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Tight-binding lattices with an oscillating imaginary gauge field
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We consider non-Hermitian dynamics of a quantum particle hopping on a one-dimensional tight-binding lattice
made of N sites with asymmetric hopping rates induced by a time-periodic oscillating imaginary gauge field.
A deeply different behavior is found depending on the lattice topology. While in a linear chain (open boundary
conditions) an oscillating field can lead to a complex quasienergy spectrum via a multiple parametric resonance;
in a ring topology (Born–von Karman periodic boundary conditions) an entirely real quasienergy spectrum can be
found and the dynamics is pseudo-Hermitian. In the large-N limit, parametric instability and pseudo-Hermitian
dynamics in the two different lattice topologies are physically explained on the basis of a simple picture of
wave-packet propagation.
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I. INTRODUCTION

Non-Hermitian models have attracted since many years
a considerable attention in different areas of physics with
applications in a variety of fields, including the quantum
mechanics of open systems [1,2], parity-time (PT ) symmetric
quantum mechanics and quantum field theories [3], atom
optics [4], hydrodynamics [5], superconductors [6], biological
[7], and optical [8–10] systems to mention a few.

Among the various non-Hermitian quantum models, great
attention has been devoted to the study of the hopping
dynamics of a quantum particle in a lattice in the presence of an
“imaginary” vectorial potential. Such a model was introduced
in 1996 by Hatano and Nelson [6] in the context of flux
lines in superconductors. They investigated the problem of
Anderson localization in a disordered non-Hermitian lattice
and showed that an imaginary magnetic field can prevent
Anderson localization, with the appearance of a mobility
interval at the center of the band (non-Hermitian delocalization
transition). Such a result was subsequently revisited by several
authors [11] and connected to the problem of the spectrum
of tridiagonal random matrices and random Dirac fermion
models [12]. While the realization of a synthetic imaginary
magnetic field in the solid-state context is challenging, in
optics a rather simple implementation of the Hatano–Nelson
model with an artificial imaginary gauge field has been recently
proposed [13,14]. This model is based on light transport in a
chain of coupled optical microrings with tailored gain and loss
regions. Such a photonic analog of the Hatano–Nelson model
is expected to provide a viable route toward an experimental
observation of non-Hermitian delocalization transition and
non-Hermitian transparency.

In such previous studies [6,11–15] the imaginary gauge
field was considered stationary. However, it is well known
that, in ordinary tight-binding Hermitian quantum models,
oscillating electric and/or magnetic fields can deeply change
the hopping dynamics via a Peierls’ substitution with important
applications to coherent quantum-state storage, dynamic de-
coupling, and decoherence control (see, for instance, Ref. [16]
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and references therein). In one-dimensional lattices, oscillating
fields renormalize the effective hopping rates and can result
in coherent destruction of tunneling and dynamic localization
[17,18], which have been observed in matter wave and optical
systems [19,20]. In two-dimensional lattices, gauge fields
are responsible for many important phenomena related to
quantum Hall physics, topological insulators, and new phases
of matter [21]. Recent works have investigated the properties
of time-periodic PT symmetric Hamiltonians, highlighting
some interesting physical effects that arise from the inter-
play between non-Hermitian dynamics and periodic driving
[22–27]. In particular, non-Hermitian extensions of the Rabi
model have been introduced, i.e., a two-level system driven
by an imaginary field, revealing some interesting physics
such as the non-Hermitian analog of the Bloch–Siegert shift,
PT -symmetry breaking and restoration via higher-order para-
metric resonances, and the possibility to simulate Hofstadter’s
butterfly spectrum for a class of superlattice Hamiltonians
[25–27].

Motivated by such previous works, we introduce in this
paper a time-periodic extension of the non-Hermitian Hatano–
Nelson Hamiltonian that describes the quantum dynamics of a
particle hopping on a tight-binding lattice with an oscillating
imaginary gauge field. Likewise, for static PT lattices that
show different phase diagrams for ring and line topologies
[28–30], we find two distinct dynamical regimes; namely,
oscillation-induced pseudo-Hermitian dynamics in the ring
topology and multiparametric instability in the line topology.
For a quantum particle hopping on a ring threaded by an
imaginary gauge flux, the energy spectrum in a stationary
gauge field is always complex; however, the addition of an
ac (oscillating) gauge field can result in an entirely real
quasienergy spectrum, i.e., the oscillating field can lead to a
stabilization effect and pseudo-Hermitian dynamics (Sec. II).
A fully different scenario is found for a particle hopping on a
finite linear chain with open boundary conditions (Sec. III). In
this case the energy spectrum is entirely real for a stationary
imaginary gauge field since the non-Hermitian problem with
open boundary conditions is pseudo-Hermitian and can be
mapped onto an equivalent Hermitian model via an imaginary
gauge transformation. However, application of an oscillating
imaginary gauge field breaks pseudo-Hermiticity and the
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FIG. 1. (a) Schematic of a tight-binding ring threaded by an imag-
inary gauge field h = h(t). (b) Energy spectrum of the Hamiltonian
(1) for a ring comprising N = 12 sites in a stationary gauge field
h = h0 = 1. The energies in the complex plane lie on the ellipse
defined by Eq. (7). (c) Schematic of a linear chain, comprising N

lattice sites with an imaginary and time-dependent gauge field. Left
and right hopping rates are κ exp[h(t)] and κ exp[−h(t)], respectively.

quasienergy spectrum can become complex via multiple
parametric resonances. A simple physical explanation of the
different dynamical scenario found in the two tight-binding
lattices with different topology is also presented (Sec. IV).

