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We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete
states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective
Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-
Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective
Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in
the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a
higher-order transition when both the two discrete states are located near the continuum threshold.
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I. INTRODUCTION

In open systems, the time symmetry of the evolution
equations such as the Schrödinger equation is spontaneously
broken with the appearance of Poincaré resonance, and an
irreversible process emerges [1]. Time-symmetry breaking
is ubiquitous in nature, e.g., nuclear decay and spontaneous
emission [2,3], but at a glance it seems inconsistent with the
principle of microscopic dynamics, which dictates the time
evolution of a physical system to be time reversible subject to
unitary time evolution. Therefore, since the birth of quantum
mechanics, finding a consistent interpretation for irreversible
phenomena in a unified theoretical framework has been a
fundamental difficulty [4–10].

Recently, various extensions of quantum mechanics written
in terms of a phenomenological non-Hermitian Hamiltonian
have been proposed [11–17]; for example, it has been revealed
that if we weaken the standard requirement of Hermiticity
in favor of parity-time-symmetry (PT symmetry) [13,14]
the effective Hamiltonian may exhibit a bifurcation of the
eigenvalues from real to complex, as the system control
parameter surpasses a critical value. This singular critical
point is mathematically identified as an exceptional point (EP)
where the effective Hamiltonian takes a Jordan block structure
as not only the eigenvalues but also the eigenstates coalesce
[15,16,18,19].

This process can be viewed as a phase transition in a dynam-
ical sense: Below the critical point, time evolution is reversible,
while irreversibility appears beyond the critical point. There-
fore we call this a time-symmetry-breaking phase transition
(TSBPT) where the imaginary part of the eigenvalue can be
regarded as an order parameter that has a singularity at the
critical point in terms of a system control parameter [19–26].
Very recently TSBPT has been experimentally observed in
mesoscopic quantum systems [17,27], and also in many anal-
ogous optical systems where interesting collective dynamical
properties have been studied, such as super-radiance and lasing
[28–31].
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In the description of open quantum systems, a non-
Hermitian effective Hamiltonian can be derived from the
microscopic total (Hermitian) Hamiltonian including the envi-
ronment with use of the Feshbach-projection-operator method
(FPO method) without relying upon phenomenological equa-
tions [16,17,20,22,24,32], where detailed information about
the microscopic interaction with the environment is renormal-
ized into the self-energy, which is represented by a Cauchy
integral in which the direction of the analytic continuation
across the branch cut determines the direction of the arrow of
time. Petrosky, Prigogine, and Tasaki have clarified that the
spectrum of the effective Hamiltonian coincides with that of
the total Hamiltonian, so that the Hermitian Hamiltonian of the
total system can have a complex spectrum due to the resonance
if we extend the eigenvector space from the ordinary Hilbert
space into a dual vector space, called the extended Hilbert
space, where the Hilbert norm of the eigenvector vanishes
[8,10,33].

An important feature of the effective Hamiltonian thus
derived is that it may have strong energy dependence,
especially around the branch point. As a result, the eigenvalue
problem of the effective Hamiltonian is nonlinear in the sense
that the operator itself depends on the energy eigenvalue.
This nonlinearity plays a crucial role in the TSBPT, because
the self-energy changes dramatically around the branch point
bifurcation. However, the role of this nonlinearity in the study
of TSBPT has not been fully discovered yet. As an example
demonstrating the importance of the nonlinear effect, in our
previous study on the decay process of an impurity in a
one-dimensional (1D) conduction band we showed that the
Van Hove singularity in the density of states results in a strong
nonanalytic enhancement of the decay rate [34–36].

In this paper, we consider a microscopic model consisting
of multiple discrete states coupled with a common one-
dimensional (1D) continuum, in which the nonlinearity plays
an essential role in the properties of the TSBPT. As a result
of the coupling of several resonance states through a common
continuum, the individual decay processes interfere with each
other, yielding a characteristic spectral profile known as a
Feshbach-Fano resonance [32,38–42]. As a result of the
interference, the decay process may be completely suppressed
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for certain parameter values, which is also known as a bound
state in continuum (BIC) [16,43–45]. Here we show that when
the discrete state energies are located near the branch point,
the stabilization by the Fano resonance and the destabilization
by the Van Hove singularity compete to introduce entirely new
dynamics.

Though several works have investigated the TSBPT as-
sociated with multilevel systems coupling with a common
continuum [16,17,19–22,24], the nonlinear effect has been
examined in less detail. In this work, we reveal that the usual
second-order phase transition becomes fourth order when
two resonant states appear near the continuum threshold, by
carefully considering the nonlinear effect of the microscopic
effective Hamiltonian. Furthermore, we find that the decaying
state is more strongly stabilized due to this competition than
the stabilization resulting from an ordinary Fano resonance.

In Sec. II, we present our model and the nonlinear eigen-
value problem of the effective Hamiltonian by use of the FPO
method. Before studying the decay process for two discrete
states, in Sec. III the nonanalytical enhancement of the decay
process due to the Van Hove singularity is briefly reviewed
for a single-state model. The main results of this paper for
the two-discrete-states model are presented in Sec. IV, where
it is revealed that the order of the TSBPT is significantly
modified as a result of the competition between the Van Hove
singularity and the Fano resonance. Section V is devoted to
clarifying the role of the Van Hove singularity by comparing
these results to the decay process for a three-dimensional
(3D) system; we also propose some experiments to observe
our findings. In Appendix B, we heuristically present an
effective non-Hermitian Hamiltonian which elucidates the
system properties at the EP.

