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The commonly used “practical” Bell inequalities for quantum optical fields, which use intensities as the
observables, are derivable only if specific additional assumptions hold. This limits the range of local hidden
variable theories, which are invalidated by their violation. We present alternative Bell inequalities, which do not
suffer from any (theoretical) loophole. The inequalities are for correlations of averaged products of local rates.
By rates we mean ratios of the measured intensity in the given local output channel to the total local measured
intensity, in the given run of the experiment. Bell inequalities of this type detect entanglement in situations in
which the “practical” ones fail. Thus, we have full consistency with Bell’s theorem, and better device-independent
entanglement indicators. Strongly driven type-II parametric down conversion (bright squeezed vacuum) is our
working example. The approach can be used to modify many types of standard Bell inequalities, to the case of
undefined particle numbers. The rule is to replace the usual probabilities by rates.
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Introduction. With the experiments of the group of Hanson
and other groups [1] we now know that natural phenomena,
which do not satisfy Bell inequalities, can indeed be observed.
Thus, assumptions behind the inequalities cannot be used
to describe our world. All “loopholes” ’ were closed. Bell
inequalities, as, e.g., the famous Clauser-Horne-Shimony-Holt
(CHSH) ones [2], are based on assumptions of locality, of
a form of realism (or hidden variables, causes, states, or
counterfactual definiteness, etc.), and of the “freedom” of
experimenters to choose their local measurement settings. In
the decades after Bell’s paper [3], many other inequalities were
derived. They either apply to a different number of settings,
or a different number of systems and observers, or different
observables (for a recent review, see Ref. [4]). However, most
of these inequalities were tailored for situations in which, in
each run of the experiment, each observer receives just one
particle. But, this is not so in the case of many quantum optical
experiments, and in other physical situations. Local photon
numbers may be undefined (before measurement), which leads
to varying optical intensities. The trail-blazing inequalities of
Reid and Walls [5] were specifically derived for such cases,
which were the first ones not aimed at situations in which we
have “one-run–one-particle” for each observer.

In the development of experimental quantum information
one sees an ever-broadening palette of phenomena which are
used to demonstrate various protocols. Still, quantum optical
experiments dominate. As the security of many protocols rests
in the possibility of putting them in a “device-independent”
form, which usually leads to some form of Bell inequalities,
or related concepts, we need such inequalities for new types of
phenomena, and they must be loophole free. However, the
inequalities of Ref. [5] cannot be derived solely by using
the premises of Bell’s theorem. An additional “reasonable”
assumption is needed. Different inequalities without this
deficiency exist. For example, see Ref. [6], in which photon
number parity operators were used as observables (measured
after a displacement). Such observables are fragile with
respect to losses. A more robust approach simply using
photon numbers is given in Ref. [7]. Still, the beauty of

the natural approach of Ref. [5], which uses simply optical
intensities, straightforwardly related to the usual quantum
optical measurements, and its frequent use in the literature,
calls for a basic reformulation, so that the resulting inequalities
would require only the premises of Bell’s theorem. Here,
we report Bell inequalities which are for optical intensities,
which do not rest on additional assumptions, and detect
entanglement in (some) situations in which the “practical”
ones of Ref. [5] fail (essentially, for stronger pumping). The
crux of the approach is to use “normalized” intensities, or rates,
as the variables entering the inequalities. They are defined as
the intensity at the given detector divided by the total intensity
of all (local) detectors (all for a given run of the experiment).

Note that the intention of our analysis is not an attempt to
provide better Bell inequalities for a loophole-free experiment.
This case is closed [1]. We aim at a loophole-free analysis of
quantum optical experiments with states of undefined photon
numbers, such as the (bright) four-mode squeezed vacuum,
which will be our working example.

