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Time evolution of initial states that extend beyond the potential interaction region in quantum decay
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We investigate the decay of initial states that possess a tail that extends beyond the interaction potential region,
for potentials of arbitrary shape that vanish exactly after a distance. This is the case for a relevant class of artificial
quantum structures. We obtain that along the internal interaction region, the time evolution of the decaying wave
function is formed by two terms. The first one refers to the proper decay of the internal portion of the initial
state, whereas the second one, that arises from the external tail, yields a transient contribution that tunnels into
the internal region, builds up to a value, and then decays. We obtain that depending on the parameters of the
initial state, the nonexponential tail decaying contribution may be larger than the contribution of the proper
nonexponential term. These results are illustrated by an exactly solvable model and the Heidelberg potential for
decay of ultracold atoms and open the possibility to control initial states in artificial decaying systems.
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I. INTRODUCTION

It has been usually assumed that initial states in decaying
systems are formed in scattering processes at incidence
energies very close to a resonance of the system. As a
consequence, for a resonance with a very long lifetime, the
initial state is confined within the internal interaction region.
Moreover, one might ignore the formation of the initial state
in the description of the subsequent decay process [1,2]. An
analogous situation occurs in the α decay of radioactive nuclei,
formed in supernova explosions [3]. As a result of the above
considerations, it has been a common practice to propose some
arbitrary analytical expression for the initially confined state
used in the analysis of quantum decay. A recent study on this
issue seems to confirm the validity of the above practice along
the exponentially decaying regime [4]. However, in recent
work concerning artificial quantum systems, the initial state
is formed by a different procedure [5,6]. For example, in the
decay of ultracold atoms in optical traps [6], the ultracold atom
belongs to a bound state of an optical trap that is suddenly
modified by the action of a magnetic potential into a potential
having a well with a barrier which then allows the decay of
the atom by tunneling into the continuum [6–8]. Although
the confining potential suffers a brutal modification, some
authors assume that the initial decaying state corresponds to
the original bound state of the optical trap. In contrast, other
authors consider that the initial state is confined within the
interaction region [9,10], as in the earlier works mentioned
above [1,2]. The setup with an initial state having a tail has
also been considered in studies on time scales in tunneling
decay [11].

Motivated by the above considerations, in this work we
investigate the effect of initial states that have a tail along the
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external interaction region on the time evolution of single-
particle decay. Our analysis is made for potentials of arbitrary
shape that vanish exactly after a distance. This is a usual
situation in artificial quantum systems, as in semiconductor
resonant tunneling structures [5,12], and in ultracold atoms [6],
but also in potentials involving tails where the numerical
solution to the corresponding radial Schrödinger equation
necessarily requires a cutoff at a finite distance. Beyond
that, the numerical solution is matched with the free-particle
solutions or, if necessary, with Coulomb solutions. An example
in nuclear systems is the often used Woods-Saxon potential.
Recently, nuclear potentials of finite range have been proposed
for light and heavy nuclei [13].

Our problem corresponds to a physical setup where, as
time evolves, the portion of the initial state located within
the interaction region decays in the usual way. We refer to
this situation as proper decay. Similarly, the portion of the
initial state that corresponds to the tail has a part that tunnels
through the potential into the internal interaction region,
builds up to certain value, and then decays to the outside.
The total decaying probability density is then formed by the
probability densities of the above two components, and the
interference between them. Here, we follow an exact analytical
approach to address the above problem using the formalism of
resonant (quasinormal) states [14,15]. In a recent work [16],
we have shown that proper decay yields exactly the same
results as those by numerical integration using continuum
wave solutions. Here we also investigate if this result holds
when considering the external component of the initial state.

The paper is organized as follows. In Sec. II, the formal
derivation of the time-dependent solution for initial states that
extend beyond the potential interaction region is presented.
Sections II A and II B derive, respectively, the continuum
and the resonant (quasinormal) state solutions. Section II C
provides a general analysis of the transient behavior of the
probability density to the problem. Section III illustrates our
results with the exactly solvable δ-shell potential and the
realistic Heidelberg potential, and finally, Sec. IV presents
some concluding remarks.
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II. FORMALISM

Let us consider a single-particle problem characterized by a
spherical symmetric potential V (r) that vanishes exactly after
a distance, i.e., V (r) = 0 for r > a. One may then solve the
corresponding Schrödinger equation in the radial variable r

for s waves as an initial value problem. Hence,[
i�

∂

∂t
− H

]
�(r,t) = 0, (1)

with the Hamiltonian

H = −(�2/2m)∂2/∂r2 + V (r), (2)

with m the mass of the particle. Typically the potential involves
a well and a barrier having arbitrary shape. Notice that this
problem is analogous to one defined in the half line in one
dimension.

Let us denote by �(r,0) the arbitrary initial state which
is formed by two portions: �I (r,0), located initially within
the internal region of the potential 0 � r � a, and �II (r,0),
extending along the external region r � a. Hence one may
write �(r,0) in the full interval 0 � r � ∞ as

�(r,0) = �I (r,0) + �II (r,0), (3)

provided the continuity of �I (r,0) and �II (r,0) at r = a is
fulfilled. We may also impose that the derivatives with respect
to r of the above functions hold at r = a. However, since
the initial state is arbitrary, this is not strictly necessary. We
illustrate the consequences of this in the models considered in
Sec. III.

