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Tunneling times in atomic ionization are studied theoretically by a virtual detector approach. A virtual detector
is a hypothetical device that allows one to monitor the wave function’s density with spatial and temporal resolution
during the ionization process. With this theoretical approach, it becomes possible to define unique moments when
the electron enters and leaves with highest probability the classically forbidden region from first principles and a
tunneling time can be specified unambiguously. It is shown that neither the moment when the electron enters the
tunneling barrier nor when it leaves the tunneling barrier coincides with the moment when the external electric
field reaches its maximum. Under the tunneling barrier as well as at the exit the electron has a nonzero velocity in
the electric field direction. This nonzero exit velocity has to be incorporated when the free motion of the electron
is modeled by classical equations of motion.

DOI: 10.1103/PhysRevA.94.022104

I. INTRODUCTION

In a seminal work, MacColl [1] studied the time that may
be associated with the process of a particle approaching from
far away a potential barrier of a height larger than the particle’s
energy and eventually tunneling through the barrier. A series of
subsequent works led to various definitions of tunneling times
and different physical interpretations [2–4]. Also many efforts
have been directed towards measuring [5–10] tunneling times.

A related still open and actively studied problem of atomic
physics is the question how long it takes to ionize an atom via
an electron tunneling through the potential barrier [11–28]
which is formed by the electron’s binding energy and the
Coulomb potential bent by the time-dependent electric field’s
potential; see Fig. 1. Employing the angular streaking tech-
nique the tunneling dynamics can be studied on subcycle
time scales [14,15] in the so-called attoclock experiments,
aiming to determine when the electron ionizes from a bound
state. The attoclock experiments stimulated renewed efforts
towards defining a well-founded tunnel ionization time and
determining the tunnel ionization time. A consensus on a
suitable definition of tunneling time and the interpretation of
experimental results is, however, still lacking [29].

In the case of tunnel ionization the experimental determi-
nation of a tunneling time is complicated by the fact that it
is notoriously difficult to determine the starting (and ending)
moment of the tunnel dynamics. There is no apparent reason to
assume that the electron enters the barrier at the instant of the
electric field maximum. In fact, we are going to demonstrate
that one has to carefully distinguish between the tunneling
time, i.e., the time to cross the tunneling barrier, and the
tunneling delay, i.e., the time delay until the electron becomes
quasi-free with respect to some external reference, e.g., the
moment of maximal electric field strength.

Experimentally the quantum dynamics in the vicinity of
the tunneling barrier cannot be studied directly, i.e., it is not
possible to place a detector close to the atomic tunneling
barrier. Thus, information about the tunneling dynamics has
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to be inferred from measurable asymptotic quantities, e.g.,
the momentum distribution of the photo ionized electrons. In
attoclock experiments, an electron is ionized by an elliptically
polarized few-cycle pulse. This quasi-free electron is acceler-
ated in the rotating electric field, and in this way the instant of
ionization texit is mapped to the final angle of the momentum
vector in the polarization plane. Ignoring Coulomb effects as
well as nondipole effects, the electron’s final momentum p(tf)
and the instant of ionization texit are related according to the
two-step model [30–33] via

p(tf) = p(texit) + q

∫ tf

texit

E(t) dt, (1)

where E(t) denotes the electric field, which vanishes for
t → tf , q denotes the electron’s charge, and p(texit) is its
initial momentum, which is usually assumed to be zero.
Assuming that the ionized electron becomes free at the instant
of the electric field maximum t0, the formula (1) predicts a
final momentum with a specific direction [27]. Deviations of
an experimentally observed final momentum direction from
this prediction may be due to a delay between the instant
of maximal field strength and the instant of ionization, i.e.,
t0 �= texit. But also Coulomb effects [34], a nonzero initial
momentum p(texit) [28], nondipole effects, or quantum effects,
which may play a role for the dynamics at the vicinity of
the tunneling exit, cause deviations from the simple two-step
model (1). Thus, the interpretation of attoclock experiments
requires a precise model of the electron’s motion from the
barrier exit to the detector. The value of a possible tunneling
delay depends crucially on the theoretical model [25], which
is employed to calibrate the attoclock.

In view of the difficulties of determining tunneling times
from asymptotic momentum measurements, we consider
a complementary theoretical approach based on ab initio
solutions of the time-dependent Schrödinger equation and
virtual detectors [35,36], which allows us to link tunneling
times to observables related to the quantum dynamics in the
vicinity of the tunneling barrier. This paper is organized as
follows: To keep the presentation self-contained, the concept of
a virtual detector is summarized in Sec. II. In Sec. III numerical
results for tunneling times as determined by the virtual detector
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FIG. 1. Tunneling potentials V1(ξ ) and V2(η) (solid lines) and the
ground state energy level E (dashed lines) for the two-dimensional
Coulomb problem with (black) and without (light blue) accounting
for the Stark effect in parabolic coordinates ξ and η for E = 1 a.u.