The approach of Ref. [5] set the standard for many years.
Two spatially separated observers measure intensities of light
at the outputs of their local devices. It is customary to consider
them as the outputs of polarization analyzers. We shall follow
this picture here. Reference [5] uses the following hidden
variable description (for a minor modification, see Ref. [8]).
The hidden values of intensities, potentially measurable by
Alice, for the two outputs of her analyzer, are denoted here as
IA± (θ,λ). For Bob we have IB± (φ,λ). They are non-negative
and in principle unbounded. θ and φ symbolize the local
settings of the polarization analyzers, controllable by the
observers, and λ stands for (local) hidden variables, which
are assumed to be distributed with some probability density
ρ(λ). Had the above been the only assumptions, one would
not expect any (theoretical) loopholes in the resulting Bell
inequalities. However, in Ref. [5], “total intensity through each
polarized is written”

IA(λ) = IA+ (θ,λ) + IA−(θ,λ),

IB(λ) = IB+ (φ,λ) + IB−(φ,λ). (1)
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ŻUKOWSKI, WIEŚNIAK, AND LASKOWSKI PHYSICAL REVIEW A 94, 020102(R) (2016)

It is argued that IA(λ) and IB(λ) should be independent of
θ and φ, as they (could) correspond to local intensities with
polarizers removed. Conditions (1) are additional assumptions
on the form of hidden variable theories, which do not have
to hold. The polarizer could “enhance” the total intensity
registered behind it for some values of λ, and lower it for
some others (see the discussion in Refs. [9,10]). Conditions
such as (1) perfectly hold for the classical theory of light, and
thus seem “reasonable.” Still, e.g., they do not hold in the case
of stochastic electrodynamics [11].

Assumptions (1) allow one to construct local hidden
variable correlation functions constrained by CHSH-like [2]
inequalities,

E(θ,φ) = 〈[IA+(θ ) − IA− (θ )][IB+(φ) − IB− (φ)]〉
〈IAIB〉 , (2)

where 〈· · · 〉 denotes averaging over ρ(λ). The denominator
〈IAIB〉 is independent of the local settings, as it reads∫

dλρ(λ)IA(λ)IB(λ). The inequality for these reads [5]

|E(θ,φ) + E(θ,φ′) + E(θ ′,φ) − E(θ ′,φ′)| � 2. (3)

It holds only due to the fact that 〈IAIB〉 is the same in all E’s.
The additional assumption (1) is crucial.

In the case of CH-like inequalities [9] one proceeds
similarly as in Ref. [5]. A version of a no-enhancement
assumption is used: One requires that there exist variables,
which are independent of the local settings (and the remote
ones), IA(λ) and IB(λ), such that

IJ (λ) � IJ+ (α,λ), (4)

where J = A or B, and α = θ,φ, respectively. The variables
IA(λ) and IB(λ) are (again) defined as hidden values of (total)
local intensities which can be measured by the local observers
“without the polarizers present.” This allows one to introduce
functions

G(θ,φ) =
∫

dλρ(λ)IA+(θ,λ)IB+ (φ,λ), (5)

and

rA(θ ) =
∫

dλρ(λ)IB(λ)IA+(θ,λ),

rB(φ) =
∫

dλρ(λ)IA(λ)IB+(θ,λ). (6)

As for real numbers, 0 � x,x ′ � X and 0 � y,y ′ � Y, one
has

−XY � xy + xy ′ + x ′y − x ′y ′ − xY − Xy � 0, (7)

and one infers that

IA+ (θ,λ)IB+(φ,λ) + IA+ (θ,λ)IB+(φ′,λ)

+ IA+ (θ ′,λ)IB+ (φ,λ) − IA+ (θ ′,λ)IB+(φ′,λ)

− IA+ (θ,λ)IB(λ) − IA(λ)IB+(φ,λ) � 0. (8)

After averaging, this leads to a CH-like inequality,

G(θ,φ,) + G(θ,φ′) + G(θ ′,φ)

−G(θ ′,φ′) − rA(θ ) − rB(φ) � 0. (9)

CH-like inequalities free of the additional assumptions
(1) and (4). The inequalities will use functions of inten-
sities, which we call “rates,” defined by RA±(θ ) = IA± (θ)

IA(θ)

and RB± (φ) = IB± (φ)
IB (φ) , where IJ± (α) stand for the measured

intensities at detectors J±, in the given run of the experiment,
and

IJ (α) =
∑
i=±

IJi
(α). (10)

Note that we do not assume that the total intensity is
independent of the local setting. Whenever the denominator
IJ (α) is zero, we put RJ± = 0. The rates show the relative
distribution of the measured intensities at the two outputs of the
local polarizer. Quantum averages and operators for variables
(10) do not depend on the local settings of the polarizers.
However, we introduce the possible dependence on α having
in mind the hidden variable theories for which “anything goes,”
provided it is local and realistic.

