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Efficient entanglement criteria for discrete, continuous, and hybrid variables
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We develop a method to construct entanglement criteria for arbitrary multipartite systems of discrete or
continuous variables and hybrid combinations of both. While any set of local operators generates a sufficient
condition for entanglement of arbitrary quantum states, a suitable set leads to a necessary and sufficient criterion
for pure states. The criteria are readily implementable with existing technology and reveal entanglement that
remains undetected by the respective state-of-the-art methods for discrete and continuous variables.
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Introduction. Determining whether an unknown quantum
state is entangled or not is a highly complex and, in general,
unsolved problem [1–3]. The fundamental role of entangle-
ment in quantum physics renders this issue directly relevant
for various fields ranging from quantum information to
condensed-matter physics [3–5]. A large amount of theoretical
methods to characterize entanglement has been proposed [1–
3,6–11]; however only few of them can be formulated in terms
of a feasible operational recipe, involving only a given set of
accessible operators and a limited number of measurements.
These are crucial requirements to render such methods relevant
for scalable experimental applications in a broad range of
scenarios.

The development of methods for systems of either discrete
or continuous variables has led to two distinct approaches,
which are widely popular in present-day experiments
[10,12–18]. Continuous-variable systems, on the one hand,
are typically analyzed with separability criteria involving
uncertainty relations [1,19–21]. They provide a complete char-
acterization of the entanglement of bipartite Gaussian states in
terms of variances of suitably defined operators [19,20]. These
criteria have been further sharpened by means of entropic
uncertainty relations [22] or moments of arbitrary order [23],
enabling them to detect a larger amount of non-Gaussian
states, but their application remains limited to bipartite
systems.

On the other hand, a convenient method to detect entan-
glement in the discrete (e.g., multiqubit) case is based on
the violation of spin-squeezing inequalities [24–26]. A larger
class of entangled states, including the spin-squeezed ones,
can be detected by the Fisher information [27], a fundamental
quantity in estimation theory [28]. However, as this method
is specifically designed to detect only those states that lead to
a metrological advantage—only one of many applications of
entangled states—certain entangled states remain undetected,
including some pure states [29].

In this Rapid Communication, we provide a unified ap-
proach to entanglement detection in arbitrary multipartite
quantum systems, which proves to be more efficient than
standard strategies for either discrete [2,27,29] or continuous
variables [19–22]. In particular, every pure entangled state can
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be detected. Furthermore, the method can be readily adapted
to a wide range of present-day experimental setups, since any
set of accessible local observables can be used to construct
a separability criterion. This flexibility also opens up the
possibility to detect hybrid entanglement between discrete
and continuous variables, whose prospects as a platform for
implementations of quantum information is currently being
explored [30–32].

Specifically, we show that all separable quantum states of
N parties must satisfy the following inequality:

FM̂

[
ρ̂sep,

N∑
i=1

Âi

]
� 4

N∑
i=1

Var(Âi)ρ̂sep . (1)

Here Âi is a local observable for the ith party, Var(Â)ρ̂ =
〈Â2〉ρ̂ − 〈Â〉2

ρ̂ denotes the variance, and the quantum ex-

pectation values are given as 〈Â〉ρ̂ = Tr[Âρ̂]. The quantity
appearing on the left-hand side of Eq. (1) is the Fisher in-
formation [28,33]. It quantifies how sensitively changes of the
parameter θ are detected when the initial state ρ̂ is transformed
by the unitary evolution ρ̂(θ ) = e−i

∑
j Âj θ ρ̂ei

∑
j Âj θ and then

observed by measurements of the observable M̂ [28,34–37].
It is furthermore experimentally accessible [14], see also
[17,38,39], without any knowledge of the full quantum
state [40–42]. The bound (1) holds for arbitrary observables
M̂ , rendering the criterion robust against imperfect implemen-
tations of the measurement [40].

Since Eq. (1) represents a necessary criterion for separa-
bility, its violation is a sufficient criterion for entanglement.
The appearance of state-dependent variances on the right-hand
side makes this criterion highly versatile since it holds for
arbitrary local observables Âi , independent of the Hilbert-
space structure.