II. PSEUDO-HERMITIAN DYNAMICS IN A
TIGHT-BINDING RING THREADED BY AN
OSCILLATING IMAGINARY GAUGE FIELD

Let us consider the hopping motion of a quantum particle
on a tight-binding ring comprising N � 3 sites threaded by
an imaginary and time-dependent gauge field h = h(t); see
Fig. 1(a). The non-Hermitian tight-binding Hamiltonian of the
ring reads

Ĥ (t) = κ

N−1∑
n=0

[exp (h)|n〉〈n + 1| + exp (−h)|n + 1〉〈n|], (1)

where κ is the hopping rate, h = h(t) is the imaginary gauge
field, and the periodic (Born–von Karman) boundary condition
|n + N〉 = |n〉 applies. After setting |ψ(t)〉 = ∑N−1

n=0 cn(t)|n〉,
from the Schrödinger equation i∂t |ψ(t)〉 = Ĥ (t)|ψ(t)〉, the
following coupled differential equations for the site amplitude
probabilities cn(t) are found:

i
dcn

dt
= κ exp [h(t)]cn+1 + κ exp [−h(t)]cn−1 (2)

(n = 0,1,2, . . . ,N − 1), with the periodic boundary condi-
tions cn(t) = cn+N (t). Let us first recall the properties of
the energy spectrum of Ĥ in the stationary case h(t) = h0

constant, which were discussed in previous works [6,11]. The
eigenfunctions and corresponding energies of Ĥ are given
by c(l)

n (t) ∝ exp(iqln − iElt) and El = 2κ cosh(h0) cos(ql) +
2iκ sinh(h0) sin(ql), respectively, where ql = 2πl/N is the
quantized Bloch wave number (l = 0,1,2, . . . ,N − 1). Note
that the energy spectrum is complex and the eigenvalues El lie

on the ellipse

[
Re(E)

cosh (h0)

]2

+
[

Im(E)

sinh (h0)

]2

= 4κ2, (3)

as already shown in previous works [6,11]. An example of the
energy spectrum is shown in Fig. 1(b).

The most general solution to Eq. (2) with h(t) = h0 constant
is given by cn(t) = ∑N−1

m=0 U0
n,m(h0; t)cm(0) with the propagator

U0
n,m(h0; t)

U0
n,m(h0; t) ≡ 1

N

N−1∑
σ=0

exp [iqσ (n − m) − iEσ t]. (4)

Note that, in the Hermitian limit h0 = 0, the ellipse defined
by Eq. (3) shrinks into a line on the real axis (real energy
spectrum) and the propagator U0

n,m defined by Eq. (4) with
h0 = 0 is unitary and describes a quasiperiodic dynamics on
the ring.

Let us now consider the more general case of a time-
dependent imaginary gauge field h = h(t). The most general
solution to Eq. (2) is given by cn(t) = ∑N−1

m=0 Un,m(t)cm(0),
where the propagator Un,m(t) can be formally written as the
ordered product

U(t) = lim
S→∞

S∏
k=1

U0(hk; �t)

= lim
S→∞

U0(hS ; �t)U0(hS−1; �t) · · ·U0(h1; �t). (5)

In the previous equation, �t = t/S, tk = k�t , and U0(h; �t)
is defined by Eq. (4). After some simple algebra one obtains

Un,m(t) = 1

N

N−1∑
σ=0

exp

[
iqσ (n − m) − i

∫ t

0
dt ′Eσ (t ′)

]
, (6)

where Eσ (t) is defined by

Eσ (t) = 2κ cos (qσ ) cosh [h(t)] + 2iκ sin (qσ ) sinh [h(t)].