Intersections between the potential lines and the energy level deter-
mine the borders between classically allowed classically forbidden
regions, i.e., the tunneling entry ξin, tunneling exit ξexit, and η0. See
the Appendix for details.

approach are presented and discussed. Mainly, we answer the
questions: When does the electron enter the barrier and exit the
tunneling barrier; and, accordingly, how much time does
the electron spend under the barrier? Additionally, we compare
the quantum trajectory of the electron to the one predicted by
the two-step model [30–33]. Finally, we conclude in Sec. IV.

II. VIRTUAL DETECTORS

A. Fundamentals

Ionization from a binding potential means that an electron
moves away from the vicinity of the binding potential’s
minimum. A virtual detector allows us to quantify this
dynamics. More specifically, a virtual detector is a hypothetical
device that determines how the probability to find a particle
within some specific space region changes over time. In the
following, we present its mathematical foundations.

The quantum mechanical evolution of an electron’s wave
function �(r,t) with mass m and charge q is governed by the
Schrödinger equation

i�
∂�(r,t)

∂t
=

[
1

2m
(−i�∇ − q A(r,t))2 + qφ(r,t)

]
�(r,t),

(2)
where φ(r,t) and A(r,t) denote the electromagnetic potentials.
The probability density to find the electron at position r at time
t is given by

�(r,t) = �(r,t)∗�(r,t), (3)

where �(r,t)∗ indicates the complex conjugate of �(r,t).
The dynamics of the density �(r,t) is associated with the
probability current

j (r,t) = 1

m
Re{�(r,t)∗[−i�∇ − q A(r,t)]�(r,t)}. (4)

Expressing the wave function �(r,t) as

�(r,t) =
√

�(r,t) exp[iϕ(r,t)], (5)

the probability current j (r,t) may be written as a product of
the probability density �(r,t) and some local velocity, viz.,

j (r,t) = �(r,t)
m

[�∇ϕ(r,t) − q A(r,t)], (6)

which also occurs in the framework of Bohmian mechan-
ics [37]. The probability density and the probability current
fulfill the continuity equation

−∂�(r,t)
∂t

= ∇ · j (r,t). (7)

For any compact subspace V of the physical space with a
piecewise smooth boundary S the continuity equation (7)
yields by integration over the subspace

− d

dt

∫
V

�(r,t) dV =
∫

S

j (r,t) · n dS, (8)

where n denotes the outward pointing unit normal field of the
boundary S. Equation (8) holds also for unbounded subspaces
if �(r,t) decreases fast enough when |r| → ∞. Thus, the rate
of the change of the probability to find the electron within the
space region V is given by the probability current through the
volume’s surface

DS(t) =
∫

S

j (r,t) · n dS. (9)

A virtual detector is a hypothetical device that measures
DS(t). In other words, a virtual detector placed at the surface
S determines how much probability passes from one side of
the surface to the other per unit time. Placing S at sufficient
distance around a bound wave packet, which is ionized by
a time-dependent electric field E(t) with limt→±∞ E(t) = 0,
then

∫ ∞
−∞ DS(t) dt equals the total ionization probability.

Furthermore, if DS(t) is strictly nonnegative or nonpositive
|DS(t)|	t can be interpreted as the probability that the electron
moves from one side of the surface S to the other within the
short time interval [t,t + 	t]. For one-dimensional systems
the surface S degenerates to a single point. For this case, it can
be shown within the framework of Bohmian mechanics that
|DS(t)| is up to normalization the probability distribution of
the time of arrival at the point S [38,39]. In general, |DS(t)| is
proportional to the probability that the electron arrives at the
surface S at time t .

B. Tunnel ionization from a two-dimensional Coulomb potential

In the following, we will study tunnel ionization from
a two-dimensional Coulomb potential. The restriction to
two dimensions is mainly because this system resembles
tunnel ionization from hydrogen-like ions while keeping
the computational demands small. In the long-wavelength
limit, i.e., when the dipole approximation is applicable, the
three-dimensional Coulomb potential with an external linearly
polarized electric field has rotational symmetry, which makes
this system effectively two-dimensional. Furthermore, the
two-dimensional Coulomb problem is of interest in its own and
has been used to model some semiconductor systems [41–43].
It can also be derived as a limit of the Hamiltonian of a
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three-dimensional hydrogen atom in a planar slab as the width
of the slab tends to zero [44].

