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Quantum-polarization state tomography
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We propose and demonstrate a method for quantum-state tomography of qudits encoded in the quantum
polarization of N-photon states. This is achieved by distributing N photons nondeterministically into three paths
and their subsequent projection, which for N = 1 is equivalent to measuring the Stokes (or Pauli) operators. The
statistics of the recorded N-fold coincidences determines the unknown N-photon polarization state uniquely. The
proposed, fixed setup manifestly rules out any systematic measurement errors due to moving components and
allows for simple switching between tomography of different states, which makes it ideal for adaptive tomography

schemes.
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Quantum-state tomography is related to the Pauli problem,
i.e., to determining quantum states from measurements [1].
The initial ideas for a solution of the Pauli problem were
stated by Fano in 1957, who coined the term quorum, which
denotes a set of observables whose measurements provide
tomographically complete information about a system [2].
Measuring a quorum on a finite ensemble of a system, the
quantum state of the system is inferred. The first method
for quantum-state tomography was developed for continu-
ous variables [3]. The question whether the quantum-state
tomography of discrete systems is also possible [4] was
answered by experimentally measuring the quantum analog of
Stokes parameters [5] from which the quantum-polarization
state of identically prepared photonic qubits were inferred
[6]. Subsequently, the theory of qubit [7] and qudit [8]
quantum-state tomography was studied. Today, quantum-state
tomography is an indispensable benchmark in experimental
quantum information with continuous variables and qubits
[9-12]. Concurrently, improved security in quantum cryptog-
raphy [13], computational speed-up [14], increased resolution
in quantum metrology [15], and more fundamental questions
[16] have increasingly drawn attention to qudits. However,
implementations of qudit-state tomography have been only
recently applied to physical systems such as nuclear spins
[17], the orbital angular momentum degree of freedom of
photons [18,19], and low-dimensional optical qudits [20,21]. A
general procedure for the quantum-state tomography of optical
qudits in arbitrary dimensions implemented by polarization
states, despite their significance, has yet to be proposed. In
this Rapid Communication we present such an experimental
procedure. The result is a compact, self-calibrating setup
without moving components. Consequently, the influence of
systematic measurement errors is reduced to a minimum. The
results presented here constitute a generalization of previous
approaches in quantum-polarization state tomography [6,20]
and provide a benchmarking tool for experiments exploiting
the quantum polarization of multiphoton states.

Theory. The quantum state of a d-dimensional system is
represented by a qudit density matrix ¢ which can be linearly
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expanded in terms of a set of d> — 1 operators A, as
- + >k (1)
P = d v/iy-.

Here, the symbol 1, in the following replaced by 4, represents
the identity operator in d dimensions and the operators A, are
traceless generators of the SU(d) group. A common choice
is to pick the generalized Pauli operators [8]. When projecting
the state onto a measurement projector |y, ) (v, |, it follows
trivially that the probability of finding the system p in the state
V) (w=1,... ,d?> — 1) after a measurement is given by

Py = (Yulpl¥u). )

Measuring a large number of ensemble members of g, the
probabilities Pjy,) can be estimated. Then, a linear system of
equations relating the probabilities Pyy,) with the generators
can be constructed [8],

d>—1

Py = D Buvho, )
v=0

and, under the condition that the matrix By, = (wﬂliuwﬂ)
is nonsingular, Eq. (3) can be inverted in order to determine
the expansion coefficients A,, which in turn can be inserted
into Eq. (1) to obtain the state’s density operator. In this
case the set of projectors |y,) (v, | is complete. Once such
a set is determined for a single-qudit state, a generalization
towards multiple-qudit states is straightforward: Applying
local measurement projections of each single qudit into a
complete set of states and measuring all single and joint
probabilities between local measurements of different qudits,
a tomographic reconstruction of the state is possible [22].
However, in prime dimensional Hilbert spaces the density
matrix cannot be factored into subsystems such as qubits or
qutrits, and even if the dimensionality of the system allows
factorization, it is often difficult to generate arbitrary states by
using a tensor space of qubits and qutrits, as most states will
then be entangled.

We initially treat the case that the qudits are physically im-
plemented by N-photon polarization states. (The tomography
of polarization states with an indeterminate number of photons
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will be discussed later.) A pure state of that kind can be written

N
W) = awlN —m.m), )
m=0

where |N — m,m) stands for N — m photons in the horizontal
polarization mode and m photons in the vertical polarization
mode, and the complex coefficients o, fulfill ZVIZZO lo > = 1.
This state is equivalent to a single qudit with d = N + 1
dimensions.

