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From many-particle interference to correlation spectroscopy
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We show how robust statistical features of a many-particle quantum state’s two-point correlations after
transmission through a multimode random scatterer can be used as a sensitive probe of the injected particles’
mutual indistinguishability. This generalizes Hong-Ou-Mandel interference as a diagnostic tool for many-particle
transmission signals across multimode random scatterers. Furthermore, we show how, from such statistical
features of the many-particle interference pattern, information can be deduced on the temporal structure of the
many-particle input state, by inspection of the many-particle interference with an additional probe particle of
tunable distinguishability.
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I. INTRODUCTION

Identical particles are of profound importance in nature:
Pauli’s exclusion principle for fermions forms the cornerstone
of chemistry, whereas bosonic quantum statistics allows us
to prepare Bose-Einstein condensates and induces Planck’s
law of blackbody radiation. As such, quantum statistics
describes the fundamental symmetry properties of quantum
states of identical particles, in equilibrium. Yet, it turns
out that the quantum dynamics of identical particles holds
additional and nontrivial surprises, due to intricate inter-
ference phenomena on the level of many-particle transition
amplitudes. The simplest manifestation thereof is the by
now well-established Hong-Ou-Mandel (HOM) interference
dip [1,2] which is observed when two photons are transmitted
through a balanced beam splitter. However, it recently has
been realized that HOM is only the tip of the iceberg of a
whole zoo of many-particle interference phenomena [3–22],
with many particles transmitted through many, randomly
coupled modes as the other (truly complex) extreme, of
potential relevance for photonic quantum simulation and/or
computation [23–27].

Hence, many-particle interference defines a new, wide, and
rather unexplored area of quantum effects which are indicative,
e.g., of the entanglement properties of the many-particle
input state [6,8], manifest on the semiclassical level [21],
and may also be considered as novel resources, e.g., for
quantum information processing [28,29]. As for all inter-
ference phenomena, however,the question remains of their
robustness against decoherence effects, with partial distin-
guishability [11,12,21,25,30,31] of the interfering particles
as its arguably most prominent source. Again, HOM and
many-particle generalizations thereof already provide answers
for simple topologies of the coupled modes [4,10,15,16].

But how does partial distinguishability impact statistical
quantifiers [9,12,32,33] of the fine structure of many-particle
interference, in cases where the complexity of the dynam-
ics (measured by the number of many-particle amplitudes
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which are dynamically superimposed) prevents a deterministic
description, as in principle given, e.g., by evaluation of the
full counting statistics? And to which extent can also such
statistical quantifiers then be employed as diagnostic tools?
Here we provide the framework for a systematic approach to
these questions.

II. MODEL

To do so in a concrete way, we focus on a photonic
setup [34]. Let us first collect the essential technical tools:
Bosonic Fock space is constructed [35,36] by the vacuum
state � acted upon by creation operators of type a

†
j (ψ).

The latter creates a photon in the j th input mode of the
linear optical circuit depicted in Fig. 1, with the argument
ψ ∈ Hadd a state vector from an auxiliary Hilbert space Hadd,
which summarizes all additional degrees of freedom of the
photon, such as the temporal structure of the incoming wave
packets sketched in the figure. With the adjoint annihila-
tion operators aj (φ), the associated commutation relations
read [36]

[ai(φ),a†
j (ψ)] = δij 〈φ,ψ〉. (1)

The action of the optical circuit in Fig. 1 is described by an
m × m unitary matrix U , with m the number of modes,

a
†
j (ψ) �→

m∑
k=1

Ujka
†
k(ψ). (2)