The normalization of �(r,0) requires∫ ∞

0
|�(r,0)|2 dr =

∫ a

0
|�I (r,0)|2 dr

+
∫ ∞

a

|�II (r,0)|2 dr = 1. (4)

The time evolution of �I (r,t) and �II (r,t) consists of
two distinct physical processes. �I (r,t) corresponds to a
proper decay problem in which the corresponding probability
density essentially diminishes with time, whereas �II (r,t)
corresponds to a more complex situation, where some compo-
nents of the solution tunnel into the internal potential region
and others evolve away due to reflection by the potential
interaction. Along the internal region, the probability density
related to �II (r,t) rises from zero up to certain value in a
time interval and then decays. The total probability density at
a given point r = r0 along the internal region at time t then
reads

|�(r0,t)|2 = |�I (r0,t)|2 + |�II (r0,t)|2
+ 2Re{�∗

I (r0,t)�II (r0,t)}. (5)

A. Continuum wave solution

The solution to Eq. (1) may be written in terms of the
continuum wave solutions ψ+(k,r) to the problem as

�(r,t) =
∫ ∞

0
C(k) ψ+(k,r) e−i(�/2m)k2t dk, (6)

where C(k) is the expansion coefficient,

C(k) =
∫ ∞

0
�(r,0) ψ+∗(k,r) dr. (7)

Along the internal and external interaction regions, the
continuum wave solutions, normalized to the Dirac δ, may
be written as [17]

ψ+(k,r) =
√

2

π

{
kφ(k,r)/J+(k), r � a

(i/2)[e−ikr − S(k)eikr ], r � a,
(8)

where φ(k,r) stands for the regular solution, the S matrix is
S(k) = J−(k)/J+(k), with J−(k) = J ∗

+(k), and J+(k) corre-
sponds to the Jost function to the problem [17].

The evaluation of the probability density |�(r,t)|2, in view
of Eqs. (7) and (8), as a function of time requires the numerical
calculation of Eq. (6). This corresponds to a “black-box”
type of calculation that does not provide a physical grasp
of the time evolution of the initial state. In one of the
model calculations discussed below, however, we consider
the numerical calculation of Eq. (6) to illustrate that it yields
identical results as the analytical approach involving resonant
(quasinormal) states discussed in the next section.

B. Resonant (quasinormal) state solution

Here we follow an exact approach based on the analytical
properties of the outgoing Green’s function to the problem
in the complex k plane that provides explicit expressions for
the time evolution of the probability density along the expo-
nential and postexponential decaying regimes using resonant
(quasinormal) states. We discuss below the main aspects of the
time evolution of �I (r,t), given in detail elsewhere [14,16],
and of the time evolution of �II (r,t) along the internal
interaction region, which corresponds to a quantum shutter
solution [18,19].

1. Decay of �I (r,t)

The solution to the time-dependent Schrödinger equa-
tion (1) for �(r,t) ≡ �I (r,t) along region I, 0 � r � a, may
be written in terms of the retarded Green’s function g(r,r ′; t)
as

�I (r,t) =
∫ a

0
g(r,r ′,t)�I (r ′,0)dr ′, (9)

where, without loss of generality, the initial state �I (r,0)
is assumed to be a real function. Since the decay refers to
tunneling into the continuum, for the sake of simplicity, the
potential does not possess bound or antibound states. It is
convenient to express the retarded time-dependent Green’s
function in terms of the outgoing Green’s function G+(r,r ′; k)
of the problem. Both quantities are related by a Laplace
transformation. The Bromwich contour in the k complex plane
corresponds to a hyperbolic contour along the first quadrant
that may be deformed to a contour that goes from −∞ to ∞
along the real k axis, namely [14,15],

g(r,r ′; t) = i

2π

(
�

2

2m

) ∫ ∞

−∞
G+(r,r ′; k)e−i(�/2m)k2t 2k dk.

(10)
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As pointed out in the previous section, we may then
consider the resonant expansion of the outgoing Green’s
function [14,15],

G+(r,r ′; k) = 1

2k

(
2m

�2

) ∞∑
n=−∞

un(r)un(r ′)
k − κn

, (r,r ′)† � a,

(11)

where the notation (r,r ′)† means that the point r = r ′ = a is
excluded in the above expansion (otherwise it diverges) and the
set of functions {un(r)} corresponds to the resonant (quasinor-
mal) states of the problem. These states may also be obtained
from the residues at the complex poles {κn} of the problem,
which also provide the normalization condition [14,20]∫ a

0
u2

n(r) dr + i
u2

n(a)

2κn

= 1. (12)

The resonant states satisfy the Schrödinger equation to the
problem,

[En − H ]un(r) = 0, (13)

satisfying the boundary conditions

un(0) = 0,

[
dun(r)

dr

]
r=a

= iκnun(a), (14)

which lead to the complex energy eigenvalues

En = �
2

2m
κ2

n = En − i
n/2, (15)

whereEn yields the resonance energy of the decaying fragment,
and 
n stands for the resonance width, which yields the lifetime
τn = �/
n of a given resonance level. The lifetime of the
system is defined by the longest lifetime, i.e., the shortest
width. The complex poles, κn = αn − iβn, are distributed
along the third and fourth quadrants of the complex k plane in
a well-known manner [17].