II. MODEL AND EFFECTIVE HAMILTONIAN

We shall consider two discrete states |a〉 and |b〉 with their
respective energies, εa and εb, coupled with a one-dimensional
continuous state |k〉 with the energy εk as shown in Fig. 1. The
Hamiltonian of the total system is given by

Ĥ = Ĥ0 + Ŵ , (1)

where

Ĥ0 = εa|a〉〈a| + εb|b〉〈b| +
∫ kc

−kc

dkεk|k〉〈k| , (2a)

Ŵ = αa

∫ kc

−kc

dk(|a〉〈k| + |k〉〈a|)

+αb

∫ kc

−kc

dk(|b〉〈k| + |k〉〈b|). (2b)

In Eq. (2a), as a typical example of a continuous state
with a Van Hove singularity at the continuum threshold,
we consider the energy dispersion of a one-dimensional free
particle represented by

εk = �
2k2

2m
, (3)

while αa and αb are the coupling strengths. In this work, we
choose units such that � = kc = ωc = 2m = 1, where kc and

|a

|b
εa

εb

0αa

αb εk

|k

FIG. 1. Two discrete states |a〉 and |b〉 coupled with a 1D
continuum |k〉.

ωc are the cutoff wavelength and frequency of the continuum.
With use of these units, all the parameters are dimensionless
in this paper.

When the discrete states are in resonance with the con-
tinuum, they generally decay into the continuum. In order
to explain the exponential decay process in terms of the
microscopic dynamics, we consider the complex eigenvalue
problem in the extended Hilbert space [10]

Ĥ |�j 〉 = zj |�j 〉, 〈�̃j |Ĥ = zj 〈�̃j |, (4)

where |�j 〉 and 〈�̃j | are the right and left eigenstates of Ĥ

with a common complex eigenvalue zj . In order to solve the
complex eigenvalue problem Eq. (4), we shall use the FPO
method with the projection operators defined by

P̂ ≡ |a〉〈a| + |b〉〈b|, Q̂ = 1 − P̂ . (5)

Acting with P̂ and Q̂ on the first equation of Eq. (4), we have

P̂H0P̂ |�j 〉 + P̂ Ŵ Q̂|�j 〉 = zj P̂ |�j 〉, (6a)

Q̂Ŵ P̂ |�j 〉 + Q̂HQ̂|�j 〉 = zj Q̂|�j 〉. (6b)

From the second equation, we have

Q̂|�j 〉 = Q̂
1

zj − Q̂HQ̂
Q̂Ŵ P̂ |�j 〉. (7)

Substituting Eq. (7) into Eq. (6a) results in

Ĥeff(zj )P̂ |�j 〉 = zj P̂ |�j 〉, (8)

where Ĥeff(z) is an effective Hamiltonian defined by

Ĥeff(z) ≡ P̂H0P̂ + P̂ Ŵ Q̂
1

z − Q̂HQ̂
Q̂Ŵ P̂ (9a)

= Ĥ0 + �̂(z) , (9b)

and �̂(z) is the energy-dependent self-energy operator. It
should be emphasized that the spectrum of the effective
Hamiltonian coincides with the discrete spectrum of the total
Hamiltonian.

There are two important characteristics of the eigenvalue
problem of Ĥeff(zj ) in Eq. (8). First, the self-energy propagator
possesses a resonance singularity, which renders Ĥeff(zj )
non-Hermitian. Second, the eigenvalue problem in Eq. (8)
is nonlinear in the sense that Ĥeff(zj ) itself depends on the
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eigenvalue through the self-energy operator �̂(z), with which
the eigenvalue must be self-consistently determined.

In the present case, the effective Hamiltonian is represented
in terms of the {|a〉,|b〉} basis by

Ĥeff(z) =
(

εa 0
0 εb

)
+ σ (z)

(
α2

a αaαb

αaαb α2
b

)
, (10)

where σ (z) is the scalar self-energy defined by

σ (z) ≡ 1

2kc

∫ kc

−kc

dk

z − εk

, (11)

with the cutoff wave number kc (kc = 1, as denoted above)
to avoid an ultraviolet divergence of the integral. With use of
Eq. (3), σ (z) is given by

σ (z) = 1

4kc

∫ k2
c

0

1√
ε

dε

z − ε
= 1 − i

π

2
√

z
. (12)

The scalar self-energy σ (z) expressed as a Cauchy integral
has a branch cut along the positive real axis of εk so
that it becomes a two-valued complex function. By analytic
continuation σ (z) becomes an analytic function in a two-sheet
Riemann surface. As seen in Eq. (10), the two discrete states
are indirectly coupled to each other via interactions with a
common continuum. The imaginary part of this off-diagonal
element is essential to the Fano resonance as will be shown in
Sec. IV. It should be noted that the self-energy is divergent
at the branch point z = 0, which is due to the Van Hove
singularity. The Van Hove singularity introduces a number of
nonanalytic effects into the system, including an enhancement
of the decay rate near the branch point [34–36,46].