The local hidden variable model of the rates will be given
by

RJ+ (α,λ) = IJ+ (α,λ)

IJ (α,λ)
, (11)

with IJ (α,λ) = ∑
i=± IJi

(α,λ).
Since 0 � RJ+ (α,λ) � 1, the lemma (7) with X = Y = 1

gives

− 1 � RA+(θ,λ)RB+(φ,λ) + RA+(θ,λ)RB+(φ′,λ)

+RA+ (θ ′,λ)RB+(φ,λ) − RA+(θ ′,λ)RB+(φ′,λ)

−RA+ (θ,λ) − RB+(φ,λ) � 0. (12)

After averaging over ρ(λ) we get a CH-like inequality,

− 1 � K(θ,φ) + K(θ,φ′) + K(θ ′,φ) − K(θ ′,φ′)

−SA+ (θ,λ) − SB+ (φ,λ) � 0, (13)

where we have correlation functions for rates at distant
detectors,

K(θ,φ) =
∫

dλρ(λ)RA+(θ,λ)RB+(φ,λ), (14)

and averages of local rates,

SJ+ (α) =
∫

dλρ(λ)RJ+(α,λ). (15)

No additional assumptions are used. Loopholes are moved to
experimental imperfections.

The quantum optical definition of the rates depends on the
model of detection used, which defines the intensity operators
at the exits of the polarizers. We shall use the simplest one,
photon number operators, however, one can easily move
to other quantum optical models of intensities or detector
responses.

For our example involving polarizations, let us introduce
annihilation (and creation) operators aH , aV , bH , and bV

(creation operators have a dagger, †). Here, H and V stand
for horizontal and vertical polarizations, and a,b denote
propagation beams towards Alice and Bob, respectively. The
operators for arbitrarily oriented (linear) polarization analyzers
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are

aθ = cos θaH + sin θaV ,

aθ⊥ = − sin θaH + cos θaV ,

bφ = cos φbH + sin φbV ,

bφ⊥ = − sin φbH + cos φbV . (16)

The operators with ⊥ denote the “−” exit of the local
polarizers, and the other ones, the “+” output. The chosen
intensity model gives us

ÎJ+ (α) = c†αcα, (17)

ÎJ− (α) = c
†
α⊥cα⊥ , (18)

where c = a,b, α = θ,φ for J = A,B, respectively. Note that,
most importantly, one has for any α,

ÎJ =
∑
i=±

ÎJ± (α) = c
†
H cH + c

†
V cV . (19)

That is, the total intensity operator ÎJ is independent of α.
All this can be generalized in the known way to elliptic
polarizations.

The quantum average values for correlation functions of the
rates read

K(θ,φ)Q = Tr[�R̂A+(θ )R̂B+(φ)], (20)

and for the average local rate one has

SJ+ (α)Q = Tr[�R̂J+ (α)], (21)

where � is the state, and R̂J+(α) are given by

R̂J+ (α) = �̂⊥0
J

ÎJ+ (α)

ÎJ

�̂⊥0
J . (22)

The operators �̂⊥0
J are projectors into the subspace of the

Fock space, of the modes described by annihilation operators
cH and cV , which does not contain a vacuum. For example,
the operator R̂a+ (θ ) acts in the Fock space for modes aθ and
aθ⊥ , and reads

R̂A+(θ ) = �̂⊥0
A

a
†
θaθ

a
†
θaθ + a

†
θ⊥aθ⊥

�̂⊥0
A , (23)

with

�̂⊥0
A = 1̂a − |0,0〉aa〈0,0|, (24)

where 1a is the identity operator, and |0,0〉a is the vacuum
satisfying aθ |0,0〉a = aθ⊥|0,0〉a = 0.