Thus, U mixes the different modes while leaving the additional
degrees of freedom untouched. An initial state of n photons,
prepared in n distinct input modes q1, . . . ,qn, undergoes the
dynamical mapping

a†
q1

(ψ1) · · · a†
qn

(ψn)�

�→
m∑

k1,k2,...,kn=1

Uq1k1 · · · Uqnkn
a
†
k1

(ψ1) · · · a†
kn

(ψn)� =: �,

(3)

where we are particularly interested in situations where particle
and mode numbers n and m, respectively, are significantly
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FIG. 1. Sketch of the proposed setup. m input modes are
connected by a linear optical circuit to m output modes, on each
of which a photon counter is mounted. The initial input state to
be characterized consists of n (here four—topmost modes on the
left) photons which are described by wave packets. The photons are
injected at possibly distinct times tj , which modulates their mutual
indistinguishabilities. The two-point truncated correlation function
Cij [Eq. (4)] is the experimental observable to be sampled over all
i �= j . A fifth photon (bottom left) may be injected with controlled
arrival time, to probe the temporal structure of the four-photon input
state, through “correlation resonances,” e.g., of the normalized mean
NM of the set of Cij (the C-dataset) [see Eq. (13) and Fig. 4].

larger than in the HOM setting, i.e., n,m > 2, but nevertheless
far below the thermodynamic limit. Hence we explore a widely
uncharted parameter regime where one may expect to uncover
new physical phenomena, since it is in this parameter range
that quantum granularity should be most prominent.

For n and m sufficiently large, and U lacking any prominent
symmetry properties, a deterministic evaluation of � rapidly
turns into an intractable problem, and a statistical treatment
is needed [19,32,37]. We have shown earlier that statistical
sampling over the set of two-mode truncated correlation
functions

Cij := 〈n̂i n̂j 〉� − 〈n̂i〉�〈n̂j 〉�, (4)

for all pairs of output modes i �= j , allows the detection
of robust and characteristic features indicative of the many-
particle interferences as induced by U for distinguishable and
indistinguishable particles [32]. Here we expand this theory
to monitor the continuous (quantum classical, in the sense of
quantum statistics) transition from strictly indistinguishable
to fully distinguishable particles, which can be tuned by
a continuous degree of freedom accommodated by Hadd.
Specifically, we choose this degree of freedom as given by
the photon arrival times tj ,j = 1, . . . ,n (see Fig. 1).

To evaluate (4) while taking account of the temporal degree
of freedom attached to each of the interfering photons, we
define the single mode number operators on the output by

n̂i :=
∑

k

a
†
i (ηk)ai(ηk), (5)

where the ηk form a basis of Hadd [38]. The explicit expression
for (4) then reads

Cij =
n∑

k �=l=1

|〈ψk,ψl〉|2UqkiUqljU
∗
ql i

U ∗
qkj

−
n∑

k=1

UqkiUqkjU
∗
qki

U ∗
qkj

, (6)

with ψk the kth photon’s wave function in the temporal
degree of freedom. The overlap |〈ψk,ψl〉|2, tantamount to the
degree of indistinguishability of the kth and lth photon (with
values between one and zero), gives a tunable weight to the
two-particle interference term in (6), and thus continuously in-
terpolates between the fully indistinguishable (|〈ψk,ψl〉|2=1)
and the fully distinguishable (|〈ψk,ψl〉|2 = 0, for all k �= l)
case.

III. STATISTICAL CERTIFICATION OF PARTIAL
DISTINGUISHABILITY

A. Certification

Given that the statistics, and, in particular, already the
lowest-order moments of the C-dataset [32] (defined as the
sample of all Cij ,i �= j ) define unambiguous benchmarks for
many-particle interference of (in)distinguishable particles, (6)
now is the fundamental building block to derive analytic
expressions for those lowest-order moments, for arbitrary
choices of the injected photons’ mutual indistinguishabilities
|〈ψk,ψl〉|2: The normalized mean (NM) and the coefficient of
variation (CV) of the C-dataset given by

NM := m2

n
M1, (7)

CV :=
√

M2 − M2
1

M1
, (8)

with

M1 := 2

m(m − 1)

m∑
i<j=1

Cij , (9)