To the best of our knowledge, tomography strategies
of optical qudits have been developed and implemented
successfully for photon numbers N =1 [6] and N = 2 [20]
only. Especially, the case of N =1, i.e., optical qubit-state
tomography, is widely employed and an indispensable tool in
experimental quantum information. Our tomography proposal
extends the ability to tomograph to, in principle, any two-mode
qudit system by using physically local, but Hilbert-space
nonlocal, measurements. Although in general such a strategy
is difficult to implement, it turns out that a compact setup exists
that is ideally suitable as a solution. Here we demonstrate it
by using N-photon polarization states.

An implementation of our proposed measurement setup is
depicted in Fig. 1. It resembles the setup used in classical
(first-order) polarimetry, i.e., in the determination of Stokes
parameters or equivalently optical qubit-state tomography
[5,7]. However, while in classical polarimetry analog detectors
measure macroscopic light intensities, and in optical qubit-
state tomography single-photon detectors are used merely
for reasons of sensitivity, in our scheme we use photon-
number resolving detectors in order to display all possible
correlations. Such detectors are coming of age, and are
becoming commercially available. Initially in the analysis
we will assume that the detectors have unit quantum ef-
ficiency. Later we shall show that this assumption can be
dropped.

The number of photons counted by each detector i (i =
1,...,6) is denoted by d; with Z?=1 d; = N. The vector

J
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FIG. 1. Schematic drawing of the experimental setup implement-
ing our protocol for N-photon polarization state tomography. The
incoming beam of N photons is divided into three paths. This is
accomplished by sending the N photons through a nonpolarizing
beam splitter reflecting 1/3 and transmitting 2/3 (NPBS 2:1) and
their subsequent splitting into two other equal parts by a symmetric
nonpolarizing beam splitter (NPBS 1:1). On the single-photon
level the projective measurements in the distinct paths realized by
combinations of wave retarders, polarizing beam splitters (PBS), and
photon-number resolving detectors (PNRD), correspond to applying
the Stokes operators S, S'y, and §Z [7], i.e., the half-wave (1/2) and
quarter-wave (A/4) retarders are oriented at T and 7, respectively.
Recording the statistics of N-fold coincident photon arrivals provides
all necessary data for the reconstruction of an unknown N-photon
polarization state /.

(di, ... ,dg) is called an event and corresponds to a projector.
An N-photon state may give rise to
_(N+5
M) = ( v ) )

different events, which can be resolved by N-fold coincidence
detection. Note that M(N) oc N7, so the number of projectors
increases very dramatically with the space dimension N.
The respective projectors corresponding to the events can
be calculated by further developing the ideas presented in
Refs. [23,24]. Then, the projected state as a function of the
number of photons arrived at the detectors d; reads

— aj)%]0)

V) =

, (6)

VN (dy.da.d5,da,ds,dg)

where &i, and &IT{ are the creation operators for vertically and horizontally polarized photons, respectively, |0) is the vacuum

state, and p is shorthand for the event vector (dy,d>, . .

. ,dg). Calculation of the normalization factor requires special care due

to the fact that, after separation into different paths and subsequent detection, photons become distinguishable. We find that

N(w) = di'd>!N>(d3,ds)N>(ds.ds) with

d; d;
‘ L(dN (i (d)\ (d; e ) )
Notdindpy= Y " < d{>< d(,)(d{>( d{/)(—1>d-f+f’-f[d,~+d_,-—(di+d;)]!<d;+d_,.>!8d;+d;,d;«+d«;. (7)
! i J J

d/.d/=0d}.d/=0

The completeness of the projected states |,) with respect
to the unique determination of the unknown state p follows
from calculating the rank r of the nonsquare matrix B,,,. We
have found that the rank is r = d*> = (N + 1)? for N = 2—7,
and we conjecture that this is the case for any N > 2. If so,
two conclusions follow: The rank is sufficient to determine p