The above representation for G+(r,r ′; k) satisfies the
closure relation for resonant (quasinormal) states [14],

Re

{ ∞∑
n=1

un(r)un(r ′)

}
= δ(r − r ′), (r,r ′)† � a, (16)

and the sum rules,

Im

{ ∞∑
n=1

un(r)un(r ′)
κn

}
= 0, (r,r ′)† � a; (17a)

Im

{ ∞∑
n=1

un(r)un(r ′)κn

}
= 0, (r,r ′)† � a. (17b)

The above results allow us to write the retarded Green’s
function along the internal interaction region as [14]

g(r,r ′; t) =
∞∑

n=−∞
un(r)un(r ′)M

(
y◦

κn

)
, (r,r ′)† � a, (18)

where the Moshinsky function M(y◦
κn

), that typically ap-
pears in the description of transient phenomena, is defined

as [14,15,19]

M
(
y◦

κn

) = i

2π

∫ ∞

−∞

e−i(�/2m)k2t

k − κn

dk = 1

2
w

(
iy◦

κn

)
, (19)

where

y◦
κn

= −e−iπ/4(�/2m)κnt
1/2, (20)

and the function w(z) = exp(−z2)erfc(−iz) stands for the
Faddeyeva or complex error function [21] for which there
exist efficient computational tools [22].

Inserting Eq. (18) into Eq. (9) yields, for the time-dependent
decaying solution, the exact expression

�I (r,t) =
∞∑

n=−∞
Cnun(r)M

(
y◦

κn

)
, r � a, (21)

where the coefficients Cn are defined as

Cn =
∫ a

0
�I (r,0)un(r)dr. (22)

Since the potential is real, it follows from time-reversal
invariance that u−n(r) = u∗

n(r) and κ−n = −κ∗
n [23]. This

allows us to express Eq. (21) as a sum running from n = 1
to ∞. Also, since for complex poles located on the fourth
quadrant, π/2 < arg(y◦

n) < 3π/2, one may use properties
of the Faddeyeva function to write the Moshinsky function
as [14,21]

M
(
y◦

κn

) = e−i(�/2m)κ2
n t − M

(−y◦
κn

)
. (23)

Substitution of Eq. (23) into Eq. (21) leads to the expression
along r � a,

�I (r,t) =
∞∑

n=1

Cnun(r)e−iEnt/�e−
nt/2� −
∞∑

n=1

In(r,t), (24)

where we have used (15), and In(r,t) stands for the nonexpo-
nential contribution,

In(r,t) = Cnun(r)M
(−y◦

κn

) − C−nu−n(r)M
(
y◦

κ−n

)
. (25)

Notice that in the above equation, one may write C−n = C∗
n ,

which follows from Eq. (22) by recalling that u−n(r) = u∗
n(r);

also the argument y◦
−n is similar to y◦

n , defined by (20), with κn

substituted by κ−n = −κ∗
n . Furthermore, since arg(−y◦

n) and
arg(y◦

−n) lie between −π/2 and π/2, the functions M(−y◦
κn

)
and M(−y◦

κ−n
) do not possess an exponential behavior. In fact,

at long times, they exhibit an inverse power of time behavior
which goes as a/(κr t

1/2) + b/(κr t
3/2) + . . ., with a and b some

constants and r = n or −n [21]. However, when the above
behavior is inserted in (25), the first asymptotic term vanishes
exactly in view of the sum rule (17a) and, as a consequence,
along the exponential and long-time regimes, the decaying
solution (24) may be written as [14,15,24]

�I (r,t) ≈
∞∑

n=1

Cnun(r)e−iEnt/�e−
nt/2�

− iη Im

{ ∞∑
n=1

Cnun(r)

κ3
n

}
1

t 3/2
, r � a, (26)

022103-3
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where

η = (1/4πi)1/2(2m/�)3/2. (27)

The following relationship is obtained from the closure
relation (16),

1∫ a

0 |�I (r,0)|2 dr
Re

{ ∞∑
n=1

C2
n

}
= 1, (28)

where the normalization of �I (r,0) follows from Eq. (4). The
sum term in Eq. (28) attains a value close to unity if initially
there is also a probability close to unity to find the particle
along the internal interaction region. Notice from the above
equation that although each term Re {C2

n} cannot be interpreted
as a probability, since in general it is not a positive quantity,
nevertheless it represents a “strength” or “weight” of the initial
state in the corresponding resonant state.

An interesting relationship that follows from flux conser-
vation at the boundary r = a [14,15], that we use below, is

βn = 1

2

|un(a)|2
In

, (29)

with

In =
∫ a

0
|un(r)|2 dr. (30)

It is worth mentioning that substitution of un(r) =
|un(r)| exp[iφn(r)] in the expression for the normalization
condition (12) yields, after a simple algebraic manipulation,
that for a sharp resonance, i.e., αn � βn, the phase φn(r) ≈
π/2, and hence

In ≈ 1, αn � βn. (31)

2. Time evolution of �I I (r,t)

Let us now consider the solution to the Schrödinger
equation (1) for �II (r,t) along the external interaction region
with the initial condition given by

�II (r,0) =
{

0, 0 � r � a

Be−κr , r > a,

with B a normalization constant. We are interested, as time
evolves, in the components of the initial state that tunnel into
the internal region of the potential, 0 � r � a. Here we follow
the procedure employed by Garcı́a-Calderón and Rubio in
the analysis of transient effects in the dynamics of resonant
tunneling in one dimension [18], which is also based on
analytical properties of the outgoing Green’s function to the
problem.