M2 := 2

m(m − 1)

m∑
i<j=1

(Cij )2, (10)

together with the overlap of Gaussian photonic wave packets,
centered at tj with spectral width �ω,

|〈ψk,ψl〉|2 = exp

(
− (�ω)2(tk − tl)2

2

)
, (11)

lead to explicit random matrix theory (RMT) [39] predictions,
for U given by a random unitary matrix chosen from the
Haar measure. From the literature [40–44] we extract the key
identity

EU

(
Ua1,b1 · · ·Uan,bn

U ∗
α1,β1

· · · U ∗
αn,βn

)

=
∑

σ,π∈Sn

Vm(σ−1π )
n∏

k=1

δ(ak − ασ (k))δ(bk − βπ(k)), (12)
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for the average over m × m unitary matrices. The functions
Vm(σ−1π ) in (12) can be obtained via different methods, as
shown in Refs. [42,43]. The combination of (12) with (6)
leads to

NM ≈ EU

(
Cij

)m2

n
= − m

m + 1

⎡
⎣1 + 1

n(m − 1)

×
n∑

k �=l=1

exp

(
− (�ω)2(tk − tl)2

2

)⎤
⎦ (13)

and

NM ≈ EU (Cij )
m2

n

= − m

m + 1

(
1 + n − 1√

1 + 2(�ωδt)2(m − 1)

)
. (14)

NM predicts the normalized mean for well-defined injec-
tion times tk , while NM assumes independently (normal)
distributed photonic arrival times tk with zero mean and width
δt , and hence implies an additional statistical average over
the arrival times. In addition, (12) allows us to evaluate CV
and CV. We use the results from Ref. [42] in a long but
straightforward computation, and obtain

EU

(
Cij

2
) = 2A − 2B(m − 5) + 2D(2 + 6m − n + mn)

(m − 1)m2(m + 1)(m + 2)(m + 3)

+ C(10 + m + m2)

(m − 1)m2(m + 1)(m + 2)(m + 3)

+ (m − 2)(1 + 3m)n + 2n2 + mn2 + m2n2

(m − 1)m2(m + 1)(m + 2)(m + 3)
,

(15)

with

A =
n∑

k1,k2,l1,l2 = 1
k1 �= k2 �= l1 �= l2

∣∣〈ψk1 ,ψl1

〉∣∣2∣∣〈ψk2 ,ψl2

〉∣∣2
, (16)

B =
n∑

k,l1,l2 = 1
k �= l1 �= l2

∣∣〈ψk,ψl1

〉∣∣2∣∣〈ψk,ψl2

〉∣∣2
, (17)

C =
n∑

k,l = 1
k �= l

|〈ψk,ψl〉|4, (18)

D =
n∑

k,l = 1
k �= l

|〈ψk,ψl〉|2. (19)

Moreover, we find that

EU

(
Cij

2) = 2A′ − 2B ′(m − 5) + 2D′(2 + 6m − n + mn)

(m − 1)m2(m + 1)(m + 2)(m + 3)

+ C ′(10 + m + m2)

(m − 1)m2(m + 1)(m + 2)(m + 3)

+ (m − 2)(1 + 3m)n+ 2n2 + mn2 +m2n2

(m − 1)m2(m + 1)(m + 2)(m + 3)
, (20)

with

A′ = n(n − 1)(n − 2)(n − 3)

[1 + 2(�ωδt)2]
, (21)

B ′ = n(n − 1)(n − 2)

[1 + 2(�ωδt)2]
, (22)

C ′ = n(n − 1)

[1 + 2(�ωδt)2]
, (23)

D′ = n(n − 1)√
1 + 2(�ωδt)2

. (24)

We can combine these outcomes with the results for NM (12)
and NM (13) to determine

CV =
√
EU

(
Cij

2
) − EU (Cij )2

EU (Cij )
, (25)

CV =
√
EU

(
Cij

2) − EU (Cij )
2

EU (Cij )
. (26)

The latter leads to the RMT prediction for the second panel
in Fig. 2.

