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Exactly solvable time-dependent models of two interacting two-level systems
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Two coupled two-level systems placed under external time-dependent magnetic fields are modeled by a
general Hamiltonian endowed with a symmetry that enables us to reduce the total dynamics into two independent
two-dimensional subdynamics. Each of the subdynamics is shown to be brought into an exactly solvable form by
appropriately engineering the magnetic fields and thus we obtain an exact time evolution of the compound system.
Several physically relevant and interesting quantities are evaluated exactly to disclose intriguing phenomena in
such a system.
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I. INTRODUCTION

A rigid and localized dimeric structure (simply dimer)
consists of a pair of independent distinguishable quantum
subsystems living, by definition, in finite-dimensional Hilbert
spaces H1 and H2 and, therefore, hereafter referred to as spins
Ŝ1 ≡ (Ŝx

1 ,Ŝ
y

1 ,Ŝz
1) and Ŝ2 ≡ (Ŝx

2 ,Ŝ
y

2 ,Ŝz
2), respectively, with Ŝa

i

(i = 1,2; a = x,y,z) being the operator for the a-Cartesian
component of Ŝi in the laboratory reference frame. The
dimension of the Hilbert space H = H1 ⊗ H2 of the dimer is
(2S1 + 1)(2S2 + 1), indeed postulating the absence in the two
subsystems as well as in the compound system of classical
degrees of freedom (a situation previously described using
the adjectives “rigid” and “localized”). The physical nature
of Ŝi depends on the particular scenario under scrutiny: it
may be the spin of an electron or a nucleus, the angular
momentum of an atom in its ground state, or an effective
representation of a few-level system dynamical variable. The
Hamiltonian H of the dimer is then a true or effective
spin Hamiltonian where the terms linear in Ŝa

i may (even
fictitiously) be interpreted as Zeeman coupling of each of
the two spins with classical, external, generally different,
and time-dependent effective magnetic fields B1(t) and B2(t),
while the bilinear contributions may be thought of as stemming
from the spin-spin interaction [1].

Over the last two decades, a great deal of theoretical,
experimental, and applicative attention has been devoted to
the field of molecular magnetic materials, in particular after
the discovery of the so-called single magnet molecule (SMM),
that is a single molecule behaving like a nanosized magnet
associated to an unusual high value (even S = 10 [2]) of the
spin in the ground state of the molecule. It is a matter of fact
that as a result of a successful, extraordinary, and synergically
interdisciplinary effort aimed at searching and producing
SMM in the laboratory, in the last few years we have witnessed
a very fast growth of efficient protocols for synthesizing
a variety of such molecular magnets with the added value
of possessing a number of constituent paramagnetic ions
embodied in the molecule, running from 2 to 10 in different
samples [3]. Such important technological advances, on the
one hand, open very good applicative perspectives in many
directions, from the realization of an experimental setup
for testing theoretical prediction concerning qudits-based

single-purpose quantum computers to the availability of new
materials with magnetic properties tailored on demand to
meet specific tasks. On the other hand, the production of
crystalline or powder samples made up of molecular magnetic
units provides an ideal platform to investigate and reveal the
emergence of nonclassical signatures in the quantum dynamics
of two or few interacting spins.

The simplest coupled spin system we may conceive
consists, of course, of two interacting spin 1/2’s only in a
dimer, isolated from its environment (the rest of the sample)
degrees of freedom. Some binuclear copper(II) compounds
(e.g., Refs. [4,5]) provide a possible scenario of this kind
and, in the previous references, the values of the parameters
characterizing the spin-spin interaction in such a molecule
have been experimentally determined by exploiting electron-
paramagnetic resonance techniques. Motivations to investigate
the emergence of quantum signatures in the behavior of two
coupled spins (�1/2) go beyond the area of magnetic materi-
als. Two spin-1/2 Hamiltonians provide indeed experimentally
implementable, powerful, effective models to capture quantum
properties of such systems as two coupled semiconductor
quantum dots [6] or a pair of two neutral cold atoms each nested
into two adjacent sites of an optical lattice made up of isolated
double wells [7]. Spin models provide a successful language
to investigate possible manipulations of the qubits aimed
at quantum computing purposes and quantum information
transfer between two-spin qubits [8], encompassing rather
different physical contents such as, for example, cavity QED
[9,10], superconductors [11,12], and trapped ions [13,14].

The most general Hamiltonian model of an isolated dimer
hosting two spin 1/2’s may be written as a bilinear form involv-
ing the two sets of operators {Ŝx

1 ,Ŝ
y

1 ,Ŝz
1,Ŝ

0
1} and {Ŝx

2 ,Ŝ
y

2 ,Ŝz
2,Ŝ

0
2},

that is,

H =
∑

(i,j )�=(0,0)

γij Ŝ
i
1 ⊗ Ŝ

j

2 , (1)

where i and j run in the set (x,y,z,0) and the operator
Ŝ0

i (i = 1,2) is the identity operator 1i in Hi . The six real
parameters γi0 and γ0j (i,j �= 0) are assumed to be generally
time dependent, while all the other parameters characteriz-
ing the spin-spin coupling are real and time independent.
Without further specific constraints on the 15 parameters γij
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(i,j = x,y,z,0), the Hamiltonian possesses no symmetries
and, in particular, it does not commute with the collective
angular momentum operators Ŝ2 = (Ŝ1 + Ŝ2)2 and/or Ŝz =
Ŝz

1 + Ŝz
2. In such a case, even if H is time independent, the four

roots of the relative secular equation, albeit determinable, are
rather involved functions of all the 15 parameters and then are
practically not exploitable for extracting physical prediction on
the physical system under scrutiny. Thus, either legitimated by
investigations on specific physical situations or motivated by
the interest in studying models possessing, by construction,
constants of motion, some constraints on the parameters γij

have been introduced in the literature, making the Hamiltonian
(1) less general and, at the same time, nontrivial and of
physical interest. It is enough to quote the main declinations
of the three-dimensional quantum Heisenberg models or the
Dzyaloshinskii-Moriya (DM) models [15,16] in conjugation
or not with simplified contributions to terms describing
anisotropy effects in the Hamiltonian.

In this paper, we too investigate a Hamiltonian model
included in (1), still general enough to remain not commutating
with Ŝ2 and Ŝz, but such to possess a symmetry property at
the origin of significant properties characterizing its quantum
dynamics. A peculiar aspect of such a symmetry property is
that it displays its usefulness even when we wish to study
our physical system in a time-dependent scenario. Exploiting,
indeed, the symmetry-induced existence of two dynamically
invariant subspaces of H, we are able to successfully apply
a recently reported [17] systematic approach for generating
exactly solvable quantum dynamics of a single spin 1/2
subjected to a time-dependent magnetic field. Thus the main
result of this paper is twofold. First we report the exact
explicit solution of the time-dependent Schrödinger equation
of a system of two coupled spin 1/2’s described by a
time-dependent generalized Heisenberg model. Second, we
demonstrate that the method reported in Ref. [17], even as
it stands, proves to be a useful tool to treat more complex
time-dependent scenarios.