(7)

Note that the propagator U(t) in the time-dependent case
[Eq. (6)] is a simple extension of the propagator U0(t)
in the time-independent case [Eq. (4)] via the substitution
Eσ t → ∫ t

0 dt ′Eσ (t ′). Such a property mainly stems from the
fact that the eigenfunctions of Ĥ with h(t) = h0 constant are
independent of h0. Let us specialize our general result to the
case of a time-periodic gauge field h(t) with frequency ω and
period T = 2π/ω, i.e., h(t + T ) = h(t). In this case, from
Eq. (6) it readily follows that the N quasienergies El of the
time-periodic Hamiltonian Ĥ (t) are given by

El = 2κ cos ql

(
1

T

∫ T

0
dt cosh [h(t)]

)

+ 2iκ sin ql

(
1

T

∫ T

0
dt sinh [h(t)]

)
. (8)
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As in the time-independent case, the quasienergies are complex
and lie on the ellipse of the equation[

Re(E)
1
T

∫ T

0 dt cosh h(t)

]2

+
[

Im(E)
1
T

∫ T

0 dt sinh h(t)

]2

= 4κ2. (9)

Interestingly, whenever the condition∫ T

0
dt sinh [h(t)] = 0 (10)

is satisfied, the quasienergy spectrum becomes real, and at the
stroboscopic propagation times t = T , 2T , 3T , . . . the time-
periodic non-Hermitian Hamiltonian Ĥ (t) is equivalent to the
effective stationary and Hermitian Hamiltonian of a tight-
binding ring

Ĥeff = κeff

N−1∑
n=0

(|n〉〈n + 1| + |n + 1〉〈n|) (11)

with enhanced hopping rate

κeff = κ

(
1

T

∫ T

0
dt cosh [h(t)]

)
. (12)

Therefore, provided that the condition (10) is met, the quantum
dynamics of a particle on a ring described by the time-periodic
non-Hermitian Hamiltonian (1) is pseudo-Hermitian and the
role of the oscillating field is to stabilize the dynamics.
Note that the condition (10) is satisfied for any arbitrary
ac field h(t) with zero mean satisfying the odd-symmetry
constraint h(−t + t0) = h(t0 + t) for some t0; for example,
for a sinusoidal field h(t) = h1 sin(ωt) regardless of the
amplitude and frequency of the oscillation. Remarkably, the
condition (10) can be met even for time-periodic fields h(t)
with a nonvanishing dc term, which is a nontrivial result.
For example, let us consider the piecewise constant field h(t)
defined by

h(t) =
{

h1, 0 < t < T1

−h2, T1 < t < T
(13)

in the period (0,T ), with h1, h2 > 0. Provided that h1T1 	=
h2T2, where T2 = T − T1, the field h(t) has a non vanishing
dc term. Furthermore, if the condition T1 sinh h1 = T2 sinh h2

holds, Eq. (10) is met and the dynamics is pseudo-Hermitian.
Such a result shows that, rather generally, the addition of an
ac field to a dc imaginary gauge field can lead to stabilization
(real quasienergy spectrum) and pseudo-Hermitian dynamics.

An example of pseudo-Hermitian dynamics on a ring
comprising N = 3 sites with a sinusoidal imaginary gauge
field h(t) = h1 sin(ωt) is shown in Fig. 2 for parameter values
ω/κ = 1 and h1/κ = 0.4. The solid curves in the figure depict
the numerically computed evolution of the site occupation
amplitudes |cn(t)| at the three sites n = 0,1,2 with the initial
condition cn(0) = δn,0, corresponding to excitation of site
n = 0. According to Eqs. (8) and (12), the quasienergies
are given by El = 2κeff cos(2πl/3) (l = 0,1,2) with κeff =
κ(1/T )

∫ T

0 dt cosh[h(t)] 
 2.081κ , i.e., there are two distinct
quasienergies E1/κ 
 −1.0405 and E2/κ 
 2.081. Since
|E2 − E1| is incommensurate with the modulation frequency
ω, the dynamics turns out to be aperiodic. The dashed curves
in the figure show the numerically computed evolution of
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FIG. 2. Pseudo-Hermitian dynamics in a ring, comprising N = 3
sites, threaded by an imaginary gauge field h(t) = h1 sin(ωt) for
ω/κ = 1 and h1/κ = 0.4. The solid curves show the evolution
of the site occupation amplitudes |cn(t)| at the three sites for
the initial condition cn(0) = δn,0. The dashed curves show the
corresponding behavior as obtained by using the effective Hermitian
Hamiltonian (11). The solid and dashed curves intersect at the
discretized times t/T = 1,2,3, . . . (vertical dotted curves).

the occupation amplitudes at the three sites for the effective
stationary Hermitian Hamiltonian (11), which is periodic
with period τ given by τ/T = ω/|E2 − E1| 
 0.32. Note
that, according to the theoretical analysis, at discretized
times t/T = 1,2,3, . . . (vertical dotted curves in Fig. 2) the
dynamical behavior of the two Hamiltonians (1) and (11) does
coincide.

III. MULTIPLE PARAMETRIC RESONANCE IN A
TIGHT-BINDING LINEAR CHAIN WITH AN
OSCILLATING IMAGINARY GAUGE FIELD

In the case of static PT -symmetric Hamiltonians, it is
known that the phase diagram separating regions of real and
complex energies is strongly dependent on the lattice topology,
i.e., it differs for ring and line topologies [28–30]. Such a
result basically stems from the fact that the PT symmetry
is a nonlocal symmetry. Likewise, we expect that the phase
diagram of the tight-binding lattice driven by an oscillating
imaginary gauge field is modified when considering a linear
chain rather than a ring. In particular, in the linear chain
geometry pseudo-Hermitian dynamics is broken owing to the
appearance of parametric resonances, which are ubiquitous in
the dynamics of time-periodic non-Hermitian Hamiltonians
[24–27].

