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Coherence susceptibility as a probe of quantum phase transitions
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We introduce a coherence susceptibility method, based on the fact that it signals quantum fluctuations, for
identifying quantum phase transitions, which are induced by quantum fluctuations. This method requires no
prior knowledge of order parameter, and there is no need for careful considerations concerning the choice of
a bipartition of the system. It can identify different types of quantum phase transition points exactly. At finite
temperatures, where quantum criticality is influenced by thermal fluctuations, our method can pinpoint the
temperature frame of quantum criticality, which perfectly coincides with recent experiments.
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I. INTRODUCTION

Fluctuations trigger phase transitions manifesting them-
selves as the sudden change of the system states in the
thermodynamic limit [1–3]. At absolute zero temperature
thermal fluctuations cease, leaving quantum fluctuations the
only source for the corresponding transitions, which are
known as quantum phase transitions (QPTs). Arising from
the Heisenberg uncertainty principle quantum fluctuations
underlie the “quantumness” of the many-body systems.

Different quantum phases of matter had been in general
characterized by their symmetries under Landau’s symmetry-
broken theory before the striking discovery of the (fractional)
quantum Hall effect in the 1980s [4]. Since then exotic quan-
tum phases such as topological ordered phases have emerged
as one major topic in condensed matter physics and many-body
physics. In modern times, with the development of quantum
information sciences a wide variety of characterizations for
quantumness have been proposed for the investigation of
QPTs including topological phase transitions. Entanglement
was the first and most famous one [5–9]. Quantum discord,
which measures the quantum correlation between two com-
ponents of the system, complemented entanglement in certain
situations to detect QPTs [10,11]. As another indication of
quantumness, i.e., the lack of local convertibility, was also
useful in characterizing quantum phases [12–15]. Compared
with traditional methods based on condensed matter physics,
which underlie low-energy effective theories of local order
parameters [16], the quantum information-oriented methods
are provided with a common advantage in that they can study
QPTs without any knowledge of order parameters in priority.
This merit has been validated in particular through the studies
of exotic quantum phases with topological orders [15,17–21].
Though remarkable success has been achieved, some obvious
drawbacks exist, e.g., a careful consideration of the bipartition
of the system is required by definition. For instance, it has been
shown in Ref. [22] that using the entanglement method some
OPTs can be detected only by bipartite entanglement between
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certain two sublattices but not by pairwise concurrence
between two nearest-neighbor sites.

Another important topic in studying QPTs is to find out
the influence of thermal fluctuations on the quantum criticality
of QPTs, since in the real world QPTs have to be observed
and manipulated at finite temperatures. It is known that
certain QPTs or quantum criticality persists at nonzero tem-
peratures [3,5,23–26]. For instance, recently the temperature
frame of quantum criticality of an Ising model QPT has been
measured experimentally [26]. The quantum criticality has
been reported to survive up to temperature T ∼ 0.4J with
J being the coupling strength of the Ising model [26]. The
closest theoretical prediction was T ∼ 0.5J [24], which is not
so desirable.

Both aspects above are related to the coherence of the
system. Indeed, coherence is a better alternative to depict quan-
tumness as it involves no partition of the system. Coherence
has been widely used in the fields of biological physics [27]
and quantum open systems [28]. It was mainly characterized
by the off-diagonal entries of the density operator. The problem
was that the many measures of coherence were merely out of
physical intuitions. Only recently has a rigorous framework
been established [29] where the measure based on relative
entropy and that on the l1 matrix norm were shown as
legitimate measures. Much attention has been paid in this
direction since then [30–33]. The basic idea in Ref. [29]
is to treat coherence under the resource theory, and the
central requirement is that coherence should not increase
under incoherent operations. The following simplified form
of relative entropy has been proven as a valid measure of
coherence for a given basis:

C(ρ) = S(ρdiag) − S(ρ), (1)

where S(•) stands for the von Neumann entropy of • and ρdiag

is obtained from ρ by removing all its off-diagonal entries.
On the other hand, QPTs can be formulated as follows. A

many-body system with tunable parameter(s) λ is described by
the Hamiltonian H (λ). For each given λ the ground state of the
system is labeled as |�g(λ)〉. At QPT point λc when slightly
varying λ, the ground state drastically changes. Occurring at
absolute zero where thermal fluctuation is completely frozen,
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QPT roots in the quantum fluctuation only, which is induced
by the change of λ. Hence, the nonanalyticity of the ground
state at phase transition point can be characterized by the
singularity of the coherence susceptibility, which is defined
as χ co ≡ ∂C(ρ)/∂λ. Here ρ can be the density operator
of the whole system or the reduced density operator of
a subsystem. Throughout this paper the derivative in the
coherence susceptibility is carried out numerically, whereas
the coherence is calculated analytically because of the exact
solutions of the corresponding models.

In this paper, we will establish the relative entropy in Eq. (1)
as the coherence measure and its susceptibility as a powerful
tool to explore QPTs. The coherence susceptibility method
reflects the origin of QPTs, i.e., quantum fluctuations, and
it requires no prior knowledge of the order parameters or a
careful consideration of the bipartition. Its simplicity makes it
suitable to study QPTs in general and to investigate the com-
plicated situation of finite-temperature QPTs. We showcase
the performance of our method through several models. The
temperature frame of quantum criticality pinpointed by our
method perfectly matches the experimental result in the Ising
model [26].

II. RESULTS FOR ZERO TEMPERATURE

We apply the coherence susceptibility method to two
spin models with different types of ordinary QPTs and one
model with topological QPT. Since the measure of coherence
depends on the basis of writing the density matrix, we fix the
computational basis throughout the paper, i.e., the product of
eigenbasis of σ z, to write the reduced density matrices of the
ground states for these models and then substitute ρ in Eq. (1)
with them to calculate the coherence. Note that choosing a
different basis may change the value of coherence (and its
susceptibility) for each state in the phase diagram; however,
the singularity stays at the phase transition point. In very rare
cases, the coherence may always equal zero for all states by
poorly choosing certain basis, where no useful information
can be extracted. Such a negative fine-tuned effect can be
avoided in general by taking another basis. One also has to pay
attention to the size of the reduced density operator. In general
the bigger the reduced density operator, the more information
it contains, which means a higher chance to probe the QPT
but being more difficult to calculate. In practice one can start
from the one-site density operator to calculate the coherence. If
the result is trivial, meaning that the coherence is always zero
and no information can be extracted, one has to increase the
size of the density operator until a nontrivial density operator
emerges.

The transverse field Ising model (TFIM) in one spatial
dimension is the simplest model with a quantum phase
transition. Its Hamiltonian reads

HI = −J
∑
i=1

σ z
i ⊗ σ z

i+1 − B
∑
i=1

σx
i , (2)

where σx,z are the usual Pauli matrices. We can choose the
free parameter λ := J/B to study the phase diagram. It can be
solved analytically using Jordan-Wigner transformation [34–
36]. The one-site reduced density operator for the ground state
can be recovered from the expectation values of the Pauli

matrices as ρ1 = ∑3
α=0 〈σα〉σα/2, where σ 1,2,3 = σx,y,z, and

σ 0 = I is the identity matrix. Here 〈•〉 denotes the average of
• over the ground state. The critical point locates at the second
order phase transition point λc = 1. For 0 < λ < 1, the system
is gapped, and the ground state is in the paramagnetic phase
with vanishing order parameter 〈σz〉. When λ > 1 the system
is also gapped with double degeneracy in the energy spectrum.
In the thermodynamic limit the symmetry can be broken
spontaneously, and the (degenerate) ground states are in the
ferromagnetic phase with nonvanishing order parameter 〈σz〉.
The difference between the two branches of the degenerate
ground states is the opposite sign of the order parameter, and
therefore they are labeled as |0+〉 and |0−〉, respectively. In this
phase the system is also possible to stay in an equal mixture
of |0+〉 and |0−〉, i.e., ρT G = (|0+〉 〈0+| + |0−〉 〈0−|)/2, which
has zero order parameters. This mixture state is known as
the “thermal ground state.” In this simple model we can
investigate the one-site reduced density operator for the system
in the thermodynamic limit to detect the QPT. We study the
coherence for both the symmetry broken ground state and the
thermal ground state.