One may Laplace transform Eq. (1) using the standard
definition,

�̄(r,k,s) =
∫ ∞

0
�(r,k,t)e−st dt, (32)

with the initial condition given above. It is convenient to make
the change of variable s = −i(�/2m)p2 to write the Laplace
transformed equations,(

∂2

∂r2
+ p2

)
�̄(r,p) = i(2m/�)Be−κr , r � a, (33)

where the inhomogeneous term arises from the initial
condition, and[

∂2

∂r2
+ p2 − U (r)

]
�̄(r,p) = 0, 0 � r � a, (34)

where U (r) = (2m/�
2)V (r).

The Laplace transformed solution to Eq. (33) reads

�̄(r,p) = i

(
2m/�

p2 − κ2

)
Be−κr + C(p)eipr , r � a. (35)

In (35), the first term on the right-hand side corresponds to
a particular solution of Eq. (33). Notice that the solution
C(p) exp(ipr) in Eq. (35) is the only physically allowed solu-
tion to Eq. (33) since p = (2m/�)(1 + i)(s/2)1/2 guarantees
the vanishing of the solution at infinity.

Along the internal region of the potential, it is convenient
to write the solution �̄(r,p) in terms of the outgoing Green’s
function G+(r,r ′; p), which satisfies the equation[

∂2

∂r2
+ p2 − U (r)

]
G+(r,r ′; p) = δ(r − r ′), (36)

with boundary conditions

G+(0,r ′; p) = 0,

[
∂

∂r
G+(r,r ′; p)

]
r=a

= ipG+(a,r ′; p).

(37)

Using Green’s formula between Eqs. (34) and (36) followed
by integration along the internal region from r = 0 to r = a,
and using Eqs. (35) and (37), yields an expression that relates
�̄(r,p) with the outgoing Green’s function,

�̄κ (r,p) = −(2m/�)
Be−κa

p + iκ
G+(a,r; p), 0 � r < a.

(38)

Equation (38) is convenient because one may then exploit
the analytical properties of the outgoing Green’s function on
the complex p plane. The procedure is similar to that discussed
in Ref. [18], leading to the expression

p�̄κ (r,p) = −(2m/�)Be−κa

∞∑
n=−∞

un(a)un(r)

2(iκ + κn)(p − κn)

− (2m/�)
Be−κa

p + iκ
G+(a,r; κ). (39)

Inserting Eq. (39) into the inverse Laplace transform,

�II (r,t) = − 1

2πi

∫ ∞

−∞
p�̄κ (r,p)e−i(�/2m)p2t dp, (40)

yields an expression that may be written as

�II (r,t) =
∞∑

n=−∞
Dnun(r)M

(
y◦

κn

)
− iBe−κa[−2iκG+(a,r; κ)]M

(
y◦

−iκ

)
, r < a,

(41)

022103-4



TIME EVOLUTION OF INITIAL STATES THAT EXTEND . . . PHYSICAL REVIEW A 94, 022103 (2016)

where y◦
−iκ is given by Eq. (20) with κn replaced by −iκ ,

namely,

y◦
κ = eiπ/4(�/2m)κt1/2, (42)

and

Dn = iBe−κaun(a)

iκ + κn

. (43)

Equation (41) may be written in a more compact form by
using the expansion for the outgoing Green’s function given
by Eq. (11) with k = −iκ to obtain along the region r < a,

�II (r,t) =
∞∑

n=−∞
Dnun(r)

[
M

(
y◦

κn

) − M
(
y◦

−iκ

)]
. (44)

Using Eq. (23), one may write Eq. (44) as

�II (r,t) =
∞∑

n=1

Dnun(r)e−iEnt/�e−
nt/2� −
∞∑

n=1

Rn(r,t), (45)

where Rn(r,t) stands for the nonexponential contribution,

Rn(r,t) = Dnun(r)M
(−y◦

κn

) − D−nu−n(r)M
(
y◦

κ−n

)
+ [Dnun(r) + D−nu−n(r)]M

(
y◦

−iκ

)
. (46)

The long-time behavior of the above expression may be
obtained by using the properties of the M functions in a similar
fashion as discussed for �I (r,t) and, as a consequence, we
may write, along the internal interaction region r < a, the
exponential and long-time solution,

�II (r,t) ≈
∞∑

n=1

Dnun(r)e−iEnt/�e−
nt/2�

− η Re

{ ∞∑
n=1

Dnun(r)

[
1

κ3
n

− 1

(−iκ)3

]}
1

t3/2
,

(47)

where r � a, we recall that η is given by (27), and we
have taken into account that −π/2 < arg(y−iκ ) < π/2, and
hence M(y−iκ ) also exhibits a purely nonexponential behavior.
Equation (47) allows us to clearly identify the exponential and
nonexponential behavior of �II (r,t).

C. Analysis of |�I |2 and |�I I |2

The time-dependent solutions along the internal interaction
region, given by �I (r,t) (proper decay) and �II (r,t) II (tail
solution), which are given by Eqs. (21) and (44), have as an
input, in addition to the corresponding initial states, the set of
poles {κn} and resonance (quasinormal) states {un}. As pointed
out above, the finite range potential interaction is commonly
formed by a well and a barrier of arbitrary shape. A single
barrier guarantees that the position of the set of poles on the k

plane fulfills |κ1| < |κ2| < |κ3| < · · · , and as a consequence,
the decaying widths fulfill [17,25]


1 < 
2 < 
3 < · · · . (48)

It is well known that for typical decaying systems, E1 > 
1. As
a consequence, one may distinguish three decaying regimes:

very short times, exponential decay, and long times. Here,
the time scale is set by the lifetime of the system, defined
as τ = �/
1. For proper decay, these regimes have been
thoroughly investigated in the literature, in particular using
resonance (quasinormal) states [16,24,26,27].