The eigenvalue zj is obtained as a solution of the dispersion
equation det[Ĥeff(z) − zÎ ] = 0 from Eq. (8), which is explic-
itly written as

f (z; εa,εb) ≡ [
z − εa − α2

aσ (z)
][

z − εb − α2
bσ (z)

]
−α2

aα
2
bσ

2(z) = 0. (13)

When we rewrite this as, for example,

z = εa + α2
aσ (z) + α2

aα
2
bσ

2(z)

z − εb − α2
bσ (z)

, (14)

the physical meaning of each term of the right-hand side is
clear: The first term is the unperturbed energy of the |a〉 state,
the second term represents the direct interaction of the |a〉
state with the continuum, while the third term represents the
indirect coupling with the |b〉 state through the continuum.

By substituting Eq. (12) into Eq. (13), the dispersion
equation takes the form of a fifth-order polynomial equation

f (z; εa,εb) = 4z
{(

z − εa − α2
a

)(
z − εb − α2

b

) − α2
aα

2
b

}2

+π2
{(

α2
a + α2

b

)
z − (

α2
bεa + α2

aεb

)}2 = 0.

(15)

Since the scalar self-energy σ (z) is analytically continued to
the second Riemann sheet, the five solutions of Eq. (15) are
located in either the first or second Riemann sheet. In Sec. IV,
we see how the time-symmetry-breaking transition occurs in
the second sheet as the parameters εa and εb are varied.

There is another way to represent the effective Hamiltonian
that is useful to describe the situation when εa � εb. Using the
basis transformation

|ψF 〉 = |a〉 − |b〉√
2

, (16a)

|ψAF 〉 = |a〉 + |b〉√
2

, (16b)

the effective Hamiltonian is represented by

Ĥeff(z) =
(

εA εD

εD εA

)
+ σ (z)

(
α2

D αAαD

αAαD α2
A

)
, (17)

where the average and the difference of the discrete state
energies are respectively defined as

εA = εa + εb

2
, εD = εa − εb

2
, (18)

and the average and the difference of the coupling strengths
are also respectively defined as

αA = αa + αb√
2

, αD = αa − αb√
2

. (19)

The dispersion equation in this representation reads as

f (z; εA,εD) ≡ 4z
{
(z − εA)

[
z − εA − (

α2
A + α2

D

)]
− εD(εD + 2αAαD)

}2

+π2
{(

α2
A + α2

D

)
(z − εA) + 2αAαDεD

}2 = 0.

(20)

We find that z = εA is a double real root of Eq. (20) when εD =
0, i.e., εa = εb. This indicates that the decay rate vanishes as
a consequence of the destructive interference of the two decay
channels |a〉 and |b〉, an example of Fano resonance.

Before studying the TSBPT in the two discrete system, we
briefly review the TSBPT of a single discrete state in the next
section.

III. TSBPT IN SINGLE-DISCRETE-STATE MODEL:
ROLE OF THE VAN HOVE SINGULARITY

In this section, we study a single discrete state coupled
with the continuum to show that the time-symmetry-breaking
bifurcation is a second-order phase transition resulting from
the nonlinearity in the eigenvalue problem of the effective
Hamiltonian.

We consider a single discrete state |a〉 coupled with a 1D
continuum, where the total Hamiltonian is given by

Ĥ1 = εa|a〉〈a| +
∫ kc

−kc

dkεk|k〉〈k|

+α

∫ kc

−kc

dk(|a〉〈k| + |k〉〈a|). (21)

Note that we again take kc = 1 as mentioned in Sec. II. Using
the FPO method with P̂ = |a〉〈a|, we obtain the effective
Hamiltonian as

Ĥeff,1(z) = εa + α2σ (z), (22)
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where it should be noted that the effective Hamiltonian is a
scalar operator in this case because the subsystem consists of
a single state {|a〉}.

With use of Eq. (12) for σ (z), the dispersion equation reads

z = εa + α2

(
1 − i

π

2
√

z

)
, (23)

equivalent to the third-order polynomial equation

f1(z; εa) ≡ z(z − εa − α2)2 + π2α4

4
= 0. (24)

Because of the nonlinearity of the eigenvalue problem in the
effective Hamiltonian, we have three eigenvalues even with a
one-dimensional subsystem.

In order to evaluate the bifurcation point, we simultaneously
solve Eq. (24) and its derivative

g1(z; εa) ≡ d

dz
f1(z; εa)

= 3z2 − 4(εa + α2)z + (εa + α2)2 = 0. (25)

The condition for a common solution of Eqs. (24) and (25)
requires that the determinant of the Sylvester matrix, i.e.,
resultant, should satisfy [35,47]

res[f1(z; εa),g1(z; εa)] = 0. (26)

The location of the bifurcation point εc,1 in the parameter
space of εa is easily obtained as

εa = εc,1 ≡ −3

(
πα2

4

)2/3

− α2 < 0, (27)

and the common eigenvalue at the bifurcation point is given
by

zc,1 = −
(

πα2

4

)2/3

. (28)

The two eigenvalues coalesce at εa = εc,1 before becoming a
complex conjugate pair for εa > εc,1.