Let us consider the hopping motion of a quantum particle
on a linear tight-binding chain comprising N � 2 sites with an
imaginary and time-dependent gauge field h = h(t); Fig. 1(c).
The evolution equations for the site amplitude probabilities
cn(t) (n = 1,2, . . . ,N ) are given by Eq. (2), but now the
open boundary conditions c0(t) = cN+1(t) = 0 apply. For a
time-independent h(t) = h0 imaginary gauge field, the energy
spectrum is entirely real and is given by El = 2κ cos(ql),

022102-3



STEFANO LONGHI PHYSICAL REVIEW A 94, 022102 (2016)

where ql = lπ/(N + 1) (l = 1,2, . . . ,N). In fact, after the
imaginary gauge transformation cn(n) = an(t) exp(−h0n) the
coupled-equations (2) yield

i
dan

dt
= κan+1 + κan−1, (14)

which describe the dynamics of a Hermitian tight-binding
linear chain with uniform hopping rates. When using the
above-mentioned gauge transformation, the most general so-
lution to Eq. (2) with h(t) = h0 and open boundary conditions
is given by cn(t) = ∑N

l=1 U0
n,l(h0; t)cl(0), with the propagator

U0(h0; t) defined by

U0
n,l(h0; t) = 2

N + 1
exp [h0(l − n)]

N∑
σ=1

sin

(
πnσ

N + 1

)

× sin

(
πlσ

N + 1

)
exp

[
−2iκt cos

(
πσ

N + 1

)]
.

(15)

In the time-dependent case h = h(t), according to Eq. (5)
the propagator U(t) from t = 0 to t = t can be formally
written as the ordered product of operators U0(hk; �) of the
stationary system, where hk = h(tk) and tk = k�t . Unlike
the ring lattice model considered in the previous section,
in this case the product of operators cannot be determined
in an analytical form and one has to resort to a numerical
analysis. For a time-periodic gauge field with period T =
2π/ω, i.e., h(t + T ) = h(t), according to Floquet theory the
N quasienergies of the time-periodic Hamiltonian Ĥ (t) are
given by El = (i/T )ln(μl), where μl (l = 1,2, . . . ,N ) are the
N eigenvalues of the matrix U(T ), i.e., of the propagator
over one oscillation period T . A numerical computation of
quasienergies for an oscillating field shows rather generally
that pseudo Hermitian dynamics can be broken and the
quasienergy spectrum can become complex owing to the
appearance of resonance tongues, which are the signature of a
multiple parametric instability [31–33]. As an example, Fig. 3
shows the numerically computed instability domains (regions
of complex quasienergies) in the frequency-amplitude plane
(ω,h1) for a square-wave ac gauge field

h(t) =
{

h1, 0 < t < T/2
−h1, T /2 < t < T

(16)

and for a few increasing values of lattice sites N . For a square-
wave modulation, the propagatorU(T ) over one oscillation cy-
cle is readily computed as U(T ) = U0(−h1; T/2)U0(h1; T/2),
where U0 is defined by Eq. (15). The figure clearly indicates
the appearance of resonance tongues emanating from h1 = 0 at
certain modulation frequencies ω. The number of resonances
increases as the number of site N increases and become
densely spaced close to ω → 0. In the simplest case of two sites
(N = 2), the instability arises from an ordinary parametric
resonance, which for a non-Hermitian PT -symmetric dimer
has been studied in Ref. [24]. Similar parametric resonances
have been recently found in the study of the non-Hermitian
extension of the Rabi model [25–27] comprising two or few
states. For a large number of lattice sites in the chain, which is
the case of main interest in the present work, instability arises
from multiple parametric resonances and the phase diagram
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m
o

d
u

la
ti

o
n

 a
m

p
lit

u
d

e
 h

 1

(a)

(b)

(c)

(d)

m
o

d
u

la
ti

o
n

 a
m

p
lit

u
d

e
 h

 
m

o
d

u
la

ti
o

n
 a

m
p

lit
u

d
e

 h
 

1

1

1
m

o
d

u
la

ti
o

n
 a

m
p

lit
u

d
e

 h
 

1

50.5 1.5 2.5 3.5 4.51 2 3 4

50.5 1.5 2.5 3.5 4.51 2 3 4

50.5 1.5 2.5 3.5 4.51 2 3 4

0.2

0.6

0

0.4

0.2

0.6

0

0.4

0.2

0.6

0

0.4

0.2

0.6

0

0.4

50.5 1.5 2.5 3.5 4.51 2 3 4

FIG. 3. Numerically computed regions of complex quasienergies
(dark areas) arising from multiple parametric resonances for a square-
wave modulation h(t) and for an increasing number N of lattice sites:
(a) N = 3, (b) N = 10, (c) N = 20, and (d) N = 50. The number of
resonance tongues rapidly increases, below the cutoff frequency 4κ ,
as N increases.