It can be deduced from Ref. [8] that for |0+〉

〈σ z〉 =
{

0, λ � 1,

(1 − λ−2)1/8, λ > 1,
(3)

〈σx〉 = 1

π

∫ π

0
dφ

1 + λ cos φ√
1 + λ2 + 2λ cos φ

, (4)

and 〈σy〉 = 0. For the thermal ground state the only difference
is that 〈σ z〉 is always zero. Inserting these results to Eq. (1)
one can obtain the coherence for TFIM in Fig. 1. The main
plot shows that the quantum phase transition is detected by the
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FIG. 1. Ising model ground state. Main plot: Coherence of
one-site reduced density matrix for the symmetry-broken ground
state (dash-dot line) and the thermal ground state (solid line). For
the symmetry broken state the singularity occurs exactly at the
quantum phase transition point. Inset: Coherence susceptibility for
the thermal ground state. This is obtained by numerically carrying
out the derivative of the coherence curve in the main plot with respect
to λ, therefore the actual divergence of χ at the phase transition point
manifests itself as a big negative value in the numerical result due to
the finite step.
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singularity of the coherence for the symmetry-broken ground
state, and the inset shows that it is identified by the divergence
of the coherence susceptibility for the thermal ground state.

A complementary type of quantum phase transition is that
in one phase the system is gapped, whereas in the whole region
of the other phase the system is critical. A spin half XX model
is one such example with Hamiltonian

Hxx = −1

2

N∑
i=1

[
σx

i σx
i+1 + σy

i σ
y

i+1

] − λ

N∑
i=1

σ z
i , (5)

where the dimensionless parameter λ denotes the strength
of the external magnetic field in units of the interaction
energy. The phase diagram is symmetric with respect to
λ [37–39], therefore we consider only positive λ. This
model can be solved analytically [37,39]. At λ = 1 the
system undergoes a first order quantum phase transition.
When λ > 1 the ground state is polarized up for all spins
resulting in vanishing coherence. In the region 0 � λ < 1 the
system is critical and the one-site reduced density operator
is diagonal, so its coherence always vanishes according to
Eq. (1). The one-site reduced density operator is trivial in
terms of coherence since no information can be extracted.
We can employ the coherence of two adjacent spins to
detect the quantum phase transition point. Its reduced den-
sity operator reads ρ2 = ∑3

α=0

∑3
β=0 〈σα ⊗ σβ〉σα ⊗ σβ/4.

It has been shown in Refs. [37,39] that the nontrivial non-
vanishing coefficients are 〈σ zσ z〉 = [1 − 2 arccos(λ)/π ]2 −
4(1 − λ2)/π2, 〈σxσ x〉 = −2 sin[arccos(λ)]/π and 〈σ z〉 =
1 − 2 arccos(λ)/π . Substituting these in Eq. (1) one obtains
the coherence in Fig. 2, where the singularity at λ = 1 perfectly
detects the phase transition.

There exists another kind of exotic quantum phase transi-
tions, namely, topological quantum phase transitions, without
any local order parameter and therefore they cannot be de-
scribed by the Landau paradigm [40]. We will show through the
Kitaev honeycomb model that the topological phase transition
can be captured by the coherence susceptibility method.
The Kitaev honeycomb model on a hexagonal lattice with
direction-dependent interactions between adjacent lattice sites
is an analytically solvable model with topological quantum
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FIG. 2. The coherence of two adjacent spins for the XX model in
the thermodynamic limit.
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FIG. 3. Kitaev model ground state. The left inset is the phase
diagram of the Kitaev model. We calculate the ground state along
the dashed line. The right inset shows the obtained coherence for two
sites with an x link. The main figure plots the coherence susceptibility.
The singular point occurs exactly at the topological phase transition
point Jx = 0.5.