Applying the dipole approximation and choosing the
coordinate system such that the linearly polarized external
electric field E(t) points into the (negative) x direction, the
Schrödinger equation reads in atomic units, which are applied
for the remainder of this article,

i
∂�(x,y,t)

∂t
= Ĥ�(x,y,t)

=
[
−1

2

∂2

∂x2
− 1

2

∂2

∂y2
− 1√

x2 + y2
− xE(t)

]

×�(x,y,t). (10)

In order to study the ionization dynamics without undesirable
artifacts, i.e., to avoid multiple ionization and rescattering, we
choose an electric field pulse with a unique maximum,

E(t) = E0 exp

[
−ω2(t − t0)2

2

]
, (11)

where t0 denotes the instant of maximal electric field E(t0) =
E0 and τE = √

2/ω is the time scale of the raise and decay of
the electric field.

Cartesian coordinates are not the most suitable choice to
deal with the Coulomb problem with an external homogeneous
electric field. Parabolic coordinates are the natural coordinate
system for this problem. In particular, it allows us to define a
tunneling barrier [45]. As one can show, the Hamiltonian Ĥ

in Eq. (10) separates in parabolic coordinates 0 � ξ < ∞ and
0 � η < ∞, which are related to the Cartesian coordinates x

and y via

x = ξ − η

2
, (12a)

y =
√

ξη (12b)

into two independent one-dimensional Schrödinger-type
Hamiltonians with specific potentials V1(ξ ) and V2(η). While

V2(η) is purely attractive, V1(ξ ) represents the tunneling
barrier, and, therefore, ξ denotes the tunneling direction.
Intersections of the potentials with the energy value E/4 of the
one-dimensional Hamiltonians define the borders between the
classically allowed, the tunneling, and the classically forbidden
regions. Here E denotes the Stark-effect corrected ground state
energy of the two-dimensional system. The classically allowed
region, the tunneling region, and the classically forbidden
region are characterized by

E/4 > V1(ξ ), E/4 > V2(η), (13a)

E/4 > V1(ξ ), E/4 < V2(η), (13b)

E/4 < V1(ξ ), E/4 < V2(η), (13c)

respectively. The tunneling barrier is confined by the three
parabolas at ξ = ξin, ξ = ξexit, and η = η0, which are functions
of the applied electric field strength E(t). See the Appendix
for details and Figs. 1 and 2.

The virtual detectors are placed at ξ = ξin and ξ = ξexit

as given for the maximal electric field strength E0 at t = t0.
In two dimensions, the surface integral in Eq. (8) becomes a
line integral of a vector field j (x,y,t). Thus, the probability
current over the entry line ξ = ξin, denoted by Dξin (t), and the
current over the exit line ξ = ξexit, denoted by Dξexit (t), are
given explicitly by

Dξ (t) =
∫ η0

0
j (x(ξ,η),y(ξ,η),t) ·

(
∂x(ξ,η)

∂η
∂y(ξ,η)

∂η

)
dη

+
∫ η0

0
j (x(ξ,η), − y(ξ,η),t) ·

(
∂x(ξ,η)

∂η

− ∂y(ξ,η)
∂η

)
dη, (14)

where we have taken into account that Eq. (12) covers only the
upper half of the coordinate system. Monitoring the probability
current at these fixed entry and exit lines can be justified as
follows. For static fields the tunneling probability is maximal

classically forbidden
region

classically
allowed

region

tunneling
region

FIG. 2. Schematic of tunneling time determination via virtual detectors at the tunneling entry and the tunneling exit. The lines ξ = ξin,out

and η = η0 which determine tunneling region, the classically forbidden, and the classical allowed regions are indicated by the solid lines; see
Ref. [40] and the Appendix for details. The black solid lines indicate the positions of the virtual detectors. The wave function’s probability
density �(x,y,t)∗�(x,y,t) at the instant of electric field maximum, i.e., t = t0, is represented by colors for E0 = 1.1 a.u. and for the Keldysh
parameter γ = 0.25. Arrows indicate the probability current j (x,y,t), where the arrows’ length is proportional to the absolute value of the
current and the arrows’ opacity scales with the wave function’s probability density.
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for maximal electric fields, and it is exponentially suppressed
for lower fields. Furthermore, the applied electric field (11) is
quasistatic for |t − t0| < τE :

E(t) = E0
{
1 − (t − t0)2

/
τ 2
E + O

[
(t − t0)4

/
τ 4
E
]}

. (15)

Therefore, the tunneling barrier is also quasistatic if times close
to t0 are considered. As it will be shown later, the extracted
tunneling times are short compared to τE indeed.