Next we examine the nonanalytic properties of the spectrum
near the bifurcation point, which are due to the influence of
the nearby Van Hove singularity. We show the eigenvalues as
a function of εa in Fig. 2 for α = 0.1. Since the dispersion
equation is a third-order polynomial, there are three solutions
of Eq. (24). One real solution always exists in the first Riemann
sheet below the band edge for any value of εa , which is
a persistent bound state (PBS) attributed to the Van Hove
singularity [34,36,37], shown by the dashed-dotted curve in
Fig. 2. The other two solutions in the second Riemann sheet
are bifurcated from two real solutions to a complex conjugate
pair of solutions at the bifurcation point, εa = εc,1, which are
shown by the solid curves.

Now we obtain an analytical expression of the solutions of
z in Eq. (24) around the bifurcation point. Expanding f1(z; εa)
around zc,1 as a function of p ≡ z − zc,1 and leaving terms up
to order p2, we write the dispersion equation (24) as

1

4
[3α4/3(2π )2/3 − 8u]p2 + 1

2
[−α4/3(2π )2/3u + 2u2]p

+ 1

24/3
[α8/3(2π2)2/3u − α4/3π2/3u2] = 0, (29)

FIG. 2. The eigenvalues of Ĥeff as a function of εa for the single-
discrete-state system for α = 0.1. Real parts and imaginary parts
are shown in the upper and lower panels, respectively. The solid
curves represent the solutions in the second Riemann sheet, while the
dashed-dotted curve represents the PBS in the first Riemann sheet.
The arrow indicates the bifurcation point.

where u ≡ εa − εc,1 is the deviation from the bifurcation point
in the parameter space. Under the condition

u � O(α4/3), (30)

the solutions near the bifurcation point are approximately
described by

p = u

3
± i

√
3(2πα2)1/3√u. (31)

Therefore the two eigenvalues in this vicinity behave as

z±(εa) = εa + α2

3
± i√

3
(2πα2)1/3

√
εa − εc,1, (32)

where εc,1 is given by Eq. (27). The first-order derivative
of z±(εa) in terms of εa is discontinuous at the bifurcation
point [25,48] as shown in Fig. 2: In this sense, we can think
of the time-symmetry-breaking transition as a second-order
phase transition. Note also that the decay rate is proportional
to α2/3 which is nonanalytically enhanced by the Van Hove
singularity, compared to the ordinary decay rate determined
by Fermi’s golden rule: α2/3 � α2 for |α| < 1 [34].
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We have shown so far that the two eigenvalues coalesce at
the bifurcation point. In Eq. (32), the eigenvalues are described
by a fractional power expansion around εa = εc,1, indicating
that this bifurcation point is an EP, which is a singularity
of a characteristic equation of a linear operator, at which
the eigenstates coalesce and the operator can be no longer
diagonalized [18,49]. At the EP, the operator can only be
reduced to Jordan block form. Even though our effective
Hamiltonian is a scalar operator, we present in Appendix B
an effective non-Hermitian Hamiltonian represented by two-
by-two matrix which becomes a Jordan block matrix at the
bifurcation point. Therefore the bifurcation point at εa = εc,1

is consistent with an usual definition of an EP [50].

IV. TSBPT IN TWO-DISCRETE-STATE MODEL:
COMPETITION BETWEEN THE EP

AND FANO RESONANCE

In the preceding section, we have investigated the TSBPT
associated with a single discrete state in a 1D system, where
it appears as a second-order phase transition in which the
transition region and the decay strength are exaggerated by
Van Hove singularity. In this section, we shall clarify the
effect of the interaction between resonance states on the
TSBPT, by studying the two-discrete-state system described
in Sec. II. We especially focus on the competitive effects of
the EP and the Fano resonance on the TSBPT as mentioned
in the introduction. In this section, we assume αa = αb = α

in Eq. (2b), which does not change any essential physics as
long as the interaction strengths are about the same order of
the magnitude.

Similar to the single-state case in Eqs. (24) to (26), the
exceptional point is obtained here as a common solution of
Eq. (15) and its derivative

g(z; εa,εb) ≡ d

dz
f (z; εa,εb) = 0, (33)

which requires that the resultant is zero:

res[f (z; εa,εb),g(z; εa,εb)] = 0. (34)

This gives the exceptional point as a function of εa and εb

as shown in Fig. 3 for α = 0.1. In Fig. 3, we denote the
regions as stable phase where all the solutions of Eq. (15)
are real, single-resonance phase where we have a resonance
and antiresonance pair, and double-resonance phase where we
have two resonance and antiresonance pairs.

We now consider the condition for the appearance of the EP.
The physical situation is different depending on the interaction
strength between the two resonance states. We first study the
case where the effect of the interaction is weak and the two
discrete energies εa and εb are far apart:

|εb − εa| > α and εb > 0 > εa, (35a)

or |εb − εa| > α and 0 > εb > εa. (35b)

FIG. 3. Phase diagram for the time-symmetry-breaking transition
for α = 0.1. Solid lines represent the EP as a function of εa and εb.
There are three phases: stable (five solutions are real eigenvalues),
single resonance, and double resonance. Each is separated by one
of the two EP curves. The thin dashed line represents the EP line
in the single discrete state system: εa,b = εc,1. The thick dashed line
represents the Fano resonance. The chain line at εb = 0.2 corresponds
to Fig. 4, and blank circles corresponds to the EP and the Fano
resonance. The tilted axes in terms of εA = (εa + εb)/2 and εD =
(εa − εb)/2 are shown by the thin solid lines. The gray circle at
the origin corresponds to the meeting point of the EP and the Fano
resonance in Fig. 5.