(

by inverting the linearly independent part of B,,. However,
since M > (N + 1)?, the number of projected states (V)
is overcomplete, making the measurement data perfectly
compatible with maximum-likelihood estimation methods
(MAXLIK) [25]. Therefore, under the made assumption of
unit quantum efficiency we conjecture that by using the
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TABLE I. Count of parameters in the estimation process as a
function of the polarization state’s photon number N. The total
number of unknowns up to excitation manifold N in column 5 is
given by summing the numbers in column 2 over the photon numbers

0,1, ...,N and adding the number of unknown quantum efficiencies.
Quantum Unknowns

N  p parameters efficiencies M(N) uptoN Z(];] M(N)

0 1 0 1 1 1

1 4 6 6 11 7

2 9 12 21 26 28

3 16 18 56 48 84

4 25 24 126 79 210

n (n+ 1y 6n (5! on®) 0(n%)

n!s!

experimental setup depicted in Fig. 1, quantum-state tomog-
raphy of qudits encoded in the polarization degree of freedom
of an N-photon state can be performed for an arbitrary N.
Then, also multiple-qudit states can be reconstructed based
on the discussed experimental setup, e.g., multiple, spatially
distinguishable N photons are tomographed by applying the
setup in Fig. 1 locally in each spatial mode.

In practice, detectors have nonunity quantum efficiency.
Moreover, for photon-number resolving detectors it is a
function of the number of detected photons, i.e., detector i’s
efficiency for detecting k photons of n impinging photons
is n;(k|n). For states with photon number N, by N-fold
coincidence detection, only efficiencies 7n;(n|n) = n;(n) are
adequate. However, by this strategy events with lost photons
are ignored in the state estimation process, while including
them will increase the number of possible events. Thus, in
the quantum-state tomography of N-photon states, there will
be 6N additional independent unknowns due to nonunity
quantum efficiencies. We have tabulated the number of
unknown parameters and the number of projectors in Table I.
From the table it is evident that for N > 2 the number of
projectors (in column 4) rapidly becomes much larger than the
number of unknowns, including the quantum efficiencies of the
detectors (sum of column 2 and 3). Consequently, the quantum
efficiencies can be included as parameters in the MAXLIK
estimation, but in this case the authors could not guarantee that
the reconstruction will give a unique result. The uniqueness
of the reconstructed state is restored by precalibrating the
quantum efficiencies. In addition, for N > 2, the total number
of projectors up to a photon number N (column 6) is larger
than the total number of unknowns (column 5). Note that
the projectors parse an initially unknown quantum state into
polarization sectors with fixed photon numbers N. Conse-
quently, the quantum state is accessed in its block-diagonal
form only [15]. Thus, the presented tomography scheme could
allow for the state reconstruction with a priori unknown
N, and also mixtures of different photon-number states. In
practice, however, our scheme will be limited to Hilbert space
dimensions of the order ten, simply because of the staggering
amount of data needed to provide a detailed density-matrix
reconstruction of high-dimensional states.

Experimental methods. In order to demonstrate the feasi-
bility of the proposed method, we have performed quantum-
state reconstruction of optical qutrits. The two-photon source
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consists of a narrow-bandwidth continuous-wave diode laser
with a central wavelength at 405 nm pumping a periodically
poled potassium titanyl phosphate nonlinear optical crystal.
The poling period of 10.1 um was chosen to allow for
an efficient generation of spatially and spectrally degenerate
signal and idler photon pairs at 810 nm in type-II spontaneous
parametric down-conversion around room temperature. After
the temporal walk-off between signal and idler photons
due to the birefringence of the nonlinear optical crystal is
compensated in a polarization Michelson interferometer, the
quantum state of the photon pairs behind a half-wave plate
making an angle 6/2 with the horizontal axis is [26]

[¥) = —+v/2cos 6 sin6|2,0)
+c0s(20)[1,1) + v/2cos0sin0]0,2).  (8)

On the detection side we have combined “on-off” single-
photon avalanche diodes in spatial multiplexing in order to
render possible the detection of photon numbers up to two
[27]. Furthermore, instead of collecting all M possible events
simultaneously, they were sampled consecutively using optical
switching. Therefore, using only two off-the-shelf single-
photon detectors, all required measurements for N = 2 can be
performed, underlining the fact that the presented tomographic
method can be readily applied using minimal resources. The
generated electronic pulses from the detectors, triggered by
photon arrivals, are acquired by a time-to-digital converter.
Then, in postprocessing, coincidences between the detectors
for distinct optical-switch configurations are extracted and the
number of counts n, resulting in event p are obtained. As
discussed above, nonunity detection efficiencies are introduced
as parameters such that the expected number of counts from a
state p reads

6
A= 1] [nid) Py, ©)

i=1

with 7 the measured ensemble size, and are determined in the
maximum-likelihood estimation as well as the unknown state
0 through numerical minimization of the penalty function [28]

N
2=y et (10)

w M

A constraint ensuring non-negativity of the state o is
imposed through its representation in form of a Cholesky
decomposition [28]

— Y

where T is a lower triangular matrix. The resulting state
from the minimization process is the one with the highest
probability to result in the measured counts n,,.