shows a dense set of resonance tongues, as shown in Fig. 3.
Multiple parametric resonance tongues can be analytically
determined by a secular perturbation theory in the h → 0
limit; details are reported in Appendix A. Rather generally,
indicating by lω the lth harmonic of the modulation function
h(t), resonance tongues emanate at the frequencies ω satisfying
the condition

En − Em ± lω 
 0 (17)

for some integers n,m = 1,2, . . . ,N , where En =
2κ cos[nπ/(N + 1)]. For symmetry reasons, some such
resonances can be missed, as discussed in the appendix for the
simple case of N = 3 lattice sites [Fig. 3(a)]. As the number
N of lattice sites increases, the resonance conditions (17) are
satisfied in a dense number of frequencies below the cutoff
frequency 4κ , as shown, e.g., in Fig. 3(d) for N = 50 sites.
Since En falls inside the range (−2κ,2κ), for a modulation
frequency ω larger than 4κ , the resonance condition (17)
can never be satisfied. Therefore, for ω > 4κ parametric
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FIG. 4. Parametric instability in a linear chain comprising N = 3
sites with an oscillating imaginary gauge field h(t) = h1 sin(ωt) for
(a) ω/κ = 1, h1 = 0.4, and (b) ω/κ = √

2, h1 = 0.4. The curves
in the various panels show the evolution of the site occupation
amplitudes |cn(t)| at the three sites for the initial condition cn(0) =
δn,1. In panel (a) the quasienergy spectrum is real and the dynamics
is pseudo-Hermitian. In panel (b) the quasienergy spectrum becomes
complex owing to parametric resonance, which is clearly manifested
in the secular growth of amplitudes |cn(t)|.

resonances are prevented and the quasienergies are entirely
real (for a not-too-large value of the modulation amplitude).
Such a result is in agreement with the fact that, in the
large-modulation-frequency limit, one can average the rapidly
oscillating imaginary Peierls’ phases in Eq. (2), leading
to an effective Hermitian linear chain with hopping rate
(κ/T )

∫ T

0 dt exp[±h(t)] (see, for instance, Ref. [22]).
An example of parametric instability on a linear chain

comprising N = 3 sites with a sinusoidal imaginary gauge
field h(t) = h1 sin(ωt) is shown in Fig. 4 for parameter values
ω/κ = 1 and h1 = 0.4 in Fig. 4(a), and ω/κ = √

2 and h1 =
0.4 in Fig. 4(b). The curves in the figure depict the numerically
computed evolution of the site occupation amplitudes |cn(t)| at
the three sites n = 1,2,3 with the initial condition cn(0) = δn,1,
corresponding to excitation of the edge site n = 1. While in
Fig. 4(a) the modulation frequency is far from any resonance
tongue and the dynamics is pseudo-Hermitian (real quasiener-
gies), in Fig. 4(b) the modulation frequency is set in resonance
with the first resonance tongue [see Fig. 3(a)] and an instability
is clearly observed, corresponding to a secular growth of
amplitudes |cn(t)| and complex quasienergy spectrum.

IV. PSEUDO-HERMITIAN DYNAMICS AND PARAMETRIC
INSTABILITY: A SIMPLE PHYSICAL DESCRIPTION

In the previous two sections we have shown that, when
an oscillating imaginary gauge field is applied to a tight-
binding lattice, two different phenomena can arise depending
on the lattice topology, i.e., on the boundary conditions:
pseudo-Hermitian dynamics in a ring lattice, and parametric
resonances in a linear chain. While the dependence of
the phase diagrams on lattice topology and the onset of
parametric resonances are ubiquitous effects of time-periodic

DAMPED AMPLIFIED

n n

n n

h<0

h>0

(a)

(b)

FIG. 5. Schematic of wave-packet propagation in the bulk of a
tight-binding lattice with an imaginary gauge field h. For h > 0 [panel
(a)] a forward-propagating (backward-propagating) wave packet is
damped (amplified), whereas for h < 0 [panel (b)] the reversed
behavior occurs.

non-Hermitian systems [24–30], in the non-Hermitian lattice
model with an oscillating imaginary gauge field considered
in our work a rather simple and elegant physical explanation
of such phenomena can be given by considering the limit of
a large number N of lattice sites. In such a limit, the two
phenomena can be captured by considering a wave packet that
either travels along a ring or propagates back and forth in a
linear chain. Let us consider an infinitely extended lattice in
the presence of a stationary imaginary gauge field h. As shown
in Ref. [13], wave transport in the lattice is highly asymmetric
because wave packets propagating in opposite directions are
one amplified and the other one damped. Such a property
follows from the nature of the dispersion relation of plane
waves cn(t) ∼ exp[iqn − iE(q)t] in the infinitely extended
lattice, which reads [13]