B. Results for fluctuating arrival times

Let us first compare the RMT prediction (14) for NM and
CV to numerically generated results which are obtained by
direct evaluation of (9) and (10), i.e., as the averages over all
possible choices of output modes of a fixed random circuit U ,
and over Gaussian distributed tk , k = 1, . . . ,n, with variable δt

and fixed �ω. Figure 2 shows the statistical analog of the HOM
dip, as exhibited by both NM and CV. Our analytical RMT
prediction and numerical simulation agree very well. Note that
residual fluctuations of the numerical result around the RMT
prediction, more prominent for the coefficient of variation, will
be progressively suppressed in the thermodynamic limit.

C. Scaling behavior

The visibility of the dip is given by the difference between
the results for the distinguishable and indistinguishable case,

VNM =
∣∣∣∣NMδt→∞ − NMδt→0

NMδt→∞ + NMδt→0

∣∣∣∣, (27)

VCV =
∣∣∣∣CVδt→∞ − CVδt→0

CVδt→∞ + CVδt→0

∣∣∣∣. (28)

The scaling behavior in n and m is then obtained from (14)
and (20)–(26). In Fig. 3 we show how these visibilities change
as a function of the number n of particles, both in the regime
where m ∼ n, and where m ∼ n2 [45]. It becomes clear from
the saturation or decrease of VNM, and from the monotonous
increase of VCV with n, that, although the statistical spread
in Fig. 2 is larger for CV than for NM, the visibility of the
distinguishability transition in the former quantity scales more
favorably with the system size. This implies that, specifically
in the regime of larger n and m—and hence where the RMT
prediction is more accurate [32]—the clearest transition from
indistinguishable to distinguishable photons is seen in CV.
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FIG. 2. Normalized mean [NM, top, Eq. (7)] and coefficient of
variation [CV, middle, Eq. (8)] of the C-dataset generated by the
transmission of n = 6 photons across a m = 50 mode random unitary,
as a function of the temporal scatter δt of the photons’ arrival times
(normally distributed, with zero mean) tj , at given spectral width
�ω. The bottom plot sketches two typical scenarios of the photons’
timing—one where the different wave packets are typically well
resolved (left) and one with a high degree of indistinguishability.
Continuous lines indicate the RMT predictions (14) and (26) for
NV and CV, while dots are derived from a numerically generated
C-dataset, with one single, fixed random realization of U , and
upon average over 100 normally distributed arrival times per tj .
The differences between the predictions for strictly indistinguishable
bosons and for distinguishable particles (horizontal dotted lines)
determine the visibilities [(27) and (28)] of the signals.

Therefore, much as in the HOM setting, but now for
large n and m, for unknown, random U , and on the level
of the lowest-order statistical moments of the set of two-point
correlation functions read off from the n-particle output state,
do these results define diagnostic tools for the experimental
certification of the indistinguishable preparation of the injected
photons.

FIG. 3. RMT predictions for the visibility of normalized mean
[VNM, top, Eq. (27)] and coefficient of variation [VCV, bottom,
Eq. (28)] as obtained from (14) and (20)–(26). The number m of
modes is chosen to scale with the number n of particles as m = 3n

(solid line) and as m = 3n2 (dashed line), respectively, where the
factor 3 is chosen arbitrarily.

IV. CORRELATION SPECTROSCOPY

Next, we exploit the structure of (13) to establish how
the C-dataset can be used to probe the temporal structure
of the many-particle input state by manipulating a single
photon’s input state: Assume that the injection times of the
first n − 1 photons be fixed, and that the nth photon’s injection
time be controllable by an adjustable delay line. Then, by
virtue of the sum of exponentials in (13) [and, likewise,
in the corresponding expressions (15)–(19) and (25) for
CV], whenever tn  tk,n �= k, the thus triggered two-photon
interference between photons n and k will induce a dip in
NM, of width (�ω)−1, centered around tk , much as in a
typical spectroscopic experiment. This protocol thus even
allows the inference (with finite resolution controlled by the
photons’ spectral bandwidth) of the actual timing of the
injected photons.