Since at t = 0 the tail solution �II vanishes exactly along
the internal interaction region, as confirmed by Eq. (44), since
M(0) = 1/2, it follows that the very short-time regime depends
only on �I (r,t) [26]. One sees, therefore, that �II (r,t) may
have an effect only for the exponential and long-time regimes.

Let us make a comparison between the exponential de-
caying contributions of �I and �II . Here, it is convenient
to consider Eqs. (26) and (47), and denote the corresponding
contributions by �

exp
I (r,t) and �

exp
II (r,t), to write

∣∣�exp
I (r,t)

∣∣2 ≈
∣∣∣∣∣

∞∑
n=1

Cnun(r)

∣∣∣∣∣
2

e−
nt/�, (49)

where we recall that Cn is defined by Eq. (22), and

∣∣�exp
II (r,t)

∣∣2 ≈
∣∣∣∣∣

∞∑
n=1

[
iBe−κaun(a)

iκ + κn

]
un(r)

∣∣∣∣∣
2

e−
nt/�, (50)

where we have used (43). Notice that the coefficient B is
determined by the continuity condition �I (a,t) = �II (a,t),
which provides an overall normalization condition for the full
interval (0,∞).

We shall refer here to the common situation where the
initial state overlaps strongly with the lowest-energy resonant
(quasinormal) state u1(r) to the system, which is assumed to
be sharp, i.e., α1 � β1, and corresponds to the state with the
longest lifetime. In such a case, in view of (28),

1∫ a

0 |�I (r,0)|2 dr
Re

{
C2

1

} ≈ 1. (51)

Notice, however, that a similar single-term approximation does
not hold for the solution �II because there is not a dominant
term there. In any case, as time evolves beyond a lifetime, in
view of Eq. (48), the leading term in the sums of Eqs. (49)
and (50) is the term multiplied by exp(−
1t/�). Hence one
may write these equations as∣∣�exp

I (r,t)
∣∣2 ≈ |C1u1(r)|2e−
1t/� (52)

and

∣∣�exp
II (r,t)

∣∣2 ≈
∣∣∣∣
[
iBe−κau1(a)

iκ + κ1

]
u1(r)

∣∣∣∣
2

e−
1t/�. (53)

It is convenient now to refer to the role played by the
possible values of κ in Eq. (50). Notice that for κ →
∞, |�II (r,t)|2 → 0, which clearly implies that large values
of κ lead to a negligible tail solution. On the other hand, and
as κ → 0, the tail initial state becomes non-normalizable. In
principle, one could consider values κa 
 1. However, this
would imply, in view of the normalization condition (4), that
the probability to find the particle initially outside would be
much larger than along the internal interaction region, which
does not correspond to the physical situation we are describing.
Therefore, considering values κa > 1, one may expect that
the probability to find the decaying particle initially within the
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interaction region is much larger than along the external region
and hence, using (4),∫ a

0
|�I (r,0)|2 dr ≈ 1. (54)

It follows, using (54) and (51), that Re C2
1 ≈ 1. Also, it may be

shown that |C1|2 ≈ 1. Notice that Eqs. (52) and (50) are both
proportional to the product |u1(r)|2 exp(−
1t/�), and hence
it is sufficient, in order to make a comparison between these
expressions, to compare the coefficient |C1|2 ≈ 1 of Eq. (52)
with the coefficient of Eq. (53),

2
Be−κaβ1

α2
1 + (β1 − κ)2

< 1, (55)

where we have used Eqs. (29) and (31). As a consequence of
the above considerations, it is obtained that∣∣�exp

I (r,t)
∣∣2

>
∣∣�exp

II (r,t)
∣∣2

. (56)

Regarding the nonexponential contributions at long times,
one may write Eqs. (24) and (47) as

�
nexp
I (r,t) ≈ −η Re

{
iC1

u1(r)

κ3
1

}
1

t 3/2
; r � a, (57)

and

�
nexp
II (r,t) ≈ −ηRe

{ ∞∑
n=1

iBe−κaun(a)

(iκ + κn)

un(r)

κ3
n

}
1

t3/2

+ ηRe

{ ∞∑
n=1

iBe−κaun(a)

(iκ + κn)

un(r)

κ3

}
1

t3/2
. (58)

Clearly, it seems impossible by inspection of Eqs. (57) and (58)
to determine which solution is larger than the other. Depending
on the values of the distinct quantities, it could be that the
contribution of (58) is larger than that of (57), and hence that
|�nexp

II (r,t)|2 > |�nexp
I (r,t)|2. This is an interesting possibility

that, however, as mentioned above, depends on the specific
parameters of the potential and the value of κa. In the models
discussed in the next section, we illustrate the above possibility.

III. MODELS

Here, we illustrate the time evolution of the total probability
density along the internal interaction region (5), as discussed
above. We consider two models. One corresponds to the
exactly solvable δ-shell potential for zero angular momen-
tum, and the other to the realistic potential considered by
the Heidelberg group [6] on decay of tunable few-fermion
systems, which recently has been used to discuss exponential
and nonexponential contributions to decay [10].