phase transition [41]. Its Hamiltonian reads

HK = −
∑

α={x,y,z}
Jα

∑
(i,j)∈α−links

σα
i σα

j , (6)

where the parameters Jα represent the interaction energy
between two adjacent spins along the α direction with the α

link. We fix Jx + Jy + Jz = 1 as the energy unit for this model.
The phase diagram is shown in the left inset of Fig. 3. In the
shaded areas the system is gapped with Abelian excitation, and
in area B it is gapless with non-Abelian excitation. We take
the path Jy = Jz = (1 − Jx)/2 to study the topological phase
transition, which occurs at Jx = 0.5. The analytical solution
of the ground state is applied to derive the reduced density
matrix of two adjacent spins with x link in the thermody-
namic limit. The only nonvanishing nontrivial coefficient is
〈σxσ x〉 = ∫ π

−π

∫ π

−π
ε/

√
ε2 + 
2 dωy dωz/4π2 with ε = Jx +

Jy cos ωy + Jz cos ωz and 
 = Jy sin ωy + Jz sin ωz (see the
Appendix for details). For this model, the coherence sus-
ceptibility is defined as χ = ∂C/∂Jx . Figure 3 depicts the
two-site coherence and its susceptibility for the Kitaev model.
The topological quantum phase transition at Jx = 0.5 is well
captured as a singular point.

III. RESULTS FOR FINITE TEMPERATURES

In real experiments, finite temperature is unavoidable due
to the third law of thermodynamics, hence the influence of
thermal fluctuation has to be considered. At finite temper-
atures, quantum phase transitions are washed out by the
thermal fluctuations, nevertheless certain phase transitions
still persist in 2D systems [3]. For 1D systems, e.g., the
TFIM, the singularity of the free energy disappears at finite
temperatures [23] however, the quantum phase transition has
so profound an influence that the criticality is detectable even at
finite temperatures [5,24,25]. In other 1D examples, the phase
transition points at zero temperature were reported to be sig-
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FIG. 4. Ising model thermal states at different temperatures. Main
plot: Coherence susceptibility at different temperatures. At finite
temperatures the quantum phase transition is smoothed out due to
thermal fluctuation. As a result the singularity deforms into maximum
points. Left inset: Phase diagram at finite temperatures. Right inset:
The locations of the maximum point at different temperatures. Here
kBT is in unit of the interaction energy in the system Hamiltonian.

naled by the quantum correlations at finite temperatures [11].
In this context the system to study is in thermal equilibrium
with a reservoir at temperature T . Thus, it is described by
the Gibbs thermal state as ρ = exp(−H/kBT )/Z, where
Z = Tr {exp(−H/kBT )} is the partition function, kB is the
Boltzmann constant, and kBT sets the energy scale of the
thermal fluctuations. Using TFIM [Eq. (2)] at kBT ranging
from 0 to 1 as an example, we showcase here that the
coherence susceptibility is a powerful tool to study the finite
temperature phase diagram. In order to compare with the
previous results in this literature, we rewrite the Hamiltonian as
HI = −∑N

i=1 σ z
i ⊗ σ z

i+1 − λ
∑N

i=1 σx
i . The finite temperature

phase diagram was predicted in Ref. [25] [also see the left
inset of Fig. 4 where the two dotted crossover lines separate
it into three distinct regions: renormalized classical (RC),
quantum critical (QC), and quantum disordered (QD) region].
On the crossover lines, kBT equals the energy gap, i.e.,
2|λ − λc|. Recently this phase diagram has been confirmed
in experiments [26]. Moreover, the experiment showed that
the criticality could survive up to kBT ≈ 0.4. In the following
we show that all the above complex properties can be detected
by the simple coherence susceptibility method.