For the case of Eq. (35a), dividing Eq. (15) by ε2
b yields

(recall αa = αb = α)

z

{
(z − εa − α2)

(
z − α2

εb

− 1

)
− α4

εb

}2

+ π2α4

4

(
2z − εa

εb

− 1

)2

= 0. (36)

Under the present case, we can neglect the term α4/εb, which
brings about

f̃ (z; εa,εb) ≡ z(z − εa − α2)2 + π2α4

4
ξ 2(z,εa,εb) = 0, (37)

where ξ (z,εa,εb) is a correction from the interaction defined
by

ξ (z,εa,εb) ≡ 2z − εa − εb

z − α2 − εb

= 1 + εa − z + α2

εb − z + α2

� 1 + εa − z

εb − z
. (38)

When the value of z is close to the EP, we can replace z in
ξ (z,εa,εb) with zc1 to yield a similar dispersion equation as the
single discrete state system given by Eq. (24). We find

f̃ (z; εa,εb) � z(z − εa − α2)2 + π2α̃4
1

4
= 0, (39)
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where α̃1 is the corrected interaction strength

α̃4
1 ≡ α4

∣∣∣∣1 + εa − zc,1

εb − zc,1

∣∣∣∣
2

. (40)

Since for the case of Eq. (35a)

α̃4
1 < α4, (41)

the effect of the interaction between the resonance states
effectively reduces the interaction of the bare discrete state
with the continuum so that the value of the EP (EP curve 2)
which divides the single-resonance and the double-resonance
phases lies closer to the continuum threshold than the value of
the EP in the single-discrete-state case which is depicted by
the dashed line at εa = εc,1 in Fig. 3:

εc,1 < ε̃c,1 ≡ −3

(
πα̃2

1

4

)2/3

− α̃2
1 < 0. (42)

On the other hand, for the case of Eq. (35b), by dividing
Eq. (15) by ε2

a , and repeating the above procedure, the dis-
persion equation is approximated as a third-order polynomial
equation as

f̃ (z; εa,εb) � z(z − εb − α2)2 + π2α̃4
2

4
= 0, (43)

where the interaction correction α̃2 in this case is given by

α̃4
2 ≡ α4

∣∣∣∣1 + εb − zc,1

εa − zc,1

∣∣∣∣
2

. (44)

For the condition given in Eq. (35b)

α̃4
2 > α4, (45)

the effect of the interaction between the resonance states
effectively increases the interaction of the bare discrete state
with the continuum so that the value of the EP (EP curve 1)
which divides the stable- and the single-resonance phases lies
further from the continuum threshold than the single-discrete-
state case (dashed line at εb = εc,1 in Fig. 3):

0 > εc,1 > ε̃c,2 ≡ −3

(
πα̃2

2

4

)2/3

− α̃2
2 . (46)

In Fig. 4, we show the solutions of Eq. (15) as εa varies
with a fixed value of εb = 0.2, where we have taken α =
0.1: Real and imaginary parts are shown in Figs. 4(a) and
4(b), respectively. The change of εa with the fixed value εb =
0.2 is indicated by a thin chained line in Fig. 3. Since the
dispersion equation (15) is a fifth-order polynomial, there are
five solutions, which are shown in Fig. 4.

On increasing εa from far below the band edge, we
encounter the EP at εa = ε̃c,1 ≡ −0.099. The behavior of
the eigenvalues around the EP resembles that of the single
discrete system shown in Fig. 2, because the discrete state |b〉 is
energetically separated from the |a〉 state so that the interaction
between the two states is small. The eigenvalues corresponding
to the resonant and antiresonant states associated with |b〉
are shown by the long-dashed curves. At this point the
system transitions from the single-resonance phase to the
double-resonance phase, where the eigenvalues associated
with the discrete state |a〉 bifurcate to form a resonance- and

FIG. 4. The eigenvalues of Ĥeff as a function of εa for a fixed
value of εb = 0.2. Real parts and imaginary parts are shown in the
upper and lower panels, respectively. The resonant and antiresonant
states associated with |b〉 are shown by the long-dashed curves, while
the bifurcated solutions associated with |a〉 are shown by the solid
curves. The PBS is shown by the dashed-dotted curves. The analytical
expression around the Fano resonance given by Eq. (51) is represented
by the short-dashed curves. The arrow indicates the EP.

antiresonance pair shown by the solid curves in Fig. 4. The
solution around the EP for the latter two states is approximately
written as

z±(εa) = εa + α̃2

3
± i√

3
(2πα̃2)1/3√εa − ε̃c , (47)

where α̃ and ε̃c are α̃1 and ε̃c,1 for the case of Eq. (35a),
and α̃2 and ε̃c,2 for the case of Eq. (35b). The first derivative
of the eigenvalues is discontinuous at the EP so that again
the time-symmetry breaking happens as a second-order phase
transition. It should be emphasized that the time-symmetry
breaking is again nonanalytically exaggerated by the Van Hove
singularity as in Sec. III.