A. δ-shell potential

The δ-shell potential for s waves is given by

V (r) = λ δ(r − a), (59)

where λ is the strength of the interaction. Here we shall employ
the natural units � = 2m = 1. This model holds also in the
half line and has been used in Ref. [16] to show that for
an initial state totally confined within the interaction region,

FIG. 1. Plot of the δ interaction potential, given by Eq. (59),
and the initial state, defined by Eqs. (60a) and (60b), satisfying the
conditions given by Eqs. (61) and (63).

the resonance (quasinormal) state formulation yields the same
results as a formulation involving continuum wave functions.
Here, we also consider this numerical formulation to test our
results. It is worth mentioning that the set of poles {κn} and
resonance (quasinormal) states {un(r)} corresponding to the
δ-shell potential are qualitatively similar to those of more
involved potentials. The advantage of using this potential is
that it yields simple analytical expressions of a number of
relevant quantities.

The initial states along the regions I and II are

�I (r,0) = A sin(qr), r � a, (60a)

�II (r,0) = Be−qr , r � a. (60b)

The functions �I (r,t) and �II (r,t) satisfy the continuity
condition at r = a,

�I (a,0) = �II (a,0). (61)

Figure 1 provides a plot of the potential, given by Eq. (59),
and of the initial wave function, defined by Eqs. (60a)
and (60b).

The condition given by Eq. (61) is sufficient to determine
the normalization of the initial state �(r,0), defined by Eq. (4),
along the whole space r ∈ (0,∞). The coefficients A and B

appearing in (60a) and (60b) then read

A =
√

2

a

[
1 − sin(2qa)

2qa
+ sin2(qa)

qa

]−1/2

, (62a)

B = Aeqa sin(qa). (62b)

We consider two different cases for the initial state: The
first case follows by imposing the continuity condition given
by Eq. (61). Although this implies the existence of an inflexion
point of the solutions at r = a, it has the advantage that all real
values of q are allowed. Since the initial state is not required to
be a solution to a Schrödinger equation, this case is acceptable
as an initial state. The second case involves, in addition to the
continuity of the solutions, the condition of the continuity of
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the derivatives at r = a, namely,[
d�I (r,0)

dr

]
r=a

=
[
d�II (r,0)

dr

]
r=a

. (63)

It then follows from (61) and (63) that the allowed values of κ

correspond to the solutions of the expression

tan(qa) = −1. (64)

It turns out, by the usual plotting procedure to solve (64),
that the solution with the smallest acceptable value of q

corresponds to q = 7π/4.
In order to calculate the solutions �I (r,t) and �II (r,t),

given by Eqs. (21) and (44), it is necessary to compute the set
of complex poles {κn}, as well as the corresponding resonant
(quasinormal) states {un} to the problem. As discussed else-
where [14,15], the solutions to Eq. (13) obeying the outgoing
boundary conditions (14) read

un(r) = An sin(κnr), r � a, (65a)

un(r) = Bn eiκnr , r � a, (65b)

from which one readily obtains, using the continuity of the
solutions at r = a and the discontinuity of the corresponding
derivatives due to the δ interaction, the equation for the poles,

2iκn + λ (e2iκna − 1) = 0. (66)

In fact, for λ > 1, one may write the approximate analytical
solutions to Eq. (66) as [14,15,24]

κn ≈ nπ

a

(
1 − 1

λa

)
− i

1

a

(
nπ

λa

)2

. (67)

Notice that already for λ > 1, the pole κ1 fulfills α1 > β1.
This guarantees the existence of an exponential decaying
region. Using the above expression for κn as the initial value
in the iterative Newton-Rapshon method, i.e., κs+1

n = κs
n −

F (κs
n)/Ḟ (κs

n), with Ḟ = [dF/dκ]κ=κn
, yields the solutions

κn with the desired degree of approximation. The above
procedure, therefore, provides the set of poles {κn} and then,
using Eqs. (65a) and (65b), of the corresponding set of resonant
(quasinormal) states to solve the problem. Notice that these
quantities depend on the parameters of the potential (λ,a).

By considering the normalization condition (12), one
readily obtains the coefficients An,

An =
[

2λ

λa + e−i2κna

]1/2

. (68)

The coefficients Cn, defined by Eq. (22), may be calculated
using (60a), (65a), and (68) to yield

Cn = AAn

κn cos(κna) sin(qa) − q sin(κna) cos(qa)

q2 − κ2
n

. (69)

For the solution �II along the internal region, given by
Eq. (44), one needs to calculate the coefficients Dn given by
Eq. (43).

As an numerical example, let us first consider the δ potential
with intensity λ = 6 and radius a = 1 and the value q = 1,
which follows by imposing only the continuity condition (61).
Figure 2 exhibits a plot of ln [|�I (rc,t)|2], given by Eq. (21)
(green solid line), ln [|�II (rc,t)|2], given by Eq. (44) (red

0.0 10.0 20.0 30.0 40.0 50.0 60.0
-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

|ΨI|
2

|ΨII|
2

ln
 [|

Ψ
(r

,t)
|2 ]

t/τ

|ΨI+ΨII|
2

FIG. 2. Dynamical behavior of the natural logarithm of the
probability density at r = rc = a/2 for a δ-shell potential with
λ = 6,a = 1, and q = 1.0 for the solutions �I (rc,t) [Eq. (21)]
(green solid line), �II (rc,t) [Eq. (44)] (red solid line), as well
as �I (rc,t) + �II (rc,t) (blue solid line). For comparison, we have
included the solutions �c