The paper is organized as follows. The Hamiltonian model
and the decoupling procedure are discussed in Sec. II, where,
in addition, the structure of the time-evolution operator is
also constructed with the help reported in Ref. [17]. In the
subsequent Sec. III, some exactly solvable time-dependent
Hamiltonian models of the two coupled qubits are singled out
and analyzed. Sections IV and V are, respectively, dedicated to
a systematic study of the time behavior of exemplary collective
spin operators and of the concurrence. Some conclusive
remarks are finally reported in the last Sec. VI.

II. THE HAMILTONIAN MODEL

The Hamiltonian model (1) includes all contributions
stemming from internal or external couplings of our two
spin-1/2 system. It may be cast in the following form:

H ′ = μB(B1 · g1 · S1 + B2 · g2 · S2) + S1 · �12 · S2, (2)

where g1, g2, and �12 are appropriate second-order Cartesian
tensors whose entries are related to the 15 parameters appear-
ing in Eq. (1) and μB denotes the Bohr magneton. Equation (2)
mimics the usual way of representing the Hamiltonian used in

a molecular or nuclear context to describe the coupling of two
true spin 1/2’s. In general, we may claim that g1 and g2 include
possible corrections to the coupling terms between each spin
and its local time-dependent external magnetic field, while
the other term includes contact termlike couplings as well as
anisotropiclike spin-spin couplings.

The model we are going to propose assumes in the
laboratory frame that Bi(t) ≡ [0,0,Bz

i (t)], and

�12 =
⎛
⎝γxx γxy 0

γyx γyy 0
0 0 γzz

⎞
⎠, gi =

⎛
⎜⎝

gxx
i g

xy

i 0

g
yx

i g
yy

i 0

0 0 gzz
i

⎞
⎟⎠,

(3)

with (i = 1,2). The structure of gi is, for example, appropriate
when the dimer is a binuclear unit characterized by a C2

symmetry with respect to the ẑ axis [5].
In accordance with our previous assumptions, in this paper

we investigate the quantum dynamics of the following time-
dependent two-spin Hamiltonian model:

H = �ω1σ̂
z
1 + �ω2σ̂

z
2 + γxxσ̂

x
1 σ̂ x

2 + γyyσ̂
y

1 σ̂
y

2 + γzzσ̂
z
1 σ̂ z

2

+ γxyσ̂
x
1 σ̂

y

2 + γyxσ̂
y

1 σ̂ x
2 , (4)

where σ̂ x
i , σ̂

y

i , and σ̂ z
i (i = 1,2) are the Pauli matrices related

to the respective components of the spin operator Ŝi as

Ŝi = �

2
σ̂ i , (5)

with σ̂ i ≡ (σ̂ x
i ,σ̂

y

i ,σ̂ z
i ), while

ωi(t) = μBgzz
i Bz

i (t)

2
. (6)

Note that the identity operators 1i are and will mostly be
suppressed for notational simplicity.

A. Symmetry-based decoupling of the two spins

Our Hamiltonian does not commute with Ŝ2 and Ŝz but, by
construction, it exhibits the following canonical and symmetry
transformation:

σ̂ x
i → −σ̂ x

i , σ̂
y

i → −σ̂
y

i , σ̂ z
i → σ̂ z

i , i = 1,2. (7)

This fact implies the existence of a unitary time-independent
operator accomplishing the transformation (7), which is by
construction a constant of motion. This unitary operator is
given by ±σ̂ z

1 σ̂ z
2 , being the transformation (7) is nothing but

the rotations of π around the ẑ axis with respect to each spin.
The unitary operator accomplishing this transformation is

eiπŜz
1/� ⊗ eiπŜz

2/� = −σ̂ z
1 σ̂ z

2 = cos

(
π

2
�̂z

)
, (8)

where �̂z ≡ σ̂ z
1 + σ z

2 . Equation (8) shows that the constant
of motion σ̂ z

1 σ̂ z
2 is indeed a �̂z-based parity operator since in

correspondence to its integer eigenvalues M = 0, ± 2, σ̂ z
1 σ̂ z

2
has eigenvalues +1 and −1, respectively.

The existence of this constant of motion implies the
existence of two subdynamics related to the two eigenvalues of
σ̂ z

1 σ̂ z
2 . We can extract these two subdynamics by considering

that the operator σ̂ z
1 σ̂ z

2 has the same spectrum of σ̂ z
2 , i.e., the
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same eigenvalues (±1) with the same twofold degeneracy.
Therefore, there exists a unitary time-independent operator U
transforming σ̂ z

1 σ̂ z
2 in σ̂ z

2 . It can be easily seen that the unitary
and Hermitian operator

U = 1

2

[
1 + σ̂ z

1 + σ̂ x
2 − σ̂ z

1 σ̂ x
2

] =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (9)

in the standard ordered basis

B = {|++〉,|+−〉,|−+〉,|−−〉} (10)

accomplishes the desired transformation:

U†σ̂ z
1 σ̂ z

2U = Uσ̂ z
1 σ̂ z

2U = σ̂ z
2 . (11)

Transforming H into H̃ = U†HU, we get

H̃ = �ω1σ̂
z
1 + �ω2σ̂

z
1 σ̂ z

2 + γzzσ̂
z
2 + γxxσ̂

x
1 − γyyσ̂

x
1 σ̂ z

2

+ γxyσ̂
y

1 σ̂ z
2 + γyxσ̂

y

1 . (12)

It is easy to check that σ̂ z
2 is a constant of motion of H̃ and

that, consequently, H̃ may be represented as

H̃ =
∑
σ z

2

H̃σ z
2

∣∣σ z
2

〉〈
σ z

2

∣∣ = H̃+ ⊗ |+〉〈+| + H̃− ⊗ |−〉〈−|,

(13)

where

H̃σ z
2

= γzzσ
z
2 + �

(
ω1 + ω2σ

z
2

)
σ̂ z

1 + (
γxx − γyyσ

z
2

)
σ̂ x

1

+ (γxyσ
z
2 + γyx

)
σ̂

y

1 . (14)

This implies the existence of two (σ z
2 = ±1) subdynamics

relative to a fictitious spin 1/2 immersed in different magnetic
fields, each one possessing three components with the z one
only depending on time.

B. Evolution operator in the presence of inhomogeneous
time-dependent magnetic field

If ω1 and ω2 were time independent, it would be straight-
forward to find the eigenstates of H̃ as

|ψ̃〉 = |φ1i〉σ z
2
⊗ ∣∣σ z

2

〉
(15)

(i = 1,2), where |φ1i〉±1 are the two eigenvectors of H̃±, that is
the two eigenvectors related to the subdynamics with σ z

2 = ±1.
Through the relation

|ψ〉 = U|ψ̃〉, (16)

we could in turn find the eigenvectors of H and the time
evolution of an arbitrary state of the two spins.