Violations of the inequalities. In quantum optics, violations
of Bell inequalities of the type presented in Ref. [5] usually
decrease with the growing average numbers of photons.
The inequalities introduced here are much less prone to
this effect. The trivial reason for this is that their form
warrants that terms with higher photon numbers contribute
relatively less to K(θ,φ)Q and SJ+ (α)Q than to G(θ,φ)Q and
rJ+(α)Q. A more profound one is that K(θ,φ)Q are averaged
products of measured rates, which essentially give polarization
readouts, whereas, for example, correlation functions G(θ,φ)Q
effectively involve averaging of the product of rates weighted

by the observed product of local total intensities. Thus, instead
of a direct average over the statistical ensemble of a product
of polarization readouts, we have in (5) an average with a
weight proportional to the product of intensities. However, in
classical electrodynamics the property of polarization of light
waves has nothing to do with its intensity, and in quantum
theory the energy of a photon and its polarization are unrelated
variables. All this leads to a possibility of a new look at
Stokes parameters, or Bloch vectors, for nonclassical light.
The averages of the observables R̂A+(θ ) − R̂A−(θ ), for three
complementary elliptic polarization analyzer’s settings, can
be interpreted as such (redefined) parameters. In Ref. [12] we
show that with such observables we get better entanglement
witnesses for light with undefined photon numbers, e.g., better
than the conditions given in Refs. [13–15].

Example. Let us consider the four-mode (bright) squeezed
vacuum. The state reads

|BSV〉 = 1

cosh2 	

∞∑
n=0

√
n + 1 tanhn 	|ψ (n)

− 〉, (25)

where

|ψ (n)
− 〉

= 1√
n + 1

n∑
m=0

(−1)m|n− m〉aH
|m〉aV

|m〉bH
|n− m〉bV

, (26)

where, in turn, a and b refer to the two directions along
which the photon pairs are emitted, H (V ) denotes horizontal
(vertical) polarization, and 	 represents an amplification gain.
The state is rotationally invariant, i.e., all probabilities are
dependent only on θ − ψ . A form of such an invariance holds
also for measurements of all elliptic polarizations.

In Fig. 1 we compare the violation of the new CH-like
Bell inequality (13) by the above family of states, with what
happens for the standard inequality (9). We clearly see that
the range of the pumping parameter 	 for which we observe
violation is much wider than in the case of the standard
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0.4911

0.8866

tanh2
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FIG. 1. Comparison of violations of the modified CH-like Bell
inequality for rates (13) and the standard inequality (9). The threshold
for violation of the CH inequalities is zero (indicated by the straight
horizontal line). As vacuum events saturate the inequality (13),
the curve pertaining to it, for renormalized averages (with vacuum
terms removed), effectively shows violations conditioned on getting
a nonvacuum event.
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ŻUKOWSKI, WIEŚNIAK, AND LASKOWSKI PHYSICAL REVIEW A 94, 020102(R) (2016)

approach. Still, the new inequality seems to be less effective
for lower pumping. However, this is only due to the fact that
for low pumping the vacuum term in the state dominates, and
the value of the left-hand side of inequality (13) for vacuum
is zero. If one takes into account only nonvacuum events, the
violation for all nonzero 	’s is higher than for the standard
approach.

The stronger violation is a consequence of the fact that only
nonvacuum events contribute to the visibility (interferometric
contrast) of two detector correlations. For the bright squeezed
vacuum state (25), the correlation function for the rates
K(θ,φ)Q (20), with a removed vacuum term and renormalized
by a factor 1

1−p(“vac”) , where p(“vac”) = 1/ cosh4 	 is the
probability of the vacuum component of |BSV〉, is given by

K(θ,φ)(ren)
Q = 1

8 (cosh 2	 + 3) sinh2 	 − 1
96 cos[2(θ − φ)]

×[12 cosh 2	 + cosh 4	

−16 ln(cosh−2 	) − 13], (27)

whereas the average (renormalized) rates at single detectors
SJ+ (α)(ren)

Q are 1/2. The visibility of the correlation interference
at pair of remote detectors, defined as

v = Kmax(θ,φ)Q − Kmin(θ,φ)Q
Kmax(θ,φ)Q + Kmin(θ,φ)Q

, (28)

where the minimum and maximum is taken over φ and θ , reads

vnew =
(

3 + cosh2 	 − 4
ln cosh 	

sinh2 	

)/
(3 + 3 cosh2 	). (29)

In the case of the approach of Ref. [5], the visibility is given by
vstandard = (1 + 2 tanh2 	)−1 (see, e.g., Ref. [16]), and is lower
than vnew in the full range of the parameter 	.