Equation (1) expresses the trade-off for separable states
ρ̂sep between the state’s sensitivity quantified by the Fisher
information and the variances of the local operators Âi

generating the transformation. If quantum correlations be-
tween the parties are present, then the bound (1) can be
violated. In fact, for arbitrary quantum states ρ̂, a different
bound, FM̂ [ρ̂,

∑N
i=1 Âi] � 4

∑
i,j Cov(Âi,Âj )ρ̂ holds, where

Cov(Â,B̂)ρ̂ = 〈ÂB̂ + B̂Â〉ρ̂/2 − 〈Â〉ρ̂〈B̂〉ρ̂ . The difference
between this bound and Eq. (1) lies entirely in the absence
of covariances between the subsystems (i �= j ) in (1).
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To demonstrate Eq. (1) we first notice that the Fisher
information can be maximized over all possible observ-
ables M̂ [43]: We have FM̂ � FQ, where FQ[ρ̂,

∑N
i=1 Âi] =

maxM̂ FM̂ [ρ̂,
∑N

i=1 Âi] is a saturable bound (i.e., optimal
observables can be constructed) called the quantum Fisher
information [28]. For an arbitrary separable state ρ̂sep =∑

γ pγ |ϕγ 〉〈ϕγ |, where |ϕγ 〉 = |ϕγ

1 〉 ⊗ · · · ⊗ |ϕγ

N 〉 is a product
state, pγ > 0,

∑
γ pγ = 1, and |ϕγ

i 〉 is the state of the ith
party, the chain of inequalities

FQ

[
ρ̂sep,

N∑
i=1

Âi

]
�

∑
γ

pγ FQ

[
|ϕγ 〉,

N∑
i=1

Âi

]
(2a)

= 4
∑

γ

pγ Var

(
N∑

i=1

Âi

)
|ϕγ 〉

(2b)

= 4
∑

γ

pγ

N∑
i=1

Var(Âi)|ϕγ

i 〉 (2c)

� 4
N∑

i=1

Var(Âi)ρ̂sep (2d)

holds. In Eq. (2a) we used the convexity of the quan-
tum Fisher information [37] and, in Eq. (2b), the gen-
eral expression FQ[|ψ〉,M̂] = 4(�M̂)2, valid for pure
states |ψ〉 and Hermitian operators M̂ [43]. We have
Var(

∑N
i=1 Âi)ρ̂ = ∑N

i,j=1 Cov(Âi,Âj )ρ̂ and Cov(Â,Â)ρ̂ =
Var(Â)ρ̂ . Equation (2c) is then obtained by noticing
that Cov(Âi,Âj )|ϕγ

1 〉⊗···⊗|ϕγ

N 〉 = 0 when i �= j . Therefore,

Var(
∑N

i=1 Âi)|ϕγ

1 〉⊗···⊗|ϕγ

N 〉 = ∑N
i=1 Var(Âi)|ϕγ

i 〉. Finally, the last
inequality (2d) follows from the concavity of the variance (see
also Ref. [44]).

In the above derivation, no assumption is made about
the local operators Âi . In fact, any choice of Âi leads
to a sufficient criterion for entanglement. However, certain
choices of operators may be better suited than others to detect
the entanglement of a given state ρ̂. In order to construct
the strongest possible criterion, we decompose each of the
individual Âi in terms of an accessible set of operators
Âi = (Â(1)

i ,Â
(2)
i , . . . )T in the Hilbert space Hi of the ith

party (i = 1, . . . ,N ). Thus, the local operators Âi are replaced
by the expressions

∑
m=1 c

(m)
i Â

(m)
i = ci · Âi , where the ci =

(c(1)
i ,c

(2)
i , . . . ) are vectors of coefficients. In this case, the full

generator of the unitary transformation Â(c) = ∑N
i=1 ci · Âi

is characterized by the combined vector c = (c1, . . . ,cN )T .
According to Eq. (1), the quantity

W [ρ̂,Â(c)] = FQ[ρ̂,Â(c)] − 4
N∑

i=1

Var(ci · Âi)ρ̂ (3)

must be nonpositive for arbitrary choices of c whenever the
state ρ̂ is separable. We can now maximize W [ρ̂,Â(c)] by
variation of c to obtain an optimized entanglement witness for
the state ρ̂, given the sets of available operators contained in
A = {Â1, . . . ,ÂN }.