When ω1 and ω2 depend on time, thanks to the fact that
the unitary and Hermitian operator U is time independent, we
succeed, in view of the structure possessed by H̃ as given
by Eq. (12), in decoupling the time-dependent Schrödinger
equation into two time-dependent Schrödinger equations of
single spin 1/2. Therefore, we can construct the time-evolution
operator of the whole dynamics of the two interacting spin
1/2’s, starting from the construction of the two time-evolution
operators of the two subdynamics of single spin 1/2. Indeed,
the Cauchy problem for the evolution operator U generated

by H : i � U̇ = H U with U(0) = 1 is easily converted into the
following two Cauchy problems related to the subdynamics
associated to H̃+ and H̃−,

i� ˙̃U± = H̃± Ũ±, Ũ±(0) = 1, (17)

where Ũ ≡ U†UU ≡ Ũ+ ⊗ |+〉〈+| + Ũ− ⊗ |−〉〈−|. If we
are able to solve these two single spin-1/2 time-dependent
Schrödinger equations, we then can construct

U = UŨ U† = UŨU. (18)

The importance of this result consists in the possibility of
applying the Messina-Nakazato approach [17] to each of the
two subdynamics of single spin 1/2 to generate a class of
time-dependent exactly solvable models whose Hamiltonian
could be generally written as in (4). It is also important to
stress that the procedure and the results are valid also if all
the coupling constants γ were time dependent too, besides ω1

and ω2. To illustrate such a possibility, we solve in detail the
quantum dynamics of the two coupled spins, taking advantage
of some results reported in Ref. [17].

The two-dimensional matrix of each subdynamics we
derived before can be written as follows:

H̃± = H̃ ′
± ± γzz1 =

(

±(t) �±
�∗

± −
±(t)

)
± γzz1, (19)

where we have put


±(t) = �[ω1(t) ± ω2(t)],

�± = (γxx ∓ γyy) − i(±γxy + γyx). (20)

Denoting by E± the time-evolution operator generated by H̃ ′
±,

the evolution operator generated by H̃± is simply given by

Ũ± = e∓iγzzt/�E±, (21)

and therefore we will directly search the time-evolution
operator E± in accordance with Ref. [17]. Following the
example given in section 3.3 of [17] and considering the
case when the transverse component of the magnetic field
is constant (because in our context all of the internal coupling
coefficients are time independent), the time-evolution operator
for each subdynamics of single fictitious spin 1/2 may be cast
in the form

E± =
(

|a±|eiφ±
a |b±|eiφ±

b

−|b±|e−iφ±
b |a±|e−iφ±

a

)
, (22)

where

|a±| = cos

{ |�±|
�

∫ t

0
cos[�±(t ′)]dt ′

}
, (23)

and, since |a±|2 + |b±|2 = 1,

|b±| = sin

{ |�±|
�

∫ t

0
cos[�±(t ′)]dt ′

}
(24)

and

φ±
a = −

(
�±
2

+ R±

)
, φ±

b = −�±
2

+ R± − π

2
, (25)
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with

R± = |�±|
�

∫ t

0

sin �±
sin
[ 2|�±|

�

∫ t ′
0 cos �±dt ′′

]dt ′. (26)

Here, �±(t) are arbitrary, well-behaved mathematical func-
tions fulfilling the condition �±(0) = 0. Consistently, the
longitudinal components of the effective magnetic fields of
the two subdynamics vary over time so that


± = �

2
�̇± + |�±| sin �± cot

[
2|�±|

�

∫ t

0
cos �±dt ′

]
,

(27)

and we easily get the time dependence of ω1 and ω2 [and that
of Bz

1 and Bz
2 through the relation (6)], resulting in

ω1 = 
+ + 
−
2�

, ω2 = 
+ − 
−
2�

. (28)

These equations practically single out the class of time-
dependent Hamiltonians exactly treatable when the realistic
assumption is made that the tensors �12, g1, and g2 are time
independent. Deriving the time dependence of E±, we finally
get

U =

⎛
⎜⎜⎜⎜⎝

|a+|ei�+
a 0 0 |b+|ei�+

b

0 |a−|ei�−
a |b−|ei�−

b 0

0 −|b−|e−i�
′−
b |a−|e−i�

′−
a 0

−|b+|e−i�
′+
b 0 0 |a+|e−i�

′+
a

⎞
⎟⎟⎟⎟⎠, (29)

where we have put

�±
a/b = φ±

a/b ∓ γzz

�
t, (30a)

�
′±
a/b = φ±

a/b ± γzz

�
t. (30b)

It is important to point out that if ω1(t) = ω2(t),

ˆ̃H− =
(

0 �−
�∗

− 0

)
, (31)

and then the relative evolution operator reads

Ũ− = e+i
γzz
�

t

(
cos

( |�−|
�

t
)

ei� sin
( |�−|

�
t
)

e+i� sin
( |�−|

�
t
)

cos
( |�−|

�
t
)
)

, (32)

where � = arctan( γxx+γyy

γyx−γxy
). In this instance, hence, the whole evolution operator of the initial dynamics becomes

U =

⎛
⎜⎜⎜⎜⎜⎝

|a+|ei�+
a 0 0 |b+|ei�+

b

0 e+i
γzz
�

t cos
( |�−|

�
t
)

ei(�+ γzz
�

t) sin
( |�−|

�
t
)

0

0 e−i(�− γzz
�

t) sin
( |�−|

�
t
)

e+i
γzz
�

t cos
( |�−|

�
t
)

0

−|b+|e−i�
′+
b 0 0 |a+|e−i�

′+
a

⎞
⎟⎟⎟⎟⎟⎠. (33)

Of course, the evolution operator has the same form as that
given by Eq. (29), where the two-by-two internal block is
now completely determined regardless of the way H depends
on time. This means that when ω1(t) = ω2(t) = ω(t) in the
Hamiltonian model given in Eq. (4), the time evolutions of
|+−〉 and |−+〉 (and so, of every linear combination of these
states) are independent of ω(t) and are characterized by Bohr
frequencies related to the coupling constants appearing in H .

It is useful to underline that the condition ω1(t) = ω2(t) is
not implied simply by the condition B1(t) = B2(t) because, in
general, we may have different g tensors (or factors) for the
two spins which “rule” the coupling with the magnetic field

and are responsible for the different effective local magnetic
fields in the two sites, even when B1(t) = B2(t). So, the more
general condition implying ω1(t) = ω2(t) is

B1(t) · g1 = B2(t) · g2. (34)

III. EXACTLY SOLVABLE TIME-DEPENDENT
SCENARIOS FOR THE TWO SPIN-1/2 MODEL

In this section, we report and discuss some particular
time-dependent physical scenarios leading to exact analyt-
ical solutions for the time-evolution operator U by taking
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advantage of the approach described in the previous section.
We notice that for such a determination, the knowledge of Ũ+
and Ũ− is sufficient. This means that in practice our task is the
resolution of two dynamical problems, each formally referred
to as a spin 1/2. This points to the relevance of the method in
Ref. [17].

