y �2
y + �2

y

)
. (B4)

�x , �y , �x , and �y are independent, Gaussian distributed
random variables with zero mean and variance σc. The
distribution P (u,v) can then be expressed as

P (u,v) =
∫

d�xd�yd�xd�yP (�x)P (�y)P (�x)P (�y)

× δ[u − λ1(�x,�y,�x,�y)]δ[v − λ2(�x,�y,�x,�y)].

To tackle this integral, we first change variables to “intensity”
and “phase”:

�x =
√

I1 cos θ1, �x =
√

I1 sin θ1,
(B5)

�y =
√

I2 cos θ2, �y =
√

I2 sin θ2.

The Jacobian of the transformation is 1/4, and I1,I2 ∈
[0, + ∞[ and θ1,θ2 ∈ [−π,π ]. The integral reduces to

P (λ1,λ2)

= 1

32π2σ 4
c

∫ +∞

0
dI1dI2

∫ π

−π

dθ1dθ2e
−(I1+I2)/2σ 2

c

×δ
(
λ1 − [

I1 + I2 −
√

I 2
1 + I 2

2 + 2I1I2 cos 2(θ1 − θ2)
])

×δ
(
λ2 − [

I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos 2(θ1 − θ2)
])

,

where we have assumed λ2 > λ1 without loss of generality,
and added a corresponding renormalization prefactor 1/2. We
then introduce

ϕ = θ1 + θ2, φ = 2(θ1 − θ2), (B6)

and carry out the integral over ϕ. This eventually yields

P (λ1,λ2) = 1

8πσ 4
c

∫ +∞

0
dI1dI2

∫ π

0
dφe−(I1+I2)/2σ 2

c

×δ
(
λ1 − [

I1 + I2 −
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

×δ
(
λ2 − [

I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

.

This expression can be further simplified by writing∫ ∞
0 dI1dI2 = ∫ ∞

0 dI1
∫ I1

0 dI2 + ∫ ∞
0 dI1

∫ ∞
I1

dI2 and noticing
the equality of these two integrals due to the symmetric role
played by I1 and I2:

P (λ1,λ2) = 1

4πσ 4
c

∫ +∞

0
dI1

∫ I1

0
dI2

∫ π

0
dφe−(I1+I2)/2σ 2

c

× δ
(
λ1 − [

I1 + I2 −
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

× δ
(
λ2 − [

I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos φ
])

.

We then change the variable φ to z so that

z = I1 + I2 +
√

I 2
1 + I 2

2 + 2I1I2 cos φ, (B7)

where z spans the interval [0,2I2]. The corresponding Jacobian
is ∣∣∣∣∂φ

∂z

∣∣∣∣ = 2|I1 + I2 − z|√
z(2I1 − z)(2I2 − z)(2I1 + 2I2 + z)

. (B8)

Performing the integrals over I2 and z, we straightforwardly
find

P (λ1,λ2) = 1

8πσ 4
c

∫ λ2/2

(λ1+λ2)/4
dI1e

−(λ1+λ2)/4σ 2
c

× (λ2 − λ1)θ (λ1)√
λ1λ2(λ2 − 2I1)(2I1 − λ1)

. (B9)

The remaining integral can be done analytically, yielding

P (λ1,λ2) = (λ2 − λ1)e−(λ1+λ2)/4σ 2
c

32σ 4
c

√
λ1λ2

θ (λ1) (λ2 > λ1). (B10)

This relation has been obtained assuming λ2 > λ1. The
opposite case λ1 < λ2 is fully symmetric:

P (λ1,λ2) = (λ1 − λ2)e−(λ1+λ2)/4σ 2
c

32σ 4
c

√
λ1λ2

θ (λ2) (λ2 < λ1). (B11)

Using Eqs. (B10) and (B11) together with the relations λ1 =
mω2

x , λ2 = mω2
x , we finally obtain Eq. (50) of the main text.
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