As εa further increases and comes close to εb, i.e., εD � 0,
the two decay channels from the |a〉 state and the |b〉 state
interfere, resulting in the Fano resonance effect as mentioned
in Sec. II. In order to see the behavior of the eigenvalues more
closely, we expand the solution around the Fano resonance:

z = εA + p(εA,εD), (48)
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where p(εA,εD) is a small deviation from z = εA that vanishes
as εD = (εa − εb)/2 → 0:

lim
εD→0

p(εA,εD) = 0. (49)

By substituting Eq. (48) into Eq. (20) and neglecting terms
higher than p2, we obtain[

4α4
(
εA + ε2

D

) − 2εAε2
D + π2α4

]
p2

+ ε2
D

(
4α2εA + ε2

D

)
p + εAε4

D = 0. (50)

The solution of Eq. (50) is given by

p(εA,εD) = −ε2
D

(
4α2εA + ε2

D

) ± √
D(εA,εD)

2
[
4α4

(
εA + ε2

D

) − 2εAε2
D + π2α4

] , (51)

where

D(εA,εD)

= −4π2α4εAε4
D

(
1 + 2(α2 − εA)ε2

D

π2α4
− ε4

D

4π2α4εA

)
. (52)

This solution well represents the exact solution around εD � 0
as shown in Fig. 4 by the short-dashed curves. For small εD ,
we expand Eq. (51) around εD = 0 to yield

z = εA − 2εAε2
D

α2(π2 + 4εA)
± i

π
√

εA ε2
D

α2(π2 + 4εA)
+ O

(
ε4
D

)
. (53)

The decay rate quadratically increases with εD while it depends
on

√
εA. Therefore as εA becomes small, the decay process is

more suppressed and the state becomes quasistable in a wider
parameter range.

As shown in Fig. 3, as εb approaches the continuum
threshold, the EP along the EP curve 2 shifts toward the band
edge, and the EP and the Fano resonance meet at εa = εb = 0
(εA = εD = 0). This is the point where the Fano interference
overwhelms the nonanalytical decay enhancement due to the
Van Hove singularity, causing the TSBPT to be drastically
modified. In order to see this, by taking the parameters as

εD = ε cos θ, εA = ε sin θ, (0 � θ � 2π ) (54)

and substituting this into Eq. (53), we find the eigenvalues
expressed by

z = (sin θ )ε − 2 cos2 θ sin θ

π2α2
ε3

± i
i cos2 θ

√
sin θ

πα2
ε5/2 + O(ε7/2), (55)

under the condition

ε � (4π2α4)1/3. (56)

Therefore, as both εa and εb approach the origin, the Fano
resonance and the EP coincide as shown by the gray circle
in Fig. 3, and the order of the phase transition becomes
fourth order in the sense that the third-order derivative for
ε is discontinuous. We also note that the fractional power
expansion, i.e., Puiseux expansion, of Eq. (55) starts with
ε5/2, different from the usual behavior starting with ε1/2

around the EP, which is revealed only by taking into account
the nonlinearity of the eigenvalue problem of the effective
Hamiltonian.

FIG. 5. The eigenvalues of Ĥeff as a function of εa for a fixed
value of εb = 0. Real parts and imaginary parts are shown in the
upper and lower panels, respectively. Each solution is represented in
the same style as in Fig. 4. The arrow indicates the EP.

We show in Fig. 5 the exact solutions of Eq. (15) as
εa varies with a fixed value of εb = 0: Real and imaginary
parts are shown in Figs. 5(a) and 5(b), respectively. The
analytical approximation of the eigenvalues given by Eq. (55)
is drawn by the short-dashed curve in Fig. 5, well reproducing
the numerical results. It is clearly seen that the order of
the time-symmetry-breaking transition becomes fourth order
when the EP and Fano point meet together, indicated by the
arrows.

Furthermore, we find that the cooperation of the Fano
resonance and the EP influenced by the Van Hove singularity
makes the decaying state more stabilized than the ordinary
Fano resonance. In Fig. 6, we compare the decay rates of
Fig. 4(b) (dashed curve) and Fig. 5(b) (solid curve), where the
decay rate of Fig. 4 is shifted by εb = 0.2 on the horizontal
axis so that the Fano resonance of both curves coincide at
εa = 0. We find that the decaying state at the meeting point
of the EP and the Fano resonance (εb = 0: solid curve) is
more stable (smaller decay width) than for the ordinary Fano
resonance (εb = 0.2: dashed curve). Since the eigenvalues
around the Fano resonance are proportional to ε2

D as seen in
Eq. (53), the second derivative of the eigenvalues in terms of
εD becomes a measure of the stability: The smaller the second
derivative is, the more reduced the decay width becomes. Since
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FIG. 6. Comparison of the decay rates of Fig. 4(b) (dashed curve)
and Fig. 5(b) (solid curve). For the comparison, the decay rate of Fig. 4
is shifted by εb = 0.2 in the horizontal axis so that the Fano resonance
of the both curves coincide at εa = 0.

the decay rate around the Fano resonance is represented by

γ (εD; εb) ≡ |Im z| = 1

πα2

√
εD + εb ε2

D, (57)

where we have used εD + εb � π2/4, the second derivative
of γ (εD; εb) at the Fano resonance (εD = 0) is given by

∂2

∂2εD

γ (εD; εb)

∣∣∣∣
εD=0

= 2

πα2

√
εb. (58)

Therefore, we find that the decaying state at the meeting point
of the EP and the Fano resonance (εb = 0) is more stable than
in the ordinary Fano resonance (εb = 0.2), as shown in Fig. 6.