Again, we take the analytical form of the one-site reduced
density operator for the thermal state with

〈σx〉 = − 1

π

∫ π

0
dφ

(λ + cos φ) tanh(−ωφ/kBT )

ωφ

, (7)

where ωφ =
√

1 + λ2 + 2λ cos φ, and 〈σy〉 = 〈σ z〉 = 0 for
the thermal state [42]. Figure 4 demonstrates its coherence
susceptibility. One can find that with growing temperature the
singular behavior deforms from the divergence to maximum,
which shows that the quantum phase transition is smoothed out
by the increasing thermal fluctuations. The right inset accounts
for the location of the maximum χ , which is labeled as λM (T ),
at different temperatures. When kBT is below 0.4 the λM (T )
is linear with T, which indicates the criticality of the model.
The linear scaling changes at kBT = 0.4, which coincides with
the temperature frame in experiment [26]. If one compares the
λM (T ) curve with the phase diagram in the left inset, it is clear
that when kBT � 0.4, the λM (T ) are located on the second

crossover line kBT = 2(λ − λc), so that it not only detects
the temperature range of criticality, but also pinpoints the
crossover boundary between the QC and QD regions. From the
experimental point of view, this feature is useful to extrapolate
the quantum phase transition point (occurring at T = 0) with
data from real experiment (at finite temperatures).

To compare, in Ref. [11] quantum discord was reported
to be able to exactly detect the quantum critical point of the
XXZ model even at finite temperatures; however, we found that
quantum discord is unable to detect the temperature frame for
the quantum criticality of Ising model. Since quantum discord
is invariant under local unitary transformations, we can change
the basis by exchanging σx and σ z on every site. Then the
reduced density matrix of the two nearest neighbor sites can
be written as ρ2 = [I ⊗ I + 〈σxσ x〉 σ z ⊗ σ z + 〈σyσ y〉 σy ⊗
σy + 〈σ zσ z〉 σx ⊗ σx + 〈σx〉 (σ z ⊗ I + I ⊗ σ z)]/4, which is
of the “X” type so that the analytical solution for quantum
discord in Ref. [43] can be applied. 〈σx〉 is already known from
Eq. (7), and the others can be easily derived from Ref. [42] as

〈σxσ x〉 = 〈σx〉〈σx〉 − G+G−, (8)

〈σyσ y〉 = G+, (9)

〈σ zσ z〉 = G−, (10)

where

G± = − 1

π

∫ π

0
dφ

(λ + cos φ) tanh(−ωφ/kBT )

ωφ

± 1

π

∫ π

0
dφ

sin2φ tanh(−ωφ/kBT )

ωφ

, (11)

with ωφ =
√

1 + λ2 + 2λ cos φ.
In Fig. 5 we show the quantum discord of the thermal states

at different temperatures. From these curves it is not so clear
how the quantum critical point can be detected by quantum dis-
cord. In Fig. 6 we demonstrate the maximal quantum discord
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FIG. 5. Quantum discord for Ising model thermal states at
different temperatures. From top to bottom the temperature increases
from kBT = 0 to 1 in unit of the interaction energy in the system
Hamiltonian.
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FIG. 6. The λ location of the maximal quantum discord with
respect to temperatures for the Ising model. We show it only up
to kBT = 0.7 because the real maximal quantum discord for higher
temperatures is out of the calculation scope of λ. Here kBT is in unit
of the interaction energy in the system Hamiltonian.

as a function of temperature, from which it is not obvious to
make any conclusion on the temperature frame of the quantum
criticality. In this example the quantum coherence susceptibil-
ity method works better than the quantum discord method.

IV. DISCUSSION

We have introduced a coherence susceptibility method
to detect general quantum phase transitions. Different from
the entanglement method and quantum discord method [11],
which succeed in detecting QPTs essentially by selecting
various correlation functions in some educated ways, the un-
derlying idea of the present paper is that coherence represents
the quantumness of a system, and its susceptibility reflects
the quantum fluctuation, which triggers the quantum phase
transition. As a result at quantum phase transition points
the coherence susceptibility should show singularities. The
advantage of this method over other existing methods is that
it requires no prior knowledge of the order parameters of
the system and no careful consideration of the bipartition is
needed. In this sense, it is akin to the fidelity susceptibility
method but with a different mechanism as its foundation. We
have applied this method to various quantum systems with
continued, first order, and topological phase transitions. In all
cases, our method can detect the phase transition points exactly.