E(q) = 2κ cosh (h) cos q + 2iκ sinh (h) sin q, (18)

where −π < q < π is the Bloch wave number. A wave
packet, which is obtained by a superposition of plane waves
around a carrier wave number q, propagates with a group
velocity vg = [dRe(E)/dq] = −2κ cosh h sin q. For h > 0, a
forward-propagating wave packet (−π < q < 0, vg > 0) is
attenuated since Im(E) < 0, whereas a backward-propagating
wave packet (0 < q < π , vg < 0) is amplified since Im(E) >

0. The opposite behavior occurs when the sign of the gauge
field h is reversed; see Fig. 5.

With such a property in mind, let us first consider
propagation of a wave packet in a ring. The ring periodic
boundary conditions just introduce a quantization of the wave
number q, which, however, for a large number N of sites
and a sufficiently localized wave packet does not change the
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dynamics as compared with the infinitely extended lattice.
Therefore, for a stationary field a localized wave packet
is either secularly damped or amplified depending on the
circulation direction (either clockwise or counterclockwise).
This is in agreement with the fact that, for a time-independent
field h, the energy spectrum of the Hamiltonian is complex.
However, when the gauge field h(t) oscillates in time, the
wave packet undergoes periodic amplification and attenuation,
regardless of the circulation direction. In particular, whenever
the time-average of the amplification or attenuation rate
Im(E) = 2κ sin[h(t)] sin q vanishes, secular growth or decay
of the wave packet is suppressed, and the dynamics is
pseudo-Hermitian. Note that the vanishing, on average, of the
amplification or attenuation rate is precisely expressed by the
condition (10) derived in Sec. II.

Let us now consider the propagation of a wave packet
in a long chain. For a stationary imaginary gauge field h,
a forward-propagating wave packet is attenuated. However,
when it reaches the right chain boundary, it is reflected, and
the backward-propagating wave packet is amplified at the same
rate. At the left chain boundary, the wave packet is reflected
and the forward-propagating wave packet is damped. Hence
a periodic attenuation or amplification occurs in a balanced
manner after each reflection at the left or right lattice edges:
the dynamics is thus pseudo-Hermitian with no secular growth
or attenuation of the wave-packet amplitude on average. When
the imaginary gauge field h(t) is an oscillating field with
zero mean, h(t) changes sign within each oscillation cycle
and the dynamics is strongly dependent on the ratio between
the oscillation period and the transit time of the wave packet
in the chain. Let us assume for the sake of definiteness that
h(t) is positive in the first semicycle of oscillation 0 < t < T/2
and negative in the second semicycle T/2 < t < T . This is the
case, for example, of a square wave or of a sinusoidal field. The
transit time of the wave packet between the two edges of the
chain is τ = N/vg . If the transit time in an odd multiple, then
T/2, i.e., for τ = (2l + 1)T/2, an overall amplification in one
circulation direction occurs, which cumulates at successive
transits back and forth between the two lattice edges. This
is because, after each reflection at the lattice edge, the
sign of h changes synchronously. As a result, a secular
growth of the wave-packet amplitude arises in one circulation
direction, which is the signature of the parametric instability.
Taking into account that, for |h(t)|  1, one has τ = N/vg 

N/(2κ| sin q|), the condition τ = (2l + 1)T/2 = (2l + 1)π/ω

yields ω = 2κπ (2l + 1)| sin q|/(N ). For a long chain, the
frequencies at which parametric instability arises are thus a
dense set, according to the numerical results [see Fig. 3(d)].
The existence of a cutoff frequency above which parametric
instability is suppressed follows from the requirement that the
oscillation period T must be longer than the characteristic
reflection time τR of the wave packet, i.e., T > τR . For a wave
packet with lattice extension �n and group velocity vg , the
reflection time can be estimated as τR ∼ �n/vg . For a narrow
wave packet with lattice extension of a few sites, e.g., taking
�n ∼ π , the shortest reflection time is obtained at the carrier
Bloch wave number q = π/2, corresponding to the largest
group velocity vg 
 2κ and thus to a reflection time τR ∼
π/(2κ). The requirement T > τR thus gives ω � 4κ , which is
precisely the cutoff condition rigorously derived in Sec. III.