I (orange dashed line) and �c
II (olive short-

dashed line) obtained by using the continuum wave solutions. These
solutions completely overlap with the calculations using resonant
(quasinormal) states. The time is given in lifetime units τ = 0.6455.
See text.

solid line), and ln [|�I (rc,t) + �II (rc,t)|2] (blue solid line),
calculated at the center of the potential well rc = a/2 as a
function of time in lifetime units. This figure exhibits the
main features of the time evolution of the probability density
of the problem for the distinct solutions along the regions I

and II . Both of them exhibit an exponential decay regime as
well as their corresponding transition to the postexponential
behavior as t−3. The dynamics of the quantum states at short
times (compared to the lifetime of the system, τ ) is consistent
with the fact that at t = 0, the solution �II is zero along
any position r0 within the internal region of the potential, and
that �II attains the value ln [|�II (rc,0)|2] = 0.32 at rc = a/2.
We can also see by analyzing the plot of ln [|�I + �II |2]
(blue solid line) that due to the effect of the quantum state
�II , the transition from the exponential to the nonexponential
regime occurs at an earlier time and hence it shows a higher
probability than the corresponding regime for ln [|�I (rc,t)|2].

In Fig. 3, we consider the set of parameters of the δ

potential: λ = 20, a = 1, and a value of q = 7π/4 that follows
as a solution to Eq. (64), which we recall was obtained by
imposing the conditions on the initial states given by Eqs. (61)
and (63). We observe that the behavior of ln [|�I (rc,t)|2],
given by Eq. (21) (green solid line), ln [|�II (rc,t)|2], given
by Eq. (44) (red solid line), and ln [|�I (rc,t) + �II (rc,t)|2]
(blue solid line), calculated at the center of the potential well
rc = a/2 as a function of time in lifetime units, is qualitatively
similar to that in Fig. 2. It is worth noticing that such behavior
is independent of whether or not there is the inflexion point
at r = a.

In what follows, we introduce the solution to the model
based on the continuum wave solutions given by Eq. (6). We
have adapted the approach used by Winter [28] to analyze the
dynamics in the well region of the δ potential. The problem
involves the solution of the Schrödinger equation (1) for the
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0.0 10.0 20.0 30.0 40.0 50.0 60.0
-50.0

-40.0

-30.0

-20.0

-10.0

0.0

|ΨI+ΨII|
2

ln
 [|

Ψ
(r

,t)
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t/τ

|ΨI|
2

|ΨII|
2

FIG. 3. Dynamical behavior of the natural logarithm of the
probability density, as in Fig. 2, with λ = 20 and q = 7π/4 ≈
5.497787. The individual plots refer to �I (rc,t) [Eq. (21)] (green solid
line), �II (rc,t) [Eq. (44)] (red solid line), and �I (rc,t) + �II (rc,t)
(blue solid line). The time is given in lifetime units, τ = 4.0622.
See text.

potential given by (59) with the initial condition given by
Eqs. (60a) and (60b). We denote the solution in terms of
continuum wave solutions by �c(r,t). After some algebraic
manipulations, the solution along the internal region of the
potential may be written as

�c(r,t) = �c
I (r,t) + �c

II (r,t), (70)

where

�c
s (r,t) = 2

π

∫ ∞

0

k2 sin(kr) fs(k,q) e−ik2t

k2 + kλ sin(2ka) + λ2 sin2(ka)
dk, (71)

and the index s stands for the values I and II , and similarly
for the functions fs(k,q), which are given by

fI (k,q) = Be−qa k cos(qa) + (λ + k) sin(ka)

q2 + k2
(72)

and

fII (k,q) = A
k cos(ka) sin(qa) − q cos(qa) sin(ka)

q2 − k2
. (73)

The calculation performed with this approach is also
included in Fig. 2, namely, �c

I (orange dashed line) and �c
II

(olive short-dashed line). As one may appreciate in each of
these different graphs, the plots obtained with the continuum
wave expansion completely overlap with the resonant (quasi-
normal) state approach.

It is worth mentioning that the calculations for the time
evolution of |�I (r,t)|2, given by Eq. (65a), for q = 1 and
q = 7π/4 discussed above, are very similar to a calculation
with q = π , that corresponds to an initial state which is totally
confined within the internal interaction region. The reason
is that what matters is that the distinct initial states overlap
strongly with the corresponding state u1(r). This means that
for each case, the coefficient Re {C2

1} is the largest contribution
to the sum given by Eq. (28).

FIG. 4. Potential profile of the Heidelberg potential (green dashed
line) given by Eq. (74), shifted so that V/h = 0 at the trap bottom,
and of the initial state (red and blue solid lines). See parameters in
the text.

B. Heidelberg potential

The second example corresponds to a potential given by the
formula [6,10]

V (x) = pV0

[
1 − 1

1 + (x/xR)2

]
− μmB ′x, (74)

that holds a 6Li ultracold atom in a decaying level, where
V0 = (3.326 μK)kB is the initial depth, with kB the Boltzmann
constant; p = 0.6338 is the optical trap depth as a fraction of
the initial depth; xR = πω2

0/λ refers to the Rayleigh range,
with the wavelength of the trapping light λ = 1064 nm; μm

is the Bohr magneton; and B ′ stands for the magnetic field
gradient with value B ′ = 18.49 G/cm. The corresponding
potential profile is depicted in Fig. 4. The effective radius of the
potential is a = 9.032 μm. The above parameters determine
the resonance levels of the system. As pointed out in Ref. [10],
since the potential is not piecewise constant, we use the
step approximation where the interval [0,a] is partitioned
in N subintervals where the potential is constant. In our
calculations, we used N = 3815 steps and obtained the first
decaying level at E1/h = 0.247 kHz, with a corresponding
width 
1/h = 0.087 kHz. As may be seen by inspection of
Fig. 4, the decaying level lies close to the height of the potential
barrier.