III. NUMERICAL RESULTS AND DISCUSSION

A. Entry time, exit time, and tunneling time

The Schrödinger equation (10) is solved numerically by em-
ploying a Lanczos propagator [46,47] and fourth-order finite
differences for the discretization of the Schrödinger Hamil-
tonian. The ground state of the two-dimensional Coulomb
potential was chosen as an initial condition at t − t0 = −5τE ,
i.e., when the external electric field is negligible small. The
so-called Keldysh parameter γ = ω

√−2E0/E0 [11] char-
acterizes the ionization process as dominated by tunneling
for γ � 1 and by multiphoton ionization for γ � 1. Here
E0 denotes the ground state binding energy, which equals
E0 = −2 a.u. for the two-dimensional Coulomb problem; see
also the Appendix. In the following, the electric field amplitude
E0 and the frequency ω are adjusted such that γ = 0.25 < 1.

Figure 2 illustrates the ionization dynamics in the vicinity of
the tunneling barrier by presenting the electron’s probability
density �(x,y,t)∗�(x,y,t) and the probability current
j (x,y,t) at the instant of maximal field strength t = t0. The
external electric field induces a probability current opposite
to the direction of the electric field. This flow is nonnegligible
only in the region η < η0, i.e., in the classically allowed region
and the tunneling region. Thus, the shape of the probability
current confirms that parabolic coordinates are the natural
choice to define a tunneling barrier for the Coulomb problem.

The action of the external electric field induces a probability
current, which flows over the tunneling barrier’s entry line
ξ = ξin and its exit line ξ = ξexit. This means that probability
is carried over from the center region of the Coulomb potential
into the tunneling barrier, from where it can escape into the
classically allowed region. The quantities Dξin (t) and Dξexit (t)
grow and decay over time with the applied external electric
field, as shown in Fig. 3. As a central result of our numerical
solution of the Schrödinger equation, however, the position
of the maxima of Dξin (t), Dξexit (t) and the electric field E(t)
do not coincide. The probability current over the tunneling
entry Dξin (t) reaches its maximum before the maximum of the
electric field is attained. Furthermore, the probability current
over the tunneling exit Dξexit (t) may reach its maximum before
or after the maximum of the electric field is attained depending
on the electric field strength E0. For the rather strong electric
field of the parameters of Fig. 3, Dξexit (t) reaches its maximum
slightly before the electric field. Turning off the external
electric field, the flow at the tunneling entry becomes negative
and then oscillates rapidly around zero after switching off the
electric field. These oscillations are a result of the excitation
of the the bound portion of the wave function during the action
of the electric field. The final bound state is a superposition of
several eigenstates causing a nonsteady probability current. In
contrast, the quantity Dξexit (t) remains positive as reflections

−25 −20 −15 −10 −5 0 5 10 15
t − t0 (a.u.)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ε(
t)

(a
.u

.)

ε(t)

−1

0

1

2

3

4

5

6

D
in
(t

),
D

ex
it
(t

)
(a

.u
.)

D in(t)

D exit(t)

FIG. 3. The probability current Dξin (t) over the entry line ξ = ξin

and the current over Dξexit (t) the exit line ξ = ξexit and the amplitude
of the external electric field E(t) as functions of time t . The three
vertical lines indicate from left to right the moments of maximal
probability current over the line ξ = ξin, of the maximal electric
field, and of the maximal probability current over the line ξ = ξexit.
The parameters of the electric field correspond to a maximal field
strengths of E0 = 1.1 a.u. and a Keldysh parameter γ = 0.25.

are absent at the tunneling exit and behind the tunneling
barrier [28].

Monitoring the probability current at ξ = ξin and ξ = ξexit

allows us to determine the moments when the electron enters
or leaves the tunneling barrier with maximal probability. The
probability to cross the tunneling barrier entry at ξ = ξin or
the exit at ξ = ξexit during the small time interval [t,t + 	t]
is 	t Dξin (t) and 	t Dξexit (t), respectively. This motivates us to
introduce the times of maximal flow over the tunneling entry
and exit, i.e., the positions of the maxima of the arrival-time
distributions at the tunneling entry and exit:

tin = arg max Dξin (t) (16)

and

texit = arg max Dξexit (t). (17)

Then the delay between the instant of the maximum of the
driving electric field t0 and the exit time texit, the tunneling
delay, is

τexit = texit − t0, (18)

and the tunneling time

τtsub = texit − tin (19)

can be introduced with the definitions above. A measurement
of the delay τexit is implemented in the attoclock experiments.
The time τtsub denotes the delay between the instants when the
probability flow is maximal at the tunneling barrier’s entry and
at the exit. Thus, τtsub may be interpreted as the typical time
which an electron needs to pass the tunneling barrier.