Note that the above removal of the vacuum contribution
poses no problem when one uses (13) in analysis experimental
data. In such a case one can rescale the observed correlation
functions by a factor 1

1−P (“no”) , where is P (“no”) is the
frequency of having no registrations in both output channels
of the polarizers at both sides of the experiment. This is again
due to the fact that no-counts-at-both-sides events saturate the
inequality.

Extensions of the approach. The method can be used
to rewrite various types of Bell inequalities, for one-local-
particle-per-run scenario, to ones involving undefined num-
bers of particles. The usual Bell inequalities use hidden
probabilities PJ (i,α,λ), where now α stands for some local
parameter defining an observable to be measured on the
local particle, on side J , and i numbers the outcomes. They
can be replaced by hidden rates RJ (i,α,λ) = I (i,α,λ)

Itot(α,λ) , where
Itot(α,λ) = ∑

i I (i,α,λ), where I (i,α,λ) is the (hidden) inten-
sity at exit i of the local measuring station. If Itot(α,λ) = 0, one
puts RJ (i,α,λ) = 0. Note that both PJ (i,α,λ) and RJ (i,α,λ)
are non-negative, and bounded by 1, and if Itot(α,λ) �= 0,
one has

∑
i RJ (i,α,λ) = 1. Thus the bounds of the rewritten

inequalities remain the same. In the Appendix we present how
one can get loophole-free CHSH-like inequalities for rates.

Example of yet another extension. If one uses the wording
of this Rapid Communication, the inequalities of Ref. [7]

TABLE I. Critical values of gain 	crit
chained and 	crit

chained, ratios above
which chained inequalities for moduli of intensity differences of [7]
and similar ones for rates cannot be violated. Parameter L stands for
the number of settings (“length”) of the chained inequality.

L 	crit
chained 	crit

chained, ratios L 	crit
chained 	crit

chained, ratios

2 0.915 1.123 5 1.260 1.586
3 1.053 1.367 6 1.345 1.687
4 1.165 1.482 7 1.427 1.795

are based on averages of |IA+(θ ) − IB+(φ)|, which can be
shown, for hidden variable theories, to have the properties
of geometric distance (the most important here is the triangle
inequality, as it can be chained to give polygon inequalities).
Let us replace these by 〈|RA+(θ ) − RB+(φ)|〉, which obviously
also has the geometric properties of a distance. The resulting
chained (polygon) inequalities read

L∑
i=1

〈|RA+(θi) − RB+ (φi)|〉

+
L−1∑
i=1

〈|RA+(θi+1) − RB+(φi)|〉

� 〈|RA+(θ1) − RB+(φL)|〉. (30)

We have numerically studied the violation of inequality
(30). We cut off the expansion (25) at n = 25, and use the
settings given in Ref. [7]. The values of the gain 	, below which
we still observe the violation of the inequalities, are given in
Table I. Chained inequalities for rates are violated for higher
gains than the original ones of Ref. [7]. Also, one needs fewer
settings, i.e., lower L, to observe violations for higher gains.
For example, to violate the inequality (30) at 	 = 1.4, one
needs only four local settings, whereas it takes seven settings
to violate the analogous inequality for the intensities of Ref. [7]
[which has the form of inequality (30), with I ’s replacing R’s].

The presented approach allows one to derive, without
invoking additional assumptions, Bell inequalities with involve
averaged correlations of the rates of local intensities (for
the given run, the intensity at the given detector divided
by the total local registered intensity) at pairs of spatially
separated detectors. Especially for the case of stronger fields,
the inequalities can be better entanglement witnesses than
standard ones, which use additional assumptions, and not just
those of local realism. One can generalize the approach to more
observation stations, and to many parties, so that they can be
used for situations with undefined particle numbers. Further
generalizations of the approach, going beyond the problem of
Bell inequalities, are presented in, e.g., Ref. [12].
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BRISQ2. M.Ż. was supported by TEAM project of FNP and
DFG/FNP Copernicus award. M.Ż. and W.L. are supported by
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APPENDIX: DERIVATION OF CHSH-LIKE
BELL INEQUALITIES FOR RATES