The following two sections report two exact solutions of
the quantum dynamics of a spin 1/2 based on such a method.
In practice, to single out a treatable scenario amounts to
engineering the time-dependent magnetic field acting upon
the spin 1/2. Both scenarios are useful in our problem
meaning that each of them allows the selection of appropriate
time-dependent exactly solvable models for H̃+ and H̃−. The
last section is dedicated to the explicit construction of the
two-spin Hamiltonian models emerging from the intermediate
steps leading to H̃+ and H̃−.

A. First exactly solvable time-dependent scenario
for one spin 1/2

We may put

|�|
�

∫ t

0
cos �dt ′ = 1

2
arcsin

[
tanh(γ t)

]
, γ = 2|�|

�
. (35)

With this choice, |a|(|b|) goes from 1(0), at t = 0, to
1/

√
2(1/

√
2), as t → ∞. Indeed, we have

|a(t)| =
√

cosh(γ t) + 1

2 cosh(γ t)
, |b(t)| =

√
cosh(γ t) − 1

2 cosh(γ t)
. (36)

Moreover, we have

cos �(t) = 1

cosh(γ t)
, sin �(t) = tanh(γ t), (37)

and the integral R is trivially integrated to yield

R = γ

2
t. (38)

From (37), we derive

�̇ = γ

cosh(γ t)
, � = 2 arctan

[
tanh

(
γ

2
t

)]
, (39)

so that we get

φa = − arctan

[
tanh

(
γ

2
t

)]
− γ

2
t = φb − γ t + π

2
, (40)

and the longitudinal component of the magnetic field,


 = 2|�| 1

cosh(γ t)
. (41)

The plot of 

|�| is shown in Fig. 1 as a function of τ1 = 2|�|

�
t .

B. Second exactly solvable time-dependent scenario
for one spin 1/2

We have a monotonically decreasing trend of the function
|a(t)| also by putting

|�|
�

∫ t

0
cos �dt ′ = arcsin[tanh(γ t)], γ = |�|

�
, (42)

1 2 3 4 5 6 7
Τ1

0.5

1.0

1.5

2.0

FIG. 1. Plot of 
(τ1)
|�| according to Eq. (41).

which, in view of Eqs. (23) and (24), implies

|a(t)| = 1

cosh(γ t)
, |b(t)| = tanh(γ t). (43)

In this case, thus, |a| (|b|) varies from 1(0), at t = 0, to 0(1)
when t → ∞, realizing a perfect inversion of the spin. The
expressions of cos �(t) and sin �(t) are the same as those in
(37) of the previous case and so also �̇ and � have the same
expressions as those given in (39) (though the definition of γ

is different in the two cases). What is different is the value of
integral R which, in this case, results in

R = 1
2 sinh(γ t), (44)

and for the phases of a and b, we have

φa = − arctan

[
tanh

(
γ

2
t

)]
− 1

2
sinh(γ t),

φb = φa + sinh(γ t) − π

2
. (45)

With this choice, the longitudinal component of the mag-
netic field must be engineered as


 = |�|
2

[
3

cosh(γ t)
− cosh(γ t)

]
. (46)

Figure 2 shows the behavior of 

|�| in this case against τ2 = |�|

�
t .

It is important to point out that the factor 1/2 (1) multiplying
the function arcsin[tanh(γ t)] in Eq. (35) [(42)] is crucial for the
possibility of exactly getting the integral R. Furthermore, such
a factor has a remarkable consequence in the time dependence
of |a|, |b|, and 
 in the first and second scenarios. We saw,
indeed, that the asymptotic (t → ∞) values of |a| and |b|
are very different in the two cases determining a completely
different dynamical evolution in time. Finally, as we can see
from Fig. 2, the multiplying factor significantly determines
the time trend of the longitudinal component of the magnetic
field which must be engineered appropriately to have the exact
dynamics we are studying.

C. Time-dependent scenarios for the two-spin model

In closing this section, we emphasize the significance of
our results by explicitly giving all the time dependences
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FIG. 2. Plot of 
(τ2)
|�| according to Eq. (46).

[constructed on the basis of Eq. (28)] of ω1 and ω2 [and so of
the two magnetic fields Bz

1 ans Bz
2 in view of Eq. (6)] in the

two-spin Hamiltonian model (4) leading to exactly solvable
and solved models. If we are interested in studying the time
evolution of an initial state that belongs to one of the two
dynamically invariant subspaces of H , wherein the dynamics
is described by H̃+ or H̃−, we get classes of time-dependent
scenarios which can be treated and solved exactly. Precisely, if
we consider, e.g., the subdynamics characterized by σ z

1 σ z
2 = 1

and described by H̃+, the two classes of time-dependent
exactly solvable problems of two spins interacting according
to our model in (4) are given by

�[ω1(t) + ω2(t)] = 2|�+|
cosh

( 2|�+|
�

t
) , (47a)

�[ω1(t) + ω2(t)] = |�+|
2

[
3

cosh
( |�+|

�
t
) − cosh

( |�+|
�

t

)]
.

(47b)

Equations (47) make clear the reason why we are talking of
classes of time-dependent exactly solvable models. Indeed, we
see that we have different possible choices of the two magnetic
fields Bz

1 and Bz
2 such that their combination, in accordance

with Eq. (6), satisfies one of the previous conditions, i.e.,
getting different time-dependent scenarios in which we are
able to know the dynamics exactly. Obviously, we also have the
analogous situation for the other subdynamics characterized by
σ z

1 σ z
2 = −1 and described by H̃−. In this case, the classes of

exactly solvable models are due by the conditions

�[ω1(t) − ω2(t)] = 2|�−|
cosh

(
2|�−|

�
t
) , (48a)

�[ω1(t) − ω2(t)] = |�−|
2

⎡
⎣ 3

cosh
(

|�−|
�

t
) − cosh

( |�−|
�

t

)⎤⎦.

(48b)

We stress that Eqs. (48) are not compatible with the situation
corresponding to ω1(t) = ω2(t) for which, on the other hand,
the quantum dynamics in the subspace under scrutiny has

been completely solved as explicitly given by Eq. (33). In
other words, Eqs. (48) display their usefulness, generating
exactly solvable time-dependent Hamiltonian models of the
two spins, only when ω1(t) �= ω2(t). If we look, instead,
at the entire dynamics of the two interacting spin 1/2’s,
considering a general initial condition belonging to the total
four-dimensional Hilbert space H, we have the following four
exactly solvable time-dependent cases [+(−) in ± corresponds
to 1(2)]:

�ω1/2(t) = |�+|
cosh

( 2|�+|
�

t
) ± |�−|

cosh
( 2|�−|

�
t
) , (49a)

�ω1/2(t) = |�+|
cosh

( 2|�+|
�

t
)

±|�−|
4

[
3

cosh
( |�−|

�
t
) − cosh

( |�−|
�

t

)]
, (49b)

�ω1/2(t) = |�+|
4

[
3

cosh
( |�+|

�
t
) − cosh

( |�+
�

t

)]

± |�−|
cosh

( 2|�−|
�

t
) , (49c)

�ω1/2(t) = |�+|
4

[
3

cosh
( |�+|

�
t
) − cosh

( |�+|
�

t

)]

±|�−|
4

[
3

cosh
( |�−|

�
t
) − cosh

( |�−|
�

t

)]
. (49d)

For example, if we consider the time-dependent scenario given
by Eq. (49a) with a particular choice,

γx = γy = 2γxy = 2γyx = c, (50)

we have, in view of Eqs. (20) and (35),

|�+| = c, |�−| = 2c, γ+ = 2c

�
, γ− = 4c

�
, (51)

and the time behavior of �ω1
c

and �ω2
c

in terms of τc = ct
�

is
seen in Fig. 3 (� = 1).