The times τexit and τtsub are presented in Fig. 4 for the
considered setup and varying electric field amplitudes E0. An
increasing electric field amplitude reduces the width of the tun-
neling barrier. Consequently, the tunneling time τtsub decreases
with increasing electric field amplitude E0, as shown in Fig. 4.
The time τtsub remains, however, always positive. This means
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FIG. 4. The tunneling delay τtsub and the tunneling time τexit

as functions of the electric field amplitude E0. The frequency ω is
adjusted such that the Keldysh parameter is fixed to γ = 0.25.

that the probability current reaches its maximum at the entry of
the tunneling barrier before the current becomes maximal at the
exit, i.e., the electron enters the barrier before it exits the bar-
rier. Furthermore, it follows from the data in Fig. 4 that τtsub >

τexit and consequently tentry < t0, because τtsub − τexit = t0 −
tentry. This means that the electron always enters the tunneling
barrier before the electric field reaches its maximum.

To explain the reason for this behavior, we define in analogy
to Eq. (14) the two integrals over the probability density

D
�

ξ (t) =
∫ η0

0
�(x(ξ,η),y(ξ,η),t) dη

+
∫ η0

0
�(x(ξ,η), − y(ξ,η),t) dη (20)

and over the velocity field

D
∇ϕ
ξ (t) =

∫ η0

0
∇ϕ(x(ξ,η),y(ξ,η),t) ·

(
∂x(ξ,η)

∂η
∂y(ξ,η)

∂η

)
dη

+
∫ η0

0
∇ϕ(x(ξ,η), − y(ξ,η),t) ·

(
∂x(ξ,η)

∂η

− ∂y(ξ,η)
∂η

)
dη,

(21)

which are motivated by fact that the probability current can
be written as a product of the probability density and the
local velocity; see Eq. (6). D�

ξin
(t) gives the probability density

integrated along the entry line ξ = ξin as a function of time,
while D

∇ϕ
ξin

(t) denotes the integrated velocity. As shown in

Fig. 5, the velocity along the entry line D
∇ϕ
ξin

(t) increases
with the electric field, reaches a maximum at the instant of
electric field maximum t = t0, then decreases with the electric
field, and it becomes even negative due to reflections from
the tunneling process. Finally, the integrated velocity D

∇ϕ
ξin

(t)
oscillates around zero indicating the excitation of the bound
state. The probability density along the entry line D

�

ξin
(t) is

nonzero even at t � t0 because the wave function penetrates
the tunneling barrier even for E = 0. Increasing the electric
field, the probability density flow from the core into the barrier
increases the probability density along the entry line. Although
the local velocity at the tunneling entry is maximal at t = t0
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FIG. 5. The probability density D
�

ξin
(t) (red dashed line, right

scale) and the local velocity D
∇ϕ

ξin
(t) (blue dot-dashed line, left scale)

along the entry line ξ = ξin are plotted as a function of time for the
electric field strength E0 = 1.3 a.u. The solid black line denotes the
instant of maximal Dξin (t); vertical dashed lines indicate the position
of the maxima of D

�

ξin
(t) and D

∇ϕ

ξin
(t).

in sync with the electric field, the probability flow along the
entry line D

�

ξin
(t) reaches its maximum earlier. The quantity

D
�

ξin
(t) goes asymptotically to a constant value less than the

initial value because some of the total probability has tunneled.
Because the probability flow is the product of the probability
density and the local velocity, the maximum of the integrated
probability flow Dξin (t) is reached between the instants of the
maxima of the integrated density D

�

ξin
(t) and the integrated

velocity D
∇ϕ
ξin

(t); this means tin < t0. The time texit is usually
larger than t0, i.e., τexit > 0, especially for weak external fields.

After the electron has passed the entry line of the tunneling
barrier, it needs some time to cross the barrier and to reach
the tunneling exit. This means texit > tin, but not necessarily
texit > t0. The latter may be understood by realizing that the
above explanation for tin < t0 is not specific to the coordinate
ξ = ξin. In particular, it also applies to ξ = ξexit. Consequently,
also the integrated flow at the exit coordinate D

�

ξexit
(t) may reach

its maximum before the maximum of the electric field, as, for
example, for the parameters in Fig. 3. In general, however, we
find that D

∇ϕ
ξexit

(t) is maximal at an instant very close to t0.
Taking the results above into consideration, the time tin

should be regarded as a reference for the tunneling time, but
not t0. The latter leads to the delay τexit. Choosing t0 as a
reference can lead to negative delays τexit for large electric
field strengths, e. g., for E0 � 1.0 a.u. for the setup that was
applied for Fig. 4. This, however, should not be misinterpreted
as a negative tunneling time because τexit is not related to the
time which an electron needs to pass the tunneling barrier. This
time is given by τtsub. As τtsub is always larger than τexit, the
delay τexit may be used as a lower bound of the tunneling time.