The initial states along the internal and external interaction
potential regions are given by

�I (r,0) = A sin[q(r − r0)], r � a, (75a)

�II (r,0) = Be−κr , r � a. (75b)

The condition of continuity of the above solutions at r = a

reads

B = Aeκa sin [q(a − r0)]. (76)

The condition given by Eq. (76) is sufficient to determine the
normalization constant of the initial state �(r,0), defined by
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FIG. 5. Plot of the natural logarithm of the probability densities:
Proper decay, |�I (rs,t)|2 (green solid line), the tail contribution
to decay, |�II (rs,t)|2 (red solid line), and the total contribution,
|�I (rs,t) + �II (rs,t)|2 (blue solid line), as indicated in each curve, vs
time in the lifetime units τ = 1.821 ms, with rs = 5 μm, for κ = 15q.
In this case, the tail contribution to decay is negligible for both the
exponential and nonexponential decay regimes. See text.

Eq. (4). It reads

A =
√

2

a − r0

{
1 − sin[2q(a − r0)]

2q(a − r0)
+ sin2[q(a − r0)]

κ(a − r0)

}−1/2

.

(77)

In this example, following Eqs. (26) and (47), we focus our
attention in the exponential and nonexponential behaviors of
the probability densities |�I (r,t)|2,|�II (r,t)|2 and |�I (r,t) +
�II (r,t)|2 as a function of time, and show that the results
obtained for the tail solution in the previous example hold also
for a realistic potential profile.

The choice r0 = 2.0 μm and q = π/8 μm−1 in the
expression for �I (r,0) in (75a) guarantees that Re{C2

1} ≈ 1,
and hence allow us to make use of a single-term approximation
in the description of proper decay [10]. However, as pointed
out in Sec. II C, there is no reason to expect a similar situation
for the decay of tail solution �II (r,t). By fixing the parameters
of the Heidelberg potential and those of �I (r,0), as indicated
above, we may investigate the effect of the decay of the tail
solution �II (r,t) for distinct values of κ . We have performed
the calculations using, respectively, Eqs. (26) for �I (r,t)
and (47) for �II (r,t), and found already a good convergence
in the corresponding sums for N = 200 poles.

Figure 5 exhibits a plot of ln [|�I (rs,t)|2] (green solid line),
ln [|�II (rs,t)|2] (red solid line), and ln |�I (rs,t) + �II (rs,t)|2
(blue solid line) vs time in lifetime units, where the value
rs = 5 μm is chosen at the maximum value of |u1(r)|2
within the interaction region, and κ = 15q, which yields
κa = 53.2028. This figure shows that the tail contribution to
decay is negligible along both the exponential and nonex-
ponential decaying regimes. One may forget about the tail
decaying contribution. Figure 6 exhibits a similar plot of
the above quantities, also with rs = 5 μm, but with κ = 3q,
and hence κa = 10.6405. Here, however, one sees that the
tail exponential contribution �II may be neglected, but the

0.0 10.0 20.0 30.0 40.0

-30.0

-20.0

-10.0

0.0

|ΨI|
2

|ΨII|
2

ln
 [|

Ψ
(r

,t)
|2 ]

t/τ

|ΨI+ΨII|
2

κ=3q

FIG. 6. Plot of the natural logarithm of the probability densities:
Proper decay, |�I (rs,t)|2 (green solid line), the tail contribution
to decay, |�II (rs,t)|2 (red solid line), and the total contribution,
|�I (rs,t) + �II (rs,t)|2 (blue solid line), as indicated in each curve, vs
time in the lifetime units τ = 1.821 ms, with rs = 5 μm, for κ = 3q.
One sees that the tail exponential contribution can be neglected, but
the nonexponential one is larger than the one corresponding to proper
decay. See text.

nonexponential one is larger than the corresponding contribu-
tion that arises from proper decay. This is a similar situation to
that found in the example of the δ-shell potential. In the present
realistic example, our results indicate that the nonexponential
contribution to decay may be enhanced by taking into
consideration an appropriate tail decaying contribution.

IV. CONCLUDING REMARKS

The present work shows that for initial states having a
tail that extends beyond finite range interaction potentials,
corresponding to a class of artificial quantum systems, the
time evolution of the decaying wave function is formed by
two terms: proper decay, given by Eq. (21), and the decaying
contribution that arises from the tail, given by Eq. (44). We
have also obtained that along the exponential and long-time
regimes, the above equations may be written, respectively, as
Eqs. (26) and (47). The analysis of these solutions is made for
the common case of strong overlap of the initial state with the
lowest resonance (quasinormal) state, which refers to a sharp
resonance pole. Our work suggests, in general, that initial
states with external tails may induce larger nonexponential
contributions to decay than initial states without a tail. This
is the case of the calculations using the realistic Heidelberg
potential in the decay of a single ultracold atom. It is also worth
mentioning that our results open the possibility to control and
characterize initial states in the decay of artificial quantum
systems, an unexplored issue that might lead to novel results.
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