To this aim let us first express the quantum Fisher informa-
tion in matrix form as FQ[ρ̂,Â(c)] = cT QAρ̂ c, where the spec-

tral decomposition ρ̂ = ∑
k pk|�k〉〈�k| defines (QAρ̂ )mn

ij =
2
∑

k,l
(pk−pl )2

pk+pl
〈�k|Â(m)

i |�l〉〈�l|Â(n)
j |�k〉 element-wise and the

sum extends over all pairs with pk + pl �= 0. The indices i

and j refer to different parties (i.e., different Hilbert spaces),
while the indices m and n label the respective local sets of
observables within each Hilbert space. Similarly, for the list
of operatorsA, we can express the elements of the covariance
matrix of ρ̂ as (	Aρ̂ )mn

ij = Cov(Â(m)
i ,Â

(m)
j )ρ̂ . Note that only the

block-diagonal elements (i = j ) of this matrix appear on the
right-hand side of Eq. (1). If the above covariance matrix
is evaluated after replacing ρ̂ with 
(ρ̂) = ρ̂1 ⊗ · · · ⊗ ρ̂N

where ρ̂i is the reduced density operator, obtained from ρ̂

by tracing over all parties except the ith one, all of those
interparty correlations (i �= j ) are removed, while the local
terms (i = j ) remain unchanged. Hence, we arrive at the
following expression for the local variances,

∑N
i=1 Var(ci ·

Âi)ρ̂ = cT 	A
(ρ̂)c. Combining this with the expression for
the quantum Fisher matrix, the separability criterion reads
W [ρ̂,Â(c)] = cT (QAρ̂ − 4	A
(ρ̂))c � 0. Since this condition
must be satisfied for arbitrary vectors c, it can be formulated
independently of c, as

QAρ̂ − 4	A
(ρ̂) � 0. (4)

An entanglement witness is therefore found when the matrix
QAρ̂ − 4	A
(ρ̂) has at least one positive eigenvalue. The crite-
rion (4) can be equivalently stated as λmax(QAρ̂ − 4	A
(ρ̂)) �
0, where λmax(M) denotes the largest eigenvalue of the
matrix M .

For pure states ρ̂ = |�〉〈�|, the quantum Fisher matrix
coincides, up to a factor of 4, with the covariance matrix,
i.e., QA|�〉 = 4	A|�〉 [43]. Thus, according to Eq. (4), every pure
separable state must satisfy the condition

	A|�〉 − 	A
(|�〉) � 0. (5)

Conversely, if Eq. (5) is satisfied, then Cov(Â(m)
i ,Â

(n)
j )|�〉 = 0,

or equivalently 〈Â(m)
i Â

(n)
j 〉|�〉 = 〈Â(m)

i 〉|�〉〈Â(n)
j 〉|�〉 for all i �= j

and all n,m [45]. If, additionally, each local set Â
(1)
i ,Â

(2)
i , . . .

forms a complete set of observables, able to span the entire
Hilbert spaceHi , for i = 1, . . . ,N , then this statement is only
compatible with a product state, |�〉 = |ϕ1〉 ⊗ · · · ⊗ |ϕN 〉.
Hence, for each entangled pure state, a set of operatorsA can
be found, such that the criterion (5) is violated. This means, the
criterion (5) becomes necessary and sufficient for separability
of pure states, while Eq. (4) is always a necessary criterion for
arbitrary states.