It has been speculated that tunnel ionization may be
instantaneous [14,25], which would be associated with a
superluminal traversal of the tunneling barrier. Our results,
however, clearly indicate that there is a nonvanishing tunneling
time τtsub. This leads to a finite average velocity of the motion
of from ξ = ξin to ξ = ξexit:

v = ξexit − ξin

2τtsub
. (22)
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FIG. 6. Average velocity v of the motion of the probability
current’s maximum from the tunneling barrier entry to the exit as
a function of the applied maximal electric field strength E0.

Here we have taken into account that the lines of constant ξ are
parabolas in the x − y plane and the probability current flows
mainly at y ≈ 0. As shown in Fig. 6, there is a monotonous
relation between the applied maximal electric field strength E0

and the velocity v. The velocity presented in Fig. 6, however,
is more than two orders of magnitude below the speed of
light. Identifying the tunneling motion of the electron over the
tunneling barrier with the motion of the probability-current’s
maximum, it is justified to say that tunneling ionization neither
is instantaneous nor moves the electron at superluminal speed.

B. Quantum and classical trajectories

The probability currents over different lines of constant ξ

reach their maxima at different times, which allows us to define
a quantum trajectory ξq(t) by inverting

tξ = arg max Dξ (t). (23)

The quantum trajectory ξq(t) defined by Eq. (23) can be
compared to the trajectory predicted by a Coulomb-corrected
two-step model ξ c(t). This classical trajectory is determined
by the Newton equation

d2ξ c(t)

dt2
= − 8

ξ c(t)2 + 2E(t), (24)

where the reduction to one dimension is justified as the most
probable trajectory is along the x direction at y ≈ 0. The initial
conditions for the two-step model are

ξ c(t0) = ξexit, (25a)

dξc(t)

dt

∣∣∣∣
t=t0

= 0, (25b)

meaning that the electron exits at the instant of electric field
maximum t = t0 with zero initial momentum at the turning
point x = ξexit/2. As shown in Fig. 7 for different electric
field strengths, the classical trajectory ξc(t) deviates from the
quantum trajectory ξq(t) not only near the barrier exit but also
at a far away detector, i.e., for ξ � ξexit.

From the above studies we have seen that the electron
exits the tunneling barrier at texit, which differs from t0. It
has been shown by quantum mechanical calculations [28] that

−3
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3

4

t
−

t 0
(a

.u
.)

ε0 = 0.9 a.u.
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ξc(t)
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c(t)

ε0 = 1.0 a.u.
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−
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(a

.u
.)

ε0 = 1.1 a.u.

0 5 10 15 20 25 30
ξ(a.u.)ξ(a.u.)

ε0 = 1.2 a.u.

FIG. 7. The quantum trajectory of the electron in the ξ coordinate
ξq (t), compared to the classical trajectory according based on the two-
step model ξ c(t). Both are also compared to the classical trajectory
corrected according to quantum initial conditions ξ c

c (t). For more
information see the main text. The shadowed area marks the positions
ξ corresponding to under the barrier.

the electron exits also with an initial momentum in the electric
field direction. This initial velocity can be inferred from the
quantum trajectory, via

vexit = dξq(t)

dt

∣∣∣∣
t=texit

, (26)

which yields results that are consistent with the results of
Ref. [28]. The classical trajectory ξ c(t) can be corrected by
the quantum initial conditions:

ξ c
c (texit) = ξexit, (27a)

dξc
c (t)

dt

∣∣∣∣
t=texit

= vexit. (27b)

As shown in Fig. 7 the corrected classical trajectory ξc
c (t)

agrees well with the quantum trajectory ξq(t). Nevertheless,
there is still a slight discrepancy between both trajectories
at a far away detector, which can be attributed to that ξq(t)
originates from the motion of a broad wave packet which
experiences a spatially varying Coulomb force [48]. The initial
velocity vexit is plotted in Fig. 8 for different electric field
strengths. In agreement with Ref. [28], the initial momentum
is slightly dependent on the electric field strength also in the
considered two-dimensional system. The initial momentum is
of the order of the width of the ground state distribution in
momentum space.