The above four cases, therefore, provide ω1(t) and ω2(t)
[and, consequently, the magnetic fields Bz

1(t) and Bz
2(t)] such

that our corresponding time-dependent Hamiltonian model
given by Eq. (4) turns out to be exactly solvable and the related
global time-evolution operator U , given by Eq. (29), can be
derived by plugging Eqs. (36) and (40), or (43) and (45), in
place of {|a+|,|b+|,φ+

a ,φ+
b } or of {|a−|,|b−|,φ−

a ,φ−
b } at will,

depending on which of the four time-dependent scenarios,
given in Eqs. (49), we choose.

We notice that when gzz
1 �= gzz

2 , Eqs. (49), by specializing
Eq. (4), generate time-dependent Hamiltonian models of the
two spins which cannot exactly be solved when the same
external homogeneous magnetic field Bz

1(t) = Bz
2(t) is applied

on the two spins. In such a case, indeed, the time dependence
of the magnetic field determined from Eq. (47) is incompatible
with that of the same magnetic field derivable from Eq. (48).
However, it is of relevance to point out that in this case, if
we choose the time dependence of the unique magnetic field
derived from either Eqs. (47a) or (47b) [(48a) or (48b)], we get
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FIG. 3. Plots of �ω1
c

(red solid line) and �ω2
c

(blue dashed line),
in terms of τ = ct

�
, according to the time-dependent model satisfying

Eqs. (49a) and (51).

particular time-dependent Hamiltonian models for which we
are able to solve exactly the subdynamics in the subspace
singled out by the condition σ z

1 σ z
2 = 1 (σ z

1 σ z
2 = −1). It is

finally useful to underline that when the physical system
may be described assuming gzz

1 = gzz
2 , a homogeneous time-

dependent magnetic field, as derivable from either Eq. (47a)
or (47b), leads to ω1(t) = ω2(t), whose implications on the
two-spin quantum dynamics have already been discussed after
Eq. (30).

IV. DYNAMICAL PROPERTIES OF
THE TWO SPIN-1/2 MODEL

In the previous sections, we have built exactly solvable
models for two coupled spin 1/2’s and solved them as well.
This result is important for two reasons. The first one is
that it shows that the systematic route reported in Ref. [17]
may be successfully applied to physical systems living in
an f -dimensional Hilbert space with f > 2. The second one
is related to the construction of new time-dependent exactly
solvable Hamiltonian models on its own, since solutions of
such problems, generally speaking, are very rare. Thus we
are going to exploit the knowledge of the solutions we have
found, in Sec. III A for the first time-dependent scenario,
and in Sec. III B for the second time-dependent scenario,
to investigate physical properties exhibited by our two-spin
system under the corresponding engineered magnetic fields.

A. Quantum evolution in the dynamically invariant subspace
with parity + and −

In the subspace where the constant of motion Ŝz
1Ŝ

z
2 assumes

the value �
2

4 with certainty, in view of Eq. (29), the initial states
[as a rule, the upper (lower) sign corresponds to α (β) here and
in what follows]

|ψ+
α/β (0)〉 ≡ |±±〉 (52)

at time t , respectively, become

|ψ+
α (t)〉 = |a+|ei�+

a |++〉 − |b+|e−i�
′+
b |−−〉, (53a)

|ψ+
β (t)〉 = |b+|ei�+

b |++〉 + |a+|e−i�
′+
a |−−〉. (53b)

Since both |++〉 and |−−〉 are eigenvectors of Ŝ2, the
subspace they span pertains to the quantum number S = 1 of
such collective observable. It is worthwhile to observe that the
magnetization 〈Ŝz(t)〉α/β of the system in this subspace is not
known with certainty. Indeed, the mean value of Ŝz ≡ Ŝz

1 + Ŝz
2

on the states |ψ+
α (t)〉 and |ψ+

β (t)〉 may be respectively cast as
follows:

〈Ŝz(t)〉α ≡ 〈ψ+
α (t)|Ŝz|ψ+

α (t)〉 = �(|a+|2 − |b+|2), (54a)

〈Ŝz(t)〉β ≡ 〈ψ+
β (t)|Ŝz|ψ+

β (t)〉 = −�(|a+|2 − |b+|2), (54b)

where |a+(t)| and |b+(t)| appear as entries of the matrix for U .

1. First time-dependent scenario

As soon as ω1(t) and ω2(t) satisfy Eq. (47a), we get the
following magnetization time dependences:

〈Ŝz(t)〉α/β = ± �

cosh
( 2|�+|

�
t
) . (55)

It should be appreciated that the recipe provided by
Eq. (47a) enables, in principle, the construction of infinitely
many time-dependent Hamiltonian models, all of them exactly
predicting such an evolution of the magnetization of the cou-
pled two-spin system. In Fig. 4, we plot such time dependences
(for α and β, in units of �) against the dimensionless time
2|�+|

�
t .

The common asymptotic value of 〈Ŝz(t)〉α and 〈Ŝz(t)〉β can
be understood by noticing that |ψ+

α (t)〉 and |ψ+
β (t)〉, up to

inessential phase factors, for large t evolve into the following
entangled Bell states of the two spins:

|ψ+
α/β (t)〉 → e

∓i

( ±γzz+|�+|
�

t+ (2∓1)π
4

) |++〉 ± |−−〉√
2

, (56)

with both having vanishing average magnetizations for
t → ∞. Equations (56) clearly evidence that engineering the

1 2 3 4 5 6 7

2 t
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0.5
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Sz

FIG. 4. Time dependence of 〈Ŝz(t)〉α (red solid line) and 〈Ŝz(t)〉β

(blue dashed line), in units of �, in the subdynamics with parity + for
the class of time-dependent models characterized by Eq. (47a).
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magnetic fields on the two spins, in accordance with the
constraint imposed by Eq. (47a), might be, in principle, at
the heart of many possible experimental schemes successfully
exploitable for generating such fully entangled states, whatever
the internal coupling coefficients appearing in the Hamiltonian
model, given by Eq. (4), are.