As in the single-discrete-state system studied in the previous
section, we show in Appendix B that we can introduce an
effective non-Hermitian Hamiltonian, which is represented by
a Jordan block matrix at the EP.

V. DISCUSSION

We have shown that as a result of the competition between
the effects of an EP and the Fano resonance, the TSBPT is
modified as a higher-order transition in a system consisting of
two discrete states coupled to a common 1D continuum. The
Van Hove singularity characteristic of 1D systems exaggerates
this higher-order transition. Here, studying the TSBPT in a 3D
system, we show that this higher-order phase transition of
time-symmetry breaking is ubiquitous but the effect is not so
prominent in the absence of the Van Hove singularity.

In a 3D system, the scalar-self energy in Eq. (12) is replaced
by

σ(z) = −π

2
(2 + iπ

√
z), (59)

yielding the dispersion equation

f 3D(z; εA,εD) ≡ {
(z − εA)(z − εA + πα2) − ε2

D

}2

+ π4α4

4
z(z − εA)2 = 0. (60)

FIG. 7. Phase diagram for the time-symmetry-breaking transition
in a 3D system for α = 0.1. Solid lines represent the EP as a function
of εa and εb. A gray circle at the origin corresponds to the meeting
point of the EP and the Fano resonance in Fig. 8. Notations of the
curves are the same as in Fig. 3.

As in the preceding section, the EP curve is obtained by setting
the resultant equal to zero, which is shown in Fig. 7. It is
found by comparison with Fig. 3 for the 1D system that the
EP curves (thick solid lines) are close to the EP curve of the
single-discrete-state system (thin dashed line) in the 3D case.
This clearly shows that the effect of the interaction of the two
discrete states is less pronounced in the 3D system than in the
1D system, because the Van Hove singularity enhances the
interaction in the 1D system.

In the 3D system, the higher order TSBPT occurs at the
transition from the stable-phase to the single-resonance phase
as denoted by the gray circle at εa = εb = 0 (εA = εD = 0).
As in the previous section, expanding z around εA, i.e., z =
εA + p, and leaving the terms up to second order in p2 yields

(
−2ε2

D + π2α4 + π4α4

4
εA

)
p2 − 2πα2ε2

Dp + ε4
D = 0. (61)

The solution is given by

p =
πα2ε2

D ±
√

−(π4α4/4)ε4
DεA + 2ε6

D

−2ε2
D + π2α4 + (π4α4/4)εA

. (62)

Taking the variables given in Eq. (54), Eq. (62) reads

p = 1

π2α4 + π4α4 sin θ
4 ε − 2 cos2 θε2

(
πα2 cos2 θε2

± i
π2α2 cos2 θ

√
sin θ

2
ε5/2

√
1 − 8 cos2 θε2

π4α4 sin θ

)
. (63)
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FIG. 8. The imaginary part of the eigenvalues of Ĥeff as a function
of εa for a fixed value of εb = 0 in 3D system. The bifurcated solutions
associated with |b〉 are shown by the long-dashed curves, while the
analytical expression Eq. (65) is shown by the short-dashed curves.
The arrow indicates the EP. In panel (a), the fourth-order phase
transition is shown in a magnified scale around the EP, while in
panel (b) the scale of the horizontal axis is the same as in Figs. 4
and 5.

Under the condition

ε � π4α4

4
, (64)

which is significantly limited in range compared to the 1D case
as shown in Eq. (56), the solution of the dispersion equation
is approximated by

z = (sin θ )ε + cos2 θ

πα2
ε2 ± i

cos2 θ
√

sin θ

2α2
ε5/2 + O(ε3). (65)

Here we again have the higher-order TSBPT as in the 1D
system given by Eq. (55), but it should be emphasized that the
parameter range of ε to observe this effect is very narrow as
shown in Eq. (64).

In Fig. 8, we show the imaginary part of the eigenvalues
as a function of εa for the fixed value εb = 0, where the EP
and the Fano resonance coincide: We show a magnified scale
[Fig. 8(b)], and the same scale as in Fig. 4(b) [Fig. 8(b)]. Sim-
ilar to the 1D system, the time-symmetry-breaking transition
occurs as a fourth-order phase transition. However, the range
of this smooth transition is very narrow compared to the 1D

FIG. 9. Detection of a real-time development of an autoionization
decay of an atom or a molecule with use of TRXAS and TRPES.

system, as seen in Fig. 8(b). This illustrates that the Van Hove
singularity in the 1D system enhances the higher-order phase
transition.