V. CONCLUSION

Driven tight-binding lattices provide a fertile quantum
model for coherent quantum control, dynamic decoupling,
and decoherence control in quantum physics [16–18]. The
application of oscillating electric or magnetic fields on a
particle hopping on a lattice introduces Peierls’ phases that can
be tailored to realize important effects such as hopping-rate
renormalization, coherent destruction of tunneling, dynamic
localization, and quantum Hall physics [17–20]. While great
attention has been devoted so far to study Peierls’ phases
in driven Hermitian systems and the related broad fields
of artificial gauge fields and novel phases of matter, the
effects of an oscillating imaginary gauge field have, so far,
been overlooked. Imaginary gauge fields were introduced
in a pioneering paper by Hatano and Nelson [6] to study
non-Hermitian Anderson localization in disordered lattices,
which raised a lively interest [11,12]. Recently, the proposal
to implement artificial imaginary gauge fields in integrated
photonics using coupled optical microrings with tailored gain
and loss regions [13,14] has renewed the interest in the
Hatano–Nelson model, paving the way toward an experimental
demonstration of non-Hermitian Anderson delocalization tran-
sition. Such previous studies, however, are limited to consider
stationary imaginary gauge fields. In this work we theoretically
investigated the quantum dynamics in a one-dimensional
tight-binding lattice with an oscillating imaginary gauge field.
As compared to the analogous problem of real gauge fields,
the imaginary-gauge-field problem discloses a completely
different dynamical behavior, which is strongly sensitive to
lattice topology even in the one-dimensional case. For a
quantum particle hopping on a ring threaded by an imaginary
gauge flux, the energy spectrum in a stationary gauge field is
always complex; however, the addition of an ac (oscillating)
gauge field can result in an entirely real quasienergy spectrum
and pseudo-Hermitian dynamics. Conversely, if the particle
hops on a finite linear chain with open boundary conditions,
the energy spectrum is entirely real for a stationary gauge field
but can become complex via multiple parametric resonances
in an oscillating field. Our results highlight the very different
physics of tight-binding lattices driven by either real or
imaginary gauge fields, providing important novel insights
into the dynamical behavior in the non-Hermitian case. The
present analysis could be extended into several directions; for
example, by considering mixed real and imaginary gauge fields
as well as two-dimensional lattice geometries.

APPENDIX: MULTIPLE PARAMETRIC RESONANCES IN
A LINEAR LATTICE WITH OPEN BOUNDARY

CONDITIONS: SECULAR PERTURBATION THEORY

In this appendix we present a secular perturbation theory
of Eq. (2), showing the appearance of multiple parametric
resonances, leading to complex quasienergies, in the limit of
a small gauge field h(t) → 0. Without loss of generality, we
assume that h(t) is an ac field with zero mean; a nonvanishing
dc value h0 of the periodic function h(t) can be eliminated by
the gauge transformation cn(n) → cn(t) exp(−h0n) and hence
it does not affect the quasienergy spectrum of the Hamiltonian.
For |h(t)|  1, one can write exp[±h(t)] 
 1 ± h(t) and
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Eq. (2) takes the form

i
dc
dt

= Ac + h(t)(B1 − B2)c, (A1)

where c ≡ (c1,c2, . . . ,cN )T is the vector of the site occupation
amplitudes and the N × N matrices A, B1, and B2 are defined
by

An,m = κ(δn,m−1 + δn,m−1), (A2)

(B1)n,m = κδn,m−1, (A3)

(B2)n,m = κδn,m+1, (A4)

(B1 − B2)n,m = κ(δn,m−1 − δn,m+1) (A5)

(n,m = 1,2, . . . ,N ). Let us indicate by T and E the eigenvec-
tor matrix and corresponding diagonal eigenvalue matrix of
A, i.e., such that AT = T E . The explicit forms of T and E
read

Tn,m =
√

2

N + 1
sin

(
nmπ

N + 1

)
, (A6)

En,m = Enδn,m = 2κ cos

(
nπ

N + 1

)
δn,m. (A7)

After setting c(t) = T a(t), i.e., in the basis that diagonalizes
A, Eq. (A1) can be cast in the form

i
da
dt

= Ea + h(t)Pa, (A8)

where we have set

P ≡ T −1(B1 − B2)T . (A9)

Taking into account that T −1 = T , after some cumbersome
algebra one can derive the following expression of the elements
of the time-independent perturbation matrix P entering in
Eq. (A8):

Pn,m = κ
1 − (−1)n+m

N + 1
sin

(
mπ

N + 1

)

×
[

cotg
π (n + m)

2(N + 1)
+ cotg

π (n − m)

2(N + 1)

]
. (A10)

Note that P is an anti-Hermitian matrix, i.e., Pn,m = −P∗
m,n,

and Pn,m vanishes when |n + m| is an even number. In the
absence of the oscillating gauge field h = 0, the dynamical
system described by Eq. (A8) is neutrally stable because the
energies En are real. The addition of the perturbation term
on the right-hand side of Eq. (A8) can lead to secularly
growing terms via typical parametric resonance phenomena,
corresponding to complex quasienergies. To capture the onset
of parametric resonances, we perform a rather standard secular
perturbation analysis of Eq. (A8) by letting h(t) → αh(t),
where α is a smallness parameter that indicates the order of
magnitude of the various terms entering in the asymptotic
analysis (see, for instance, Refs. [31,33]). We look for a
solution to Eq. (A8) as a power series in α:

a = a(0) + αa(1) + α2a(2) + · · · , (A11)

and introduce multiple timescales

T0 = t, T1 = αt, T2 = α2t, . . . , (A12)

which are necessary to remove secular growing terms that
would prevent the asymptotic expansion (A11) to be uniformly
valid in time. The substitution of Eq. (A11) into Eq. (A8) and
the use the derivative rule (d/dt) = (d/dT0) + α(d/dT2) +
α2(d/dT2) + · · · yields a hierarchy of equations at successive
orders in α. At lowest order ∼α0 one obtains i(da(0)

n /dT0) =
Ena

(0)
n , which yields

a(0)
n = An(T1,T2, . . .) exp (−iEnT0), (A13)

where the amplitudes An are allowed to vary on the slow
timescales T1,T2, . . .. At order ∼α one obtains(

i
d

dT0
− En

)
a(1)

n = G(1)
n (T0), (A14)

where we have set

G(1)
n ≡ −i

∂An

∂T1
exp (−iEnT0)