2. Second time-dependent scenario

The time dependences of 〈Ŝz(t)〉α/β in the subdynamics
with parity + stemming from the class of time-dependent
models characterized by Eq. (47b) takes, instead, the following
forms:

〈Ŝz(t)〉α/β = ±�

[
2

cosh2
( |�+|

�
t
) − 1

]
, (57)

which are plotted (in units of �) in Fig. 5 as functions of |�+|
�

t .
In this case, a gradual inversion of the magnetization of

the system occurs due to the fact that as t → ∞, we have a
perfect inversion of the probability of finding the two spins in
the state |++〉 (|−−〉) when its initial state is |−−〉 (|++〉).
The asymptotic states for t → ∞, in this scenario, are, indeed

|ψ+
α (t)〉 → e−i(�

′+
b +π)|−−〉, |ψ+

β (t)〉 → ei�+
b |++〉, (58)

implying immediately that

|〈ψ+
α/β (∞)|ψ+

α/β(0)〉|2 = 0. (59)

The subspace with parity − is invariant for Ŝz, while the
mean value of Ŝ2 evolves in time running in the interval
[0,2�

2]. It is easy to convince oneself that preparing the
two-spin system in the state |ψ−

α/β(0)〉 ≡ |±∓〉, we get

〈Ŝ2(t)〉α/β = �
2

[
1 ± tanh2

(
2|�−|

�
t

)]
(60)

in the first time-dependent scenario (48a), and

〈Ŝ2(t)〉α/β = �
2

[
1 ± 2 tanh2

( |�−|
�

t
)

cosh
( |�−|

�
t
) ] (61)

in the second time-dependent scenario (48b). These two time
evolutions are graphically represented (in units of �

2) in

1 2 3 4 5 6 7

t
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0.5

1.0
Sz

FIG. 5. Time dependence of 〈Ŝz(t)〉α (red solid line) and 〈Ŝz(t)〉β

(blue dashed line), in units of �, in the subdynamics with parity + for
the class of time-dependent models characterized by Eq. (47b).
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FIG. 6. Time dependences of 〈Ŝ2(t)〉α (red solid line) and 〈Ŝ2(t)〉β

(blue dashed line), in units of �
2, in the subdynamics with parity −

for the class of time-dependent models characterized by Eq. (48a).

Figs. 6 and 7 against the dimensionless times 2|�−|
�

t and |�−|
�

t ,
respectively.

Figure 6 suggests that the two spins tend toward states
identifiable as eigenstates of Ŝ2 of eigenvalue S = 1,
|S = 1,M = 0〉, and S = 0, |S = 0,M = 0〉, in correspon-
dence to α and β, respectively. Thus, whatever ω1(t) �= ω2(t),
fulfilling Eq. (48a), are, the envisioned time-dependent sce-
nario under scrutiny leads to the generation of the following
Bell states:

|ψ−
α/β (t)〉 → e

∓i

( ∓γzz+|�−|
�

t+ (2∓1)π
4

) |+−〉 ± |−+〉√
2

. (62)

Even in this case, then, our results, as expressed by Eq. (62),
might provide implementable experimental strategies for the
generation of two maximally entangled states |S = 1,M = 0〉
and |S = 0,M = 0〉.

On the other hand, the asymptotic trends of the two curves
in Fig. 7 reflect the t → ∞ asymptotic states,

|ψ−
α (t)〉 → e−i(�

′−
b +π)|−+〉, |ψ−

β (t)〉 → ei�−
b |+−〉, (63)

0 2 4 6 8 10

t

0.5

1.0

1.5

2.0
S2

FIG. 7. Time dependences of 〈Ŝ2(t)〉α (red solid line) and 〈Ŝ2(t)〉β

(blue dashed line), in units of �
2, in the subdynamics with parity −

for the class of time-dependent models characterized by Eq. (48b).
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which means that under the strategy dictated by Eq. (48b), the
initial state |+−〉 is converted into the state |−+〉, while |−+〉
undergoes the analogous complete inversion.

B. Quantum dynamics from an arbitrary initial condition

In this last section, we report the time evolution of a generic
initial state in H,

|ψ(0)〉 = c++|++〉 + c+−|+−〉 + c−+|−+〉 + c−−|−−〉,
(64)

generated by one of the Hamiltonian models given in Eqs. (49).
It is easy to show that the expression of |ψ(t)〉 ≡ U |ψ(0)〉 can
be cast as follows:

|ψ(t)〉 = c++(t)|++〉 + c+−(t)|+−〉 + c−+(t)|−+〉
+ c−−(t)|−−〉, (65)

with

c±±(t) = e−i
γzz
�

t (|a+(t)|e±iφ+
a (t)c±± ± |b+(t)|e±iφ+

b (t)c∓∓),

(66a)

c±∓(t) = e+i
γzz
�

t (|a−(t)|e±iφ−
a (t)c±∓ ± |b−(t)|e±iφ−

b (t)c∓±),

(66b)

where |a±(t)|, φ±
a (t), |b±(t)|, and φ±

b (t) appear as entries in
the matrix representation of the evolution operator U (29)
generated by the specific two-spin Hamiltonian model under
scrutiny [that is, determined by one of Eqs. (49)].

The time evolutions of Ŝ2(t) as well as of Ŝz exhibit no
interference terms stemming from the presence of states of
different parity in (65). For example, in view of Eqs. (54), we
have

〈ψ(t)|Ŝz|ψ(t)〉 = �(|c++(t)|2 − |c−−(t)|2) (67)

because the mean value of Ŝz in any state of negative parity
identically vanishes. It is thus interesting to evaluate the
time evolution of the mean value of an observable which
has nonvanishing matrix elements between states of different
parities, for example Ŝx = Ŝx

1 + Ŝx
2 . We limit ourselves to an

exemplary case, namely, the one obtained by choosing H with
ω1(t) and ω2(t) as prescribed in Eq. (49a) and the amplitudes
of |ψ(0)〉 real and such to make the initial state a common
eigenstate of Ŝ2 and Ŝx with maximum eigenvalues, that is,

c++ = c+− = c−+ = c−− = 1
2 . (68)

Equation (65) immediately yields

〈Ŝx(t)〉 ≡ 〈ψ(t)|Ŝx |ψ(t)〉

= �

{
cos

(
2γzz

�
t

)
[|a+||a−| cos(φ+

a ) cos(φ−
a )

+ |b+||b−| sin(φ+
b ) sin(φ−

b )] + sin

(
2γzz

�
t

)

× [|a+||b−| cos(φ+
a ) sin(φ−

b )

− |a−||b+| cos(φ−
a ) sin(φ+

b )]

}
, (69)
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Τ
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FIG. 8. Plot of 〈Ŝx(t)〉 (blue solid line), in units of �, starting
from c++ = c+− = c−+ = c−− = 1

2 according to the time-dependent
scenario (49a) and the special choice in Eqs. (50) and (51); the
red upper (green lower) dashed straight line represents 〈Ŝx(t)〉 = 1

2

(〈Ŝx(t)〉 = − 1
2 ).

with [|a±(τ±)| = X
(1)
± (τ±), |b±(τ±)| = X

(2)
± (τ±)], and

|X(i)
± (τ±)| =

√
cosh(τ±) − (−1)i

2 cosh(τ±)
,

(70)