The initial velocity vexit is difficult to measure directly in
an experiment. But it also affects the asymptotic velocity of
the ionized electron. Note that one can choose an electric field
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FIG. 8. The quantum trajectory’s initial velocity vexit plotted for
different electric field strengths E0 for Keldysh parameter γ = 0.25.

strength such that the quantum trajectory is at ξq = ξexit at
t = t0, i.e., the electron leaves the tunneling barrier at the
moment of electric-field maximum, which is one assumption
of the two-step model. In this case, the difference between the
electron’s actual asymptotic momentum and the prediction
of the classical Coulomb-corrected two-step model is just
the electron’s initial momentum at the barrier exit. For
the two-dimensional model as considered in Fig. 7 the
condition ξq(t0) = ξexit is fulfilled for an electric field strength
E0 = 1.0 a.u.

IV. CONCLUSIONS

We studied the dynamics of tunnel ionization by analyzing
the quantum mechanical wave function’s probability current
via virtual detectors. Virtual detectors are a capable concept for
determining tunneling times because they allow us to identify
well-defined moments when the ionized electron enters and
leaves the tunneling barrier.

The numerical solutions of the time-dependent Schrödinger
equation and the dynamics of the probability current at the
tunneling barrier indicate that the electron spends a nonvan-
ishing time under the potential barrier. This corresponds to a
crossing velocity that is much lower than the speed of light.
Furthermore, the electron may enter the classical forbidden
region on average before the instant of the maximum of the
driving electric field. Therefore, the instant of electric field
maximum should not be considered as an initial reference
time of the tunneling process. Nevertheless, for electric field
strengths well below the threshold regime the electron exits
the barrier after the instant of electric field maximum. For
such strengths a nonvanishing delay τexit between the electric
field maximum and the emergence of the electron behind the
tunneling barrier exists as a signature of the time spent under
the barrier. The actual time span that the electron has spent
in the classically forbidden region, however, will be larger
than τexit. Vanishing or negative time delays τexit should not be
interpreted as instantaneous tunneling.

Under the barrier as well at the tunneling exit, the electron
has a nonzero velocity in electric field direction. After the
tunneling exit, the quantum trajectory, which is induced by
the wave function’s probability current, agrees well with a
trajectory as given by classical equations of motion when the

electron’s initial velocity at the tunneling exit is taken into
account properly.
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APPENDIX: THE COULOMB PROBLEM AND THE STRAK
EFFECT IN TWO DIMENSIONS

The eigen-equation of the two-dimensional Coulomb prob-
lem [42,49] with some additional homogeneous electric field
of strength E is given in Cartesian coordinates x and y and
employing atomic units by(

−1

2

∂2

∂x2
−1

2

∂2

∂y2
− 1√

x2 + y2
− Ex

)
�(x,y) = E�(x,y),

(A1)

where �(x,y) denotes an eigen-function with energy E. This
eigen-equation separates in parabolic coordinates ξ and η

[49–51], which are related to the Cartesian coordinates x and
y via Eq. (12). This coordinate system is particularly useful
because here the two-dimensional Schrödinger equation can
be separated into two one-dimensional Schrödinger equations,
which allows us to define a one-dimensional tunneling barrier.
The calculations in this section follow Ref. [52], where
the three-dimensional Coulomb problem is considered in a
similar way.

The Laplacian becomes in the new coordinate system

∂2

∂x2
+ ∂2

∂y2
= 1

ξ + η

(
4ξ

∂2

∂ξ 2
+ 2

∂

∂ξ
+ 4η

∂2

∂η2
+ 2

∂

∂η

)
.

(A2)

Expressing (A1) in parabolic coordinates yields after some
algebraic transformations(

ξ
∂2

∂ξ 2
+ 1

2

∂

∂ξ
+ E

2
ξ + E

4
ξ 2

)
�(ξ,η)

+
(

η
∂2

∂η2
+ 1

2

∂

∂η
+ E

2
η − E

4
η2

)
�(ξ,η) = −�(ξ,η).

(A3)

Substituting the ansatz �(ξ,η) = f1(ξ )f2(η) into the last
equation end separating the variables ξ and η we obtain

(
ξ

∂2

∂ξ 2
+ 1

2

∂

∂ξ
+ E

2
ξ + E

4
ξ 2 + β1

)
f1(ξ ) = 0, (A4a)

(
η

∂2

∂η2
+ 1

2

∂

∂η
+ E

2
η − E

4
η2 + β2

)
f2(η) = 0, (A4b)

where the separation constants β1 and β2 are related by

β1 + β2 = 1. (A5)

The tunneling barriers are obtained by substituting f1(ξ ) =
g1(ξ )/ξ 1/4 and f2(η) = g2(η)/η1/4, which gives the equations
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for the new functions as

− 1

2

∂2g1(ξ )

∂ξ 2
+

(
− 3

32ξ 2
− β1

2ξ
− ξ

8
E
)

g1(ξ ) = E

4
g1(ξ ),

(A6a)

−1

2

∂2g2(η)

∂η2
+

(
− 3

32η2
− β2

2η
+ η

8
E
)

g2(η) = E

4
g2(η).