+h(T0)
N∑

m=1

Pn,mAm exp (−iEmT0). (A15)

To avoid the appearance of secularly growing terms when
solving Eq. (A14), the driving term G(1)

n defined by Eq. (A15)
should not contain a term oscillating like ∼ exp(−iEnT0).
The solvability conditions thus yield the following coupled
equations for the evolution of the amplitudes An on the slow
timescale T1:

i
dAn

dT1
=

N∑
m=1

Rn,mAm, (A16)

where we have set

Rn,m ≡ Pn,m〈h(t) exp [i(En − Em)t]〉 (A17)

and the brackets 〈. . .〉 on the right-hand side of Eq. (A17)
denotes time average of the oscillating term. Since h(t) is real
and periodic with period T = 2π/ω, the matrix element Rn,m

does not vanish provided that the resonance condition

En − Em ± lω 
 0 (A18)

is satisfied for some integer l, with l 	= 0 [34]. This is the
resonance condition given by Eq. (17) in the text. From
Eqs. (A10) and (A17), it can be readily shown that the
matrix R is anti-Hermitian, i.e., its eigenvalues are purely
imaginary. Moreover, if λ is an eigenvalue of R, then λ∗
is an eigenvalue as well. Therefore, provided that some of
the elements of the matrix R do not vanish, the solution to
Eq. (A16) shows secularly growing terms on the timescale T1,
i.e., the quasienergies of the time-periodic system (A1) become
complex with an imaginary part of order ∼α. This explains
the existence of multiple parametric resonance tongues found
in the numerical computation of the quasienergies, shown
in Fig. 3. As the number N of lattice sites increases,
the number of resonance tongues, as determined by the
resonance condition (A18), rapidly increases below the cutoff
frequency 4κ .
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It should be noted that, since Rn,m vanishes when |n − m|
is an even number, some of the resonance tongues predicted
by Eq. (A18) can be missed. Let us discuss, for example, the
simplest case of N = 3 lattice sites. In this case the three
eigenvalues El read

E1 =
√

2κ, E2 = 0, E3 = −
√

2κ. (A19)

Therefore, according to Eq. (A18) resonance tongues are
expected to emanate from the two sets of frequencies

ω
(1)
l = |E3 − E1|

l
= 2

√
2κ

l
, (A20)

ω
(2)
l = |E2 − E1|

l
= |E3 − E2|

l
=

√
2κ

l
, (A21)

with l = 1,2,3, . . . . However, since P13 = P31 = 0, the fam-
ily of resonances ω

(1)
l is missed. Moreover, for a square-wave

modulation like that considered in Fig. 3 only odd Fourier
amplitudes of h(t) do not vanish, i.e., for the family of
resonances ω

(2)
l only those with an odd integer l should be

considered. Therefore, the actual resonance tongues in a linear
chain with N = 3 sites emanate from the frequencies

√
2κ ,√

2κ/3,
√

2κ/5, . . . , in agreement with the numerical results
shown in Fig. 3(a).
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Th. Hörner, E. Kierig, I. Mourachko, M. K. Oberthaler, M. A.
Efremov, M. V. Fedorov, V. P. Yakovlev, K. A. H. van Leeuwen,
and W. P. Schleich, Phys. Rev. Lett. 95, 110405 (2005); M.
Kreibich, J. Main, H. Cartarius, and G. Wunner, Phys. Rev. A
90, 033630 (2014).

[5] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990);
M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

[6] N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996);
Phys. Rev. B 56, 8651 (1997); 58, 8384 (1998).

[7] D. R. Nelson and N. M. Shnerb, Phys. Rev. E 58, 1383 (1998).
[8] A. Kostenbauder, Y. Sun, and A. E. Siegman, J. Opt. Soc. Am.

A 14, 1780 (1997); A. Ruschhaupt, F. Delgado, and J. G. Muga,
J. Phys. A 38, L171 (2005); R. El-Ganainy, K. G. Makris,
D. N. Christodoulides, and Z. H. Musslimani, Opt. Lett. 32, 2632
(2007); K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008);
S. Klaiman, U. Günther, and N. Moiseyev, ibid. 101, 080402
(2008); S. Longhi, ibid. 103, 123601 (2009).

[9] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009); C. E. Rüter, K. G. Makris,
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