φ±
a (τ±) = − arctan

[
tanh

(
τ±
2

)]
− τ±

2

= φ±
b (τ±) − τ± + π

2
,

where τ± = γ±t and γ± = 2|�±|
�

, according to the time-
dependent scenario (49a) (that is, the “first time-dependent
scenario” for each subdynamics). The plot of 〈Ŝx(t)〉, in
this instance, and considering the special case characterized
by Eqs. (50) and (51), is given (in units of �) in Fig. 8
against τ+. It is possible to understand the peculiar behavior
for large t , characterized evidently by one frequency, by
deriving analytically the asymptotic expression of 〈Ŝx(t)〉,
which, indeed, acquires the following clear form:

〈Ŝx(t)〉 = �

2
cos

[(
γzz

|�+| + |�−|
2|�+| − 1

2

)
τ+

]
. (71)

V. CONCURRENCE IN THE TWO SUBDYNAMICS

Spurred by the results of the previous section, which, in
particular cases, allow a direct and first-glance comparison
between the initial level of entanglement with that stored in
the asymptotic states, in this section we are going to derive
and analyze the exact time-evolution law of the entanglement
established in the two-spin system when it is initially prepared
in the generic state given by Eq. (64). For a pair of qubits, a
good measure of entanglement is the concurrence C introduced
by Wootters [18] as well as the negativity, introduced by Vidal
and Werner [19], which in a generic state coincides with C

[20]. At a generic time instant t , it may be expressed as

C(t) = 2|c++(t)c−−(t) − c+−(t)c−+(t)|, (72)
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FIG. 9. Plot of C(t) starting from |++〉 when the time-dependent
scenario (47a) is adopted.

where the four time-dependent coefficients are the complex
amplitudes of the normalized state |ψ(t)〉, into which |ψ(0)〉
evolves, and are given in Eqs. (66). As expected, when the
system starts in a state of definite parity, Eq. (72) yields
C(t) = 2|c++(t)c−−(t)| (= 2|c+−(t)c−+(t)|) for parity +(−).
When c++(0) = 1 or c−−(0) = 1 and the first time-dependent
scenario for this subdynamics is assumed, that is (47a), the
concurrence results in

C(t) = 2|a(t)||b(t)| = tanh

(
2|�+|

�
t

)
, (73)

whose plot is reported in Fig. 9 against τ+ = 2|�+|
�

t . The
asymptotic behavior of C(t) in this case is easily understood
in view of Eqs. (56).

Considering, instead, c++(0) = c−−(0) = 1√
2
, still together

with (47a), we obtain

C(t) =
√

1 − tanh2

(
2|�+|

�
t

)
sin2

(
2|�+|

�
t

)
, (74)

which is plotted in Fig. 10 against τ+ = 2|�+|
�

t .
It shows that after a transient regime (τ+ < 2π ), the

concurrence oscillates between 0 and 1 as | cos(τ+)|, which is
immediately deduced from Eq. (74) for large t . The meaning of
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FIG. 10. Plot of C(t) starting from |++〉+|−−〉√
2

under the time-
dependent scenario (47a).

this behavior is that the system periodically evolves alternating
factorized states and the Bell states. To understand and better
appreciate this statement quantitatively, we exploit Eqs. (56)
to recover the asymptotic expression of |ψ(t)〉 (γ+ = 2|�+|

�
),

|ψ(t)〉 = e−i
γzz
�

t

[
e−i π

2 sin

(
γ+
2

t + π

4

)
|++〉

+ cos

(
γ+
2

t + π

4

)
|−−〉

]
, (75)

which clearly exhibits oscillations of period T+ = 4π
γ+

= 2π�

|�+| in
accordance with the asymptotic expression of C(t). Equation
(75) easily explains the oscillations exhibited by C(t) since it
predicts that the two-spin system, up to a global phase factor,
comes back to its initial condition and, after a time T+

4 ( T+
2 ),

it reaches the factorized (Bell-like) state |++〉 (−i|++〉−|−−〉√
2

),
whereas in the last semiperiod, it reaches first the factorized
state |−−〉 and eventually its initial state. The reason why
the concurrence does not vanish in this case in the transient
region stems from the fact that C(t) = 0 necessarily implies
c++(t) = 0 or c−−(t) = 0. In view of the structure of the two
amplitudes c++(t) and c−−(t) [see Eqs. (66a)], we deduce that
|a+(t)| = |b+(t)| is a necessary condition in order for c++(t) or
c−−(t) to vanish. Since such a condition is only asymptotically
reached by the system, the concurrence cannot vanish during
the transient regime.

We now study C(t) when the system is initially prepared
in one of the same three states considered above, adopting
this time as the Hamiltonian model the one stemming from
Eq. (47b) (called “second time-dependent scenario” in the
previous section). When c++(0) = 1 or c−−(0) = 1 and the
second time-dependent scenario (47b) is assumed, the concur-
rence becomes

C(t) = 2
tanh

( |�+|
�

t
)

cosh
( |�+|

�
t
) , (76)

and this is plotted in Fig. 11 as a function of τ
′
+ = |�+|

�
t .

We note that at time instant (τ+)0 = arcsinh(1) ≈ 0.88, the
system of the two spins reaches a maximally entangled state
from which it asymptomatically evolves toward a factorized
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FIG. 11. Plot of C(t) starting from |++〉 according to the time-
dependent scenario (47b).
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FIG. 12. Plot of C(t) starting from |++〉+|−−〉√
2

according to the
time-dependent scenario (47b).

state. Even in this case, it is useful to exploit Eqs. (53a) and
(53b) together with Eqs. (43) and (45), predicting that at the
particular time instant (τ+)0, the evolved states, respectively,
become

|ψ+
α [(τ+)0]〉 = ei( −γzz (τ+)0

�
+φa [(τ+)0]) |++〉 − ei( π

2 −1)|−−〉√
2

,

(77a)

|ψ+
β [(τ+)0]〉 = ei( −γzz (τ+)0

�
+φb[(τ+)0]) |++〉 + e−i( π

2 −1)|−−〉√
2

,

(77b)

which is in accordance with the result on the concurrence.
Equations (58) provide the asymptotic form of the two evolu-
tions under scrutiny, confirming the expectation of vanishing
concurrence for large t .

If the two-spin system is initially prepared in the Bell state
|ψ(0)〉 = |++〉+|−−〉√

2
, the concurrence may be expressed as

C(t) =
√√√√1 − 4

tanh2
( |�+|

�
t
)

cosh2
( |�+|

�
t
) sin2

[
sinh

( |�+|
�

t

)]
, (78)

which is graphically represented in Fig. 12 as a function of
τ

′
+ = |�+|

�
t . Since on the basis of Eqs. (58) the state |++〉

(|−−〉) asymptotically evolves into |−−〉 (|++〉), up to an
initial state-dependent global phase factor, the concurrence in
the case under scrutiny must asymptotically comes back to
its maximum value. The peculiar oscillatory behavior as time
goes on is due to the fact that the time evolution of |c++(t)| and
|c−−(t)| is dominated by progressive oscillations of decreasing
amplitudes around 1/

√
2 until they asymptotically stabilize at

such values as we can transparently appreciate in Fig. 13. The
normalization of |ψ(t)〉 justifies the coincidence of the time
instants where |c++(t)| and |c−−(t)| assume the value 1/

√
2.