The effect of finite temperature on the coherence suscepti-
bility method has also been discussed. Our method not only
can extrapolate the quantum phase transition point with finite
temperature data, but also pinpoint the crossover boundary
between quantum critical and disordered regions and estimate
the temperature frame of quantum criticality. The temperature
frame predicted by our method matches the experimental
conclusion perfectly, which has filled the gap between the
previous theoretical result [24] and the recent experiment. It
is an interesting open question as to whether the crossover
boundary that separates the quantum critical region and the
renormalized classical region can be detected through the
coherence susceptibility of bigger constituent systems. One
step further would be to generalize the coherence susceptibility
method from identifying quantum phase transition points to
the quantum-classical crossover [44,45]. It is also interesting

to investigate the dynamics of closed or open systems at both
zero and finite temperatures using the coherence susceptibility.
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APPENDIX: THE EXACT SOLUTION OF THE KITAEV
HONEYCOMB MODEL

In this appendix we show how to derive the ground state of
the Kitaev model and calculate the correlation function of two
sites with an x link using the original method in Ref. [41].

We first introduce the Majorana operators. At each site,
we define four Majorana operators cα , with α = 0,x,y,z,
satisfying (cα)† = cα , {cα,cβ} = 2δαβ , and cxcyczc0 = 1. We
denote c0

j by cj and represent the Pauli operators by the
Majorana operators as

σa
j = ica

j cj , (a = x,y,z). (A1)

Since the values of α in the Kitaev model are determined by
the site index j and k, we can rewrite the Hamiltonian as

H = i

2

∑
j,k

Jαj,k
ûj,kcj ck

(
ûj,k ≡ ica

j c
a
k

)
. (A2)

Kitaev has showed that û2
j,k = 1, [ûj,k,H ]=0, and ûj,k com-

mute with each other. We take uj,k = 1 for all links because
this vortex-free configuration has the lowest energy [46]. We
follow the convention that j is the sublattice presented by the
empty circles and k is the other sublattice presented by the full
circles in Fig. 7.

x link

z lin
ky link

n1 n2

A unit 
cell

FIG. 7. A graphic representation of the Kitaev model. There are
two sublattices (empty and full circles). Each unit cell (marked by
elliptic circle) contains one site of each kind. Three types of bonds
are labeled by “x links,” “y links,” and “z links.” We choose the
coordinate axes in n1 and n2 directions.
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Then we choose the unit cell containing one empty circle
and one full circle along the x link, shown in Fig. 7. We rewrite
the site index j as (s,λ), where s refers to the location of the
unit cell, and λ describes the two different kinds of sublattices
(empty circles take the value 1, full circles take the value 2).
Thus, the Hamiltonian becomes

H = i

2

∑
s,λ,t,μ

Js,λ,t,μcs,λct,μ. (A3)

Actually, Js,λ,t,μ is determined by three indexes, λ,μ, and
t − s. Then, using the Fourier transformation, the Hamiltonian
takes the form

H = i
∑

q

2∑
λ,μ=1

J̃λ,μ(q)a−q,λaq,μ (A4)

with

J̃λ,μ(q) =
∑

t

eiq·rt J0,λ;t,μ, aq,λ =
√

1

2L2

∑
s

e−iq·rs cs,λ,

(A5)

where aq,λ satisfies a−q,λ = a
†
q,λ, a2

q,λ = 0, {ap,λ,a
†
q,μ} ≡

δpqδλ,μ, and other anticommutators are all equal to zero.
After simple calculations we obtain that J̃1,1(q) =

J̃2,2(q) = 0. We choose two directions n1 = √
3/2ey −

ez/2, and n2 = √
3/2ey + ez/2, shown in Fig. 7. Then

J̃1,2(q) = Jx + Jye
iq·n1 + Jze

iq·n2 , J̃2,1(q) = −J̃ ∗
1,2(q). Let

f (q) = ε(q) + i
(q), and choose −→
qy to be in the direction

of n1, and −→
qz to be in the direction of n2. Then we have

ε(q) = Jx + Jy cos qy + Jz cos qz,
(A6)


(q) = Jy sin qy + Jz sin qz,

where qy and qz take values qy,qz = 2πn/L, n = −(L −
1)/2, . . . ,(L − 1)/2.