Again, as shown in Fig. 4, RMT results and numerical sim-
ulations agree qualitatively very well, with some quantitative
deviations in the vicinity of the minima of NM. We attribute
these to the difference between the RMT average (13) and the
contribution of the “correlation resonance” between the probe
and the kth input photon to the signal as generated by a specific
realization of U .
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FIG. 4. Normalized mean NM, as a function of the probe photon’s
(see Fig. 1) delay with respect to t = 0, and for n − 1 = 8 injected
photons with injection times tk = −4.860 71, −3.879 57, 0.858 186,
1.218 35, 3.893 86, 4.413 08, 5.197 17, and 8.822 49 (in units of
1/�ω), for numerically generated, random (thin lines) m = 30 mode
unitaries, compared to the RMT prediction (13) (thick, dashed red
line), and to the result (33) for the Fourier circuit. Clearly, whenever
the probe photon’s delay coincides with any one of the other photons’
injection times (associated wave packets are displayed in the bottom
panel), a resonancelike dip emerges in the C-dataset’s lowest-order
statistical moment.

We finally stress that the statistical characterization of the
quantum classical transition as proposed here can also be
applied to structured or highly symmetric circuits such as
described by Fourier matrices. These types of circuits exhibit
prominent interference effects which have been experimentally
demonstrated very recently [46] and can be understood
analytically [7,13,47]. Also the Cij and, subsequently, NM
can be directly evaluated, without recourse to RMT. NM of
the Fourier circuit C-dataset is obtained via a direct evaluation
of (9), with U a Fourier matrix, hence

Uqki = 1√
m

exp

(
2π i

(qk − 1)(i − 1)

m

)
. (29)

We may now write (6) as

Cij = − n

m2
− 1

m2

n∑
k �=l=1

|〈ψk,ψl〉|2

× exp

(
2π i

(ql − qk)(j − i)

m

)
, (30)

which needs to be averaged over all output modes i and j to
obtain M1 (9). When we consider a fixed value i, we obtain
that

m∑
j = 1
j �= i

exp

(
2π i

(ql − qk)j

m

)
= − exp

(
2π i

(ql − qk)i

m

)
.

(31)

The identity (31) implies

m∑
i,j = 1
i �= j

exp

(
2π i

(ql − qk)(j − i)

m

)
= −m, (32)

and, hence, with (7) and (9), one obtains

NM = −1 − 1

n(m − 1)

n∑
k �=l=1

exp

(
−�ω2(tk − tl)2

2

)
, (33)

with a slightly increased visibility of the signal displayed in
Fig. 4, as compared to the result for a random scatterer.

Note that this result nicely illustrates two rather comple-
mentary aspects of multiparticle, multimode interference in the
presence of symmetries: On the one hand, the Fourier circuit’s
symmetries induce the suppression of specific, well-defined
output events, which define a highly sensitive probe of the
precise implementation of the Fourier map and of the concomi-
tant multiparticle interference. On the other hand, irrespective
of these isolated output events specific to the Fourier map,
there are robust statistical features proper to all output events
which both highly symmetric and fully random circuits have
in common. However, even on the level of these statistical
quantifiers does the difference between the underlying uni-
taries emerge, through an essentially constant shift, as evident
from Fig. 4. The precise connection between the specific
structure of the unitaries and the observed bias remains to be
elucidated.

V. CONCLUSIONS

Let us conclude with the observation that the treatment
of many-particle interference phenomena in terms of a set of
correlators with statistical properties which are indicative of
structural properties of the injected quantum states defines a
type of correlation spectroscopy. While we focused here on
the photonic context which originally motivated this work, the
underlying theoretical structure as incarnated by (6) is rather
general and lends itself to straightforward generalizations
to other “distinguishing” degrees of freedom, as well as to
other, e.g., fermionic particle species. Since the overlaps
|〈ψk,ψl〉|2 in the distinguishing degree of freedom define some
sort of which-way information on the level of two-particle
transition amplitudes, this furthermore indicates different
directions for the decoherence theory of quantum systems of
indistinguishable particles.
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