On the other hand, the independence of C(t) on both phases of
c++(t) and c−−(t) explains why these time instants are exactly
those at which C(t) = 1. Moreover, Fig. 12 makes evident that
all of the infinitely many minima of the concurrence occur at

0 1 2 3 4 5 6 7

t

0.2

0.4

0.6

0.8

1.0

FIG. 13. Plots of |c++(t)| (blue dashed line) and |c−−(t)| (red
dotted line) and the resulting concurrence C(t) (black line) starting
from c++(0) = 1√

2
and c−−(0) = 1√

2
according to the time-dependent

scenario (48b); the upper green (middle brown) line represents the
y = 1 (y = 1√

2
) level.

those time instants where ||c++(t)| − |c−−(t)|| reaches local
maxima in time (maximally unbalanced condition).

It is possible to find exactly the infinite sequence of states
at which the concurrence assumes its maximum value. To this
end, we first calculate the time instants at which C(t) = 1 and
|c++(t)| = |c−−(t)| = 1/

√
2 simultaneously. They are given

by

(τ
′
+)n = arcsinh(nπ ), (79)

with n = 0,1,2, . . .. Plugging (τ
′
+)n into the state given in

Eq. (65) after making explicit its time dependence with the
help of Eqs. (66a) and (70) yields the following sequence of
maximally entangled states progressively emerging in the time
evolution of the initial Bell state:

|ψ[(τ
′
+)n]〉 = ei( −γzz (τ+)n

�
+φn+θn) |++〉 + e−2iφn |−−〉√

2
, (80)

where

φn ≡ φ+
a [(τ

′
+)n] =

√√√√√
1 + (nπ )2 − 1√
1 + (nπ )2 + 1

(81)

and

θn = arctan[(−1)n+1nπ ], (82)

with n being an arbitrary non-negative integer.
We emphasize that if we start from the initial condition

|+−〉 adopting the time-dependent scenario (48a) [(48b)],
we might again go through the arguments previously used
to discuss the case |++〉 in conjunction with (47a) [(47b)],
getting results that coincide with those expressed by Eqs. (73)
[(76)] provided that γ+ is substituted by γ− and γzz with −γzz.
Analogously, had we started from the Bell state (|+−〉 +
|−+〉)/√2, Eq. (74) [(78)] represents a valid result in this
case too, provided the same substitution of γ+ and γzz is made
and Eq. (48a) [(48b)] is adopted.

It is worth noticing that in the parity-constrained dynamical
evolution under scrutiny, the concurrence C(t) at a generic time
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instant may be expressed as [21]

C(t) =
√

C2
xx + C2

yy, (83)

where

Cxx(t) = 〈ψ(t)|σ̂ x
1 σ̂ x

2 |ψ(t)〉
− 〈ψ(t)|σ̂ x

1 |ψ(t)〉〈ψ(t)|σ̂ x
2 |ψ(t)〉 (84)

is the covariance of σ̂ x
1 and σ̂ x

2 and, analogously, Cyy(t)
is the covariance of σ̂

y

1 and σ̂
y

2 . It is simple to show
that since [21] Cxx(t) = 2Re[c++(t)c∗

−−(t)] and Cyy(t) =
2Im[c++(t)c∗

−−(t)],

Cxx[(τ
′
+)n] = cos(2φn), (85a)

Cyy[(τ
′
+)n] = sin(2φn), (85b)

in accordance with the property C[(τ
′
+)n] = 1 for any

n = 0,1,2, . . .. Since, in view of Eq. (81), 2φn spans
an infinite countable number set between 0 and 2 made
up of irrationally related elements, Cxx[(τ

′
+)n] is a de-

creasing function of n, changing its sign as soon as
2(τ

′
+)n > π and asymptotically tending to cos(2), whereas

Cyy[(τ
′
+)n] is an increasing (decreasing) function of n for

2(τ
′
+)n < π [2(τ

′
+)n > π ], asymptotically tending to sin(2). It

is remarkable that the quantitative link expressed by Eq. (83)
enables a direct measurement of the level of the entanglement
established in the system at any time instant.

VI. CONCLUSIVE REMARKS

The Hamiltonian model given by Eq. (4) adopted in this
paper contains seven parameters and then is potentially useful
to describe a huge variety of physical systems and/or physical
situations in its parameter space. The key guidance leading us
to extract this model from the general one given in Eq. (1)
is the idea of assuring to our model the existence of a
constant of motion with two eigenvalues only, holding at the
same time the noncommutativity with Ŝ2 and/or Ŝz. Such a
constant of motion, by construction, subdivides H into two
dynamically invariant and orthogonal subspaces sharing the
same dimension 2. The merit of such a decomposition is that
it paves the way for extending our Hamiltonian model to a
time-dependent scenario, namely that wherein the two
spins are subjected to an appropriate inhomogeneous time-
dependent magnetic field.

In this paper, we report the exact time evolutions generated
by such a time-dependent Hamiltonian. This result is first of all
important on its own since exactly solvable problems involving
two coupled bodies driven by time-dependent external fields
are rare. In connection with the last consideration, we point out
that our exact treatment holds its validity even when the spin-
spin coupling constants are time dependent, as for example
happens when two neutral atoms located in the left and right
sites of a double well are induced to merge in a single well
by carefully adjusting (that is, time controlling) the trapping
potential [7]. Our treatment possesses an additional merit of
providing not a lucky trick confined to the problem under
scrutiny only, but indeed an exportable route. This claim, on
the one hand, stems from the circumstance that the symmetry
condition imposed to our Hamiltonian may be easily attributed
to other Hamiltonian models representing dimers hosting two
spins higher than 1/2 and even of different values. On the other
hand, the consequent emergence of invariant subdynamics
is traceable back to such a symmetry leading indeed to the
possibility of taking advantage of the method reported in
Ref. [17]. Our treatment is illustrated finding the time behavior
of the two spins in correspondence to different choices of
the inhomogeneous magnetic field. In particular, the time
evolution of the mean value of some physically transparent
observables as well as of the entanglement exhibited by the
two-qubit system during its time evolution is carefully reported
and discussed. Summing up, we wish to remark that providing
exact solutions of a class of rather general Hamiltonian models
describing two coupled qubits, although of relevance, is not the
only result reported in this paper. We emphasize indeed that
the strategic double exploitation of the decoupling treatment
and of the systematic approach of Ref. [17] demonstrates, in
a very transparent way, the usefulness of such an approach
beyond the original application to the quantum dynamics of a
spin 1/2 subjected to a time-dependent magnetic field.
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