Next, we use the Bogoliubov transformation to diagonalize
the Hamiltonian,

Cq,1 = uqaq,1 + vqaq,2, C
†
q,1 = u∗

qa
†
q,1 + v∗

qa
†
q,2,

(A7)
Cq,2 = v∗

qaq,1 − u∗
qaq,2, C

†
q,2 = vqa

†
q,1 − uqa

†
q,2,

where uq = 1/
√

2, vq = ifq/(
√

2|fq|), v−q = −v∗
q, and

the new operators satisfy {Cq,λ,C
†
p,μ} = δpqδλ,μ, C2

q,λ = 0,

C−q,1 = −2u∗
qv

∗
qC

†
q,2, and C

†
q,1Cq,1 = 1 − C

†
−q,2C−q,2. Then

the Hamiltonian reads

H =
∑

q

|fq|(1 − 2C
†
q,2Cq,2). (A8)

The normalized ground state is

|G〉 =
∏

q

C
†
q,2|0〉, (A9)

with Cq,2|0〉 = 0. The energy gap is 2 minq{|fq|}.

Correlation functions and reduced density matrix of the
Kitaev model

The two-site reduced density matrix is the joint state
of two spins at sites i and j and takes the form ρi,j =
�3

α,β=0〈σα
i σ

β

j 〉σα
i σ

β

j /4, where σ 0 is the identity, and σ 1,2,3 =
σx,y,z. So we need 16 correlation functions to construct the
two-site density matrix. We calculate the correlation functions
of two nearest lattices linked by an x bond, and it is obvious
that 〈σ 0

r,1σ
0
r,2〉 = 1. For the rest of the correlation functions,

only 〈σx
r,1σ

x
r,2〉 is nonzero. Thus, the two-site reduced density

matrix along the x link has the form

ρ2 = 1

4

⎛⎜⎜⎜⎝
1 0 0 〈σxσ x〉
0 1 〈σxσ x〉 0

0 〈σxσ x〉 1 0

〈σxσ x〉 0 0 1

⎞⎟⎟⎟⎠. (A10)

Then we calculate the correlation function 〈σx
r,1σ

x
r,2〉 using the

analytic result of the model:〈
σx

r,1σ
x
r,2

〉 =
〈
bx

r,1b
x
r,2

2

L2

∑
q,q′

ei(q+q
′
)·raq,1aq′

,2

〉

= −i
2

L2

∑
q,q′

ei(q+q
′
)·r〈aq,1aq′

,2〉.

By using the relation

〈aq,1aq′
,2〉 = 〈(u∗

qCq,1 + vqCq,2)(v∗
q′ Cq′

,1 − uq′ Cq′
,2)〉

= −u∗
quq′ 〈Cq,1Cq′

,2〉 = i

2
δq,−q′

fq

|fq| ,

we obtain the correlation function〈
σx

r,1σ
x
r,2

〉 = 1

L2

∑
q

fq

|fq| = 1

2L2

∑
q

fq + f−q

|fq|

= 1

L2

∑
q

εq

Eq
, (A11)

where Eq = |fq| =
√

ε2
q + 
2

q.

In the thermodynamic limit, we use the continuous ωy(z)

replacing qy(z), then the correlation function has the form

〈σxσ x〉 = 1

4π2

∫ π

−π

∫ π

−π

ε√
ε2 + 
2

dωy dωz, (A12)

with ε = Jx + Jy cos ωy + Jz cos ωz and 
 = Jy sin ωy +
Jz sinz.
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