The CHSH-like inequalities can be derived using the same
basic hidden variable objects IJ± (α,λ), and their functions
RJ+(α,λ), plus the rates at the other outputs,

RJ− (α,λ) = IJ− (α,λ)

IJ (α,λ)
. (A1)

One can introduce correlation functions

F (θ,φ) =
∫

dλρ(λ)[RA+(θ,λ) − RA−(θ,λ)]

×[RB+(φ,λ) − RB− (φ,λ)]. (A2)

As −1 � RJ+ (α,λ) − RJ− (α,λ) � 1, one gets

|F (θ,φ) + F (θ,φ′) + F (θ ′,φ) − F (θ ′,φ′)| � 2. (A3)

While this is a correct CHSH-like inequality, its usefulness
is highly limited. All R variables equal zero for zero total
local intensity. In many experiments the produced states are
such that the vacuum components dominate (see Ref. [17]).
As a result, the values of correlation functions F are very low,
and the left-hand side cannot breach the bound of 2. Still,
such inequalities could be of use in the case of event-ready
experiments [18].

To devise CHSH-like inequalities free of this deficiency,
one can use the trick of Ref. [19] (used there to derive CHSH-
type inequalities for two qubits which are optimal for less
than perfect detection efficiency). We introduce rigged rate
functions. We define, based on the ideas of Ref. [8], the value
of RJ+ (α,λ) for zero total intensity as 1. No change is required
for RJ−(α,λ). We denote the rigged rate functions by adding a
prime. We still have

−1 � R′
J+ (α,λ) − RJ− (α,λ) � 1.

The correlation function can be defined as follows

C(θ,φ) =
∫

dλρ(λ)[R′
A+(θ,λ) − RA−(θ,λ)]

×[R′
B+(φ,λ) − RB−(φ,λ)]. (A4)

This definition does not suffer from the mentioned deficiency,
because in the case of vacuum, C(θ,φ) = 1. We get a modified
inequality,

|C(θ,φ) + C(θ,φ′) + C(θ ′,φ) − C(θ ′,φ′)| � 2. (A5)

To give a quantum formula for C(θ,φ)Q, one puts

R̂′
A+(θ ) = R̂A+(θ ) + |0,0〉aa〈0,0| (A6)

and

R̂′
B+ (φ) = R̂B+ (φ) + |0,0〉bb〈0,0|, (A7)

where |0,0〉b is the vacuum for the b modes.
Let us see whether the new inequalities are violated by

quantum predictions for a bright squeezed vacuum. First, let
us compute the value of the CHSH expression in fashion of
Ref. [5], according to the formula

E(θ,φ) = 〈[IA+ (θ ) − IA− (θ )][IB+(φ) − IB− (φ)]〉
〈IAIB〉 . (A8)

For every Fock component of the state |BSV〉, the correlation
function is proportional to a cosine function with one of its
minima at θ − φ = 0 and amplitude 1

3 (2n + n2). Thus, the
numerator in Eq. (A8), summed over n > 0 with weights wn =
(n + 1) tanh2n 	cosh−4 	, reads

〈[IA+(θ ) − IA−(θ )][IB+(φ) − IB−(φ)]〉
= −2 cosh2 	 sinh2 	 cos[2(θ − φ)], (A9)

while the denominator 〈IAIB〉 is equal to

(3 cosh 2	 − 1) sinh2 	. (A10)

For the optimal settings θ = 0, θ ′ = π/4, φ = π/8, and φ′ =
−π/8, we get violations of the CHSH-Bell-like inequality
[based on the additional assumption (1)] for the range 0 <

	 < 0.4911.
In the loophole-free approach utilizing the ratios, for an

individual 2n-photon component we have

〈ψ (n)
− |[R′

A+(θ ) − RA−(θ )][R′
B+(φ,λ) − RB−(φ,λ)]|ψ−(n)〉

= −n + 2

3n
cos(θ − φ), (A11)

and for the vacuum component we have 1. After the averaging
components with weights wn, which now includes n = 0, we
get

C(θ,φ)Q = 1

cosh4 	

[
1 − 1

3
cos(θ − φ)[4 ln cosh 	

+(3 + cosh2 	) sinh2 	]

]
. (A12)

This, put into the CHSH expression, gives a violation for the
range 0 < 	 < 0.8866.
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