(A6b)

These two equations represent Schrödinger-type eigen-
equations with the potentials

V1(ξ ) = − 3

32ξ 2
− β1

2ξ
− ξ

8
E, (A7a)

V2(η) = − 3

32η2
− β2

2η
+ η

8
E, (A7b)

and the energy E/4.
For a vanishing external electric field, i.e., E = 0,

Eqs. (A4a) and (A4b) are identical. Introducing the variable
transformation ξ = η = ζ/

√−2E gives in this case

(
ζ

∂2

∂ζ 2
+ 1

2

∂

∂ζ
+ β1,2√−2E

− ζ

4

)
f1,2(ζ ) = 0. (A8)

Making the ansatz f1,2(ζ ) = exp(−ζ/2)g1,2(ζ ) this differen-
tial equation yields the equation

[
ζ

∂2

∂ζ 2
+

(
1

2
− ζ

)
∂

∂ζ
−

(
1

4
− β1,2√−2E

)]
g1,2(ζ ) = 0

(A9)
for g1,2(ζ ), which can be identified as the confluent hypergeo-
metric equation [53] with

a = 1

4
− β1,2√−2E

, b = 1

2
. (A10)

The nonsingular solution of the confluent hypergeometric
equation is usually called confluent hypergeometric function
and denoted by 1F1(a; b; ζ ) or M(a; b; ζ ). Thus we have found
the solution

f1(ξ ) ∼ exp

(
−ξ

2

√−2E

)
M

(
1

4
− β1√−2E

;
1

2
; ξ

√−2E

)
(A11)

and similarly for f2(η). These functions f1(ξ ) and f2(η) can
be normalized only if the first argument of the confluent
hypergeometric function is a negative integer or zero. In
this case the confluent hypergeometric function coincides (up
to normalization) with the associated Laguerre polynomials.

Thus, the quantization conditions

1

4
− β1,2√−2E

= −n1,2 (A12)

with n1,2 = 0,1,2, . . . will have to be fulfilled. Together with
the relation (A5) the quantization conditions yield

E = − 1

2(n1 + n2 + 1/2)2
, (A13)

β1,2 =
(

n1,2 + 1

4

)√−2E . (A14)

Normalizing f1(ξ ) and f2(η) to unity finally gives the
bound eigen-states of the two-dimensional Coulomb problem
�n1,n2 (ξ,η) = f1;E,n1 (ξ )f2;E,n2 (η) with

f1;E,n1 (ξ ) =
√ √−2E

1 + 4n1
exp

(
−ξ

2

√−2E

)

×M

(
−n1;

1

2
; ξ

√−2E

)
, (A15a)

f2;E,n2 (η) =
√ √−2E

1 + 4n2
exp

(
−η

2

√−2E

)

×M

(
−n2;

1

2
; η

√−2E

)
, (A15b)

and the energy E given by (A13).
Taking into account the Stark effect, i.,e., E > 0, leads to

a modification of the eigen-states, of the eigen-energies E,
as well as of the separation constants β1 and β2. In this way,
the tunneling potential (A7a) also changes. The resulting
values for β1, β2, and E can be calculated via perturbation
theory [52]. In case of the ground state with n1 = n2 = 0, we
get in second order

β1,2 = β
(0)
1,2 + β

(1)
1,2 + β

(2)
1,2 (A16)
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FIG. 9. The ground state energy E of the two-dimensional
Coulomb problem with an external electric field and the separation
parameters β1 and β2 as functions of the electric field strength E .
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with

β
(0)
1,2 =

√
−E/8, (A17a)

β
(1)
1,2 =

∫
f1,2;E,0(ξ )

(
∓ξ

4
E
)

f1,2;E,0(ξ ) dξ = ∓ E
4E

, (A17b)

β
(2)
1,2 = 1√−2E

∞∑
n=1

1
1
4 − (

n + 1
4

) ∣∣∣∣
∫

f1,2;E,n(ξ )

(
∓ξ

4
E
)

f1,2;E,0(ξ ) dξ

∣∣∣∣
2

≈ 0.2004642410
√−2E

E2

E3
. (A17c)

Equations (A16) and (A5) determine the parameters β1, β2, and E uniquely, and the results of a numerical solution of these
equations are shown in Fig. 9.
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