The drastic change in the higher order TSBPT due to the
cooperation of the EP and the Fano resonance at the continuum
threshold shown in Fig. 5 can be experimentally observed in
the autoionization decay of an atom or a molecule with use of
time-resolved ultrafast spectroscopy [51–54]. Here we propose
an experiment which uses a combination of time-resolved x-
ray absorption (TRXAS) [55] and time-resolved photoelectron
spectroscopies (TRPES) [56], as shown in Fig. 9, which should
capture this characteristic phase transition. In TRXAS, an
ultrashort x-ray pulse excites a core electron to the discrete
states near the ionized threshold, such as Rydberg states, and
Rabi oscillation is induced between the resonance states by the
pulsed excitation, which is observed by a delayed absorption
probe. The frequency of the Rabi oscillation corresponds to
the difference in the real parts of the complex eigenvalues, and
the damping rate of the Rabi oscillation reflects the decay
rate due to the autoionization of the excited electron into
the continuum. In TRPES, the autoionized photoelectron is
detected by a time-resolved detector. Since TRPES directly
detects the decay product of the photoelectron, it reflects the
imaginary part of the eigenvalues much more clearly than
the damped Rabi oscillation by TRXAS. For example, the
oscillatory behavior of TRPES corresponding to the Rabi
oscillation is drastically terminated at the Fano resonance
because one of the decay channels is completely suppressed.
Therefore when we measure both TRXAS and TRPES and
compare them, we can get a full picture of the decay process
including the TSBPT. Detailed theoretical analysis of these
spectroscopic experiments is now under study.
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APPENDIX A: SCALAR SELF-ENERGY

The scalar self-energy for the 1D system is calculated by

σ (z) = 1

2kc

∫ kc

−kc

dk

z − k2
, (A1)
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FIG. 10. Contour for the integral Eq. (A3).

where we assume

|z| � kc. (A2)

We rewrite this in terms of the contour integral shown in
Fig. 10, so that

σ (z) =
{∮

C

−
∫

R

}
dk

z − k2
, (A3)

where
∮
C

and
∫
R

denote a closed contour and a semicircle
contour in Fig. 10, respectively.

Taking the residue at
√

z,∮
C

dk

z − k2
= −i

π√
z
. (A4)

For the contour integral R, by taking k = kc exp[iϕ], we have∫
R

dk

z − k2
= ikc

∫ π

0

eiϕ

z − k2
c e

2iϕ
� − 2

kc

. (A5)

By Eqs. (A4) and (A5),

σ (z) = 1

2kc

(
2

kc

− iπ√
z

)
, (A6)

which gives Eq. (12).
In the 3D system, we define the scalar self-energy as

σ (z) = 1

(2kc)3

∫ kc

−kc

d3k
z − k2

= π

k3
c

∫ kc

0

k2dk

z − k2
. (A7)

In this case, the contour integral for C is given by∮
C

k2dk

z − k2
= −iπ

√
z (A8)

and for R as∫
R

k2dk

z − k2
= ikc

∫ π

0

k2
c e

iϕ

z − k2
c e

2iϕ
� 2kc. (A9)

From Eqs. (A8) and (A9), we have

σ (z) = π

2k3
c

(−πi
√

z − 2kc), (A10)

which gives Eq. (59).

APPENDIX B: JORDAN BLOCK AT
THE EXCEPTIONAL POINT

In this section, we introduce a heuristic non-Hermitian
effective Hamiltonian as a 2×2 matrix that is represented
by a Jordan block at the EP. (We shall then call it a 2×2
effective Hamiltonian.) We show elsewhere more formally that
the bifurcation point determined above is an EP at which not
only the eigenvalues but also the eigenfunctions coalesce, and

as a result, the Hamiltonian takes the form of a Jordan block
in terms of eigenstate and pseudo-eigenbasis [18,57].

Let us write an effective two-by-two Hamiltonian given by

H2×2 =
(

a(εa) 1
−b2c(εa) a(εa)

)
, (B1)

where the matrix elements are defined by

a(εa) ≡ εa + α2

3
, (B2a)

b ≡ (2πα2)1/3

√
3

, (B2b)

c(εa) ≡ εa − εc,1. (B2c)

Here we have taken H2×2 such that the matrix elements are
not singular in terms of the system parameter εa .

The eigenvalues are obtained as the solutions of the
dispersion equation

z2 − 2a(εa)z + a2(εa) + b2c(εa) = 0, (B3)

yielding the eigenvalues as

z± = a(εa) ± ib
√

c(εa), (B4)

which are the same as Eq. (32). It is obvious from Eq. (B1)
that H2×2 is undiagonalizable at the EP for c(εa) = 0 because
it takes a Jordan block structure.

For the two-discrete-state system studied in Sec. IV, we
can again introduce a heuristic effective 2×2 non-Hermitian
Hamiltonian given by

H2×2 =
(

a(εA,εD) 1
−b2(εA,εD)c(εA) a(εA,εD)

)
, (B5)

where we denote

a(εA,εD) = εA − 2εAε2
D

α2(π2 + 4εA)
, (B6a)

b(εA,εD) = πε2
D

α2(π2 + 4εA)
, (B6b)

c(εA) = εA, (B6c)

which gives the same eigenvalues as Eq. (53). It is obvious
that at the EP (εA = 0) Heff is represented by a Jordan block
matrix whose eigenstates coalesce as well as the eigenvalues.

While we have heuristically obtained an effective Hamilto-
nian which takes the Jordan block form at the EP here, it can be
derived from the microscopic dynamics by properly taking into
account the component of the continuum subspace represented
in Eq. (7). Strictly speaking, it is difficult to construct the
Jordan block matrix at the EP just from knowledge of the
effective Hamiltonian in the subsystem represented by P̂ in
Eq. (5). This can be done only when we deal the eigenvalue
problem of the effective Hamiltonian consistent with that of
the total Hamiltonian. Since a thorough study of the eigenstate
at the EP is beyond the scope of the present paper, it will be
discussed in the forthcoming works [58,59].
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