We have performed the described procedure of quantum-
state tomography and reconstruction for several orientations
of the half-wave retarder, i.e., for different prepared states.
The measured ensemble size of each of the states was
around 50 000. For the half-wave retarder oriented at 6 = 0,
the prepared state is ideally |1,1) and the preparation and
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FIG. 2. Graphical representation of the reconstructed states using the proposed tomography method. The (a) real and (b) imaginary parts of
the entries of the reconstructed |1,1) state are shown. The insets display real and imaginary parts of the target states for reference. The fidelity
between the target and the reconstructed state is F = 0.95 &£ 0.03. In case of the two-photon NOON state [(c) and (d)], F = 0.960 £ 0.004.
For the equipartition state (—|2,0) 4 [1,1) +10,2))/+/3 [(e) and (f)], F = 0.932 4 0.003.

subsequent tomography process resulted in the estimation

0.02 0.12 —0.03i —0.01
p=10.1240.03; 0.96 —0.06 — 0.02i
—0.01 —0.06 + 0.02i 0.03

12)

In order to quantify the agreement between expectations and
experimental results, we calculate the fidelity F = (¥ |p|y)
of the target state |y) with ten generated and reconstructed
states p obtained from performing the maximum-likelihood
estimation on random variates of the measured counts ac-
cording to Poissonian statistics, and give mean and standard
deviation. Here, the fidelity is estimated to F = 0.95 £ 0.03.
When repeating the measurements for the two-photon NOON
state (]2,0) — |O,2))/\/§ (0 = m/4), we have obtained

0.51 0.00 —0.01i —0.47 +0.03i
p=1] 0.0040.01; 0.03 0.01 —0.02i |,
—0.47 -0.03; 0.01 4+ 0.02i 0.46
13)

and the fidelity F = 0.960 &+ 0.004 with the state we had
the intention to prepare. Orienting the half-wave retarder
at 6 = 0.076r, the two-photon polarization state |1,1) is
in theory transformed into the perfect equipartition state
(—12,0) +|1,1) + |0,2))/\/§. In this case the reconstruction
procedure gave

0.34 —-0.35+0.077 —0.27 + 0.08i
p=1—-0.35-0.07i 0.37 0.29 -0.03i |,
—0.27 -0.08;  0.29 + 0.03i 0.29
(14)

with an estimated fidelity of F = 0.932 4+0.003 with an
ideal equipartition state. Graphical representations of the
reconstructed and prepared states are shown in Fig. 2. The
results display a good agreement with the prepared states.
The nonunity fidelities are due to imperfections in the
quantum-state preparation, inaccuracies in the orientation and
retardation of the wave retarders, and statistical errors.

Conclusion. We have proposed a method for N-photon
polarization state tomography based on entangled polarization
projections. The experimental results prove the practical ap-
plicability of the proposed method with standard tools used in
quantum optics laboratories. In principle, because the setup has
no movable parts, all experimental error sources can be reduced
to a minimum by accurately characterizing the employed
optical elements. Hence, the proposed measurement strategy
promises great experimental stability. The nonmechanical
switching between distinct measurements can be exploited
in the recently discussed Bayesian recursive data-pattern
tomography [29] for unprecedented speed in quantum-state
reconstruction. On the practical side, this setup is well suited
for miniaturization and integration in quantum optics on-a-chip
experiments [30]. Since in the case of N = 1 the six projected
states in Eq. (6) reduce to the ones used by James et al.
[7], further investigations can include studies of alternative
optical qubit-state tomography setups [31] equipped with
photon-number resolving detectors. Also, the question of
whether quantum efficiencies of the detectors can be included
in the reconstruction process and whether a reconstruction of
states with indeterminate photon number is possible remains
open for future related research.
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