Application to continuous-variable entanglement. Let us
first illustrate the applicability of the separability criterion
derived here for the detection of mode entanglement with
continuous variables. A natural but arbitrary choice for the
local observables Âi are the phase-space operators (x̂i ,p̂i)T ,
such that the list of accessible observables A is given by
R = {x̂1,p̂1,x̂2,p̂2, . . . ,x̂N ,p̂N } (we henceforth drop the vector
notation for clarity). Gaussian states are fully characterized in
terms of their covariance matrix 	Rρ̂ [1], and their bipartite
entanglement is efficiently captured by separability criteria
based on Heisenberg’s uncertainty relation [19,21]. The
strongest criterion of this kind follows from the sharpest
uncertainty relation, which is formulated in terms of entropic
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FIG. 1. Upper panel: Detection of continuous-variable entangle-
ment in the state (6) as a function of s for α = 1. This state is
undetected by the entropic separability criterion [22]. For all values
of s, a violation of Eq. (1) is observed when choosing Â1 = p̂1 and
Â2 = −p̂2, as seen from the positivity of W [ρ̂s ,(p̂1 − p̂2)/

√
2] (green

dashed line). For values of s � 0.3, an even stronger entanglement
signature is observed for Â1 = x̂1 and Â2 = x̂2, as shown by
W [ρ̂s ,(x̂1 + x̂2)/

√
2] (blue dotted) and highlighted in the inset.

The optimized witness λmax(QRρ̂s
− 4	R
(ρ̂s )) (red dots) confirms that,

within the operators in R, these choices of observables indeed yield
the strongest possible violations of Eq. (1) for this state. Lower panel:
With increasing α, the optimized witness gets stronger when s � 0.3
(position correlations dominate) and weaker for s � 0.3 (momentum
correlations dominate).

quantities [22]. To test the limits of these criteria, they are
applied to non-Gaussian states, such as a partially dephased
superposition state of the form

ρ̂s = N (α,s)[|α,α〉〈α,α| + | − α, − α〉〈−α, − α|
+(1 − s)(| − α, − α〉〈α,α| + |α,α〉〈−α, − α|)], (6)

where |α〉 is a coherent state, 0 � s � 1 is a parameter, and
N (α,s) a normalization constant. The entropic separability
criterion, and with it all other uncertainty-based criteria
[19–21], are unable to detect the entanglement of ρ̂s for small
values of α [22]. The criterion (4)—using only the local
operators contained in R—detects the entanglement of the
state ρ̂s for all values of s and α, except at s = 1 where the
state is separable. This is illustrated in Fig. 1 for values of α

in the undetected region of the entropic criterion.
The position and momentum observables contained in

R represent one of many possible sets of local operators
that can be used to construct a separability criterion from
Eq. (1) in a continuous-variable system. Another choice of
local observables is given by the local number operators
n̂i . In quantum optical experiments, the local number fluc-
tuations are accessible in a variety of platforms [12,46,47],
and comparison with the quantum state’s sensitivity to a
collective phase shift exp(iθN̂ ), generated by N̂ = ∑N

i=1 n̂i

leads to the experimentally convenient separability criterion
FQ[ρ̂sep,N̂ ] � 4

∑N
i=1 Var(n̂i)ρ̂sep .

The various criteria obtained from Eq. (1) for differ-
ent choices of local operators may also be combined to
generate bounds whose verification does not require direct
measurements of the local variances. Consider, for example,
a continuous-variable system of N parties (modes), for which

FQ[ρ̂sep,X̂] and FQ[ρ̂sep,P̂ ] have been independently probed,
with P̂ = ∑N

i=1 p̂i and X̂ = ∑N
i=1 x̂i . The sum of the two

corresponding inequalities (1) then yields the criterion

FQ[ρ̂sep,X̂] + FQ[ρ̂sep,P̂ ] � 4
N∑

i=1

[Var(x̂i) + Var(p̂i)]ρ̂sep

� 4
N∑

i=1

(〈
x̂2

i

〉
ρ̂sep

+ 〈
p̂2

i

〉
ρ̂sep

)

= 4
N∑

i=1

(2ni + 1) = 4(2n + N ),

(7)

where ni = 〈n̂i〉ρ̂ is the average particle number in mode i with
n̂i = â

†
i âi and âj = (x̂j + ip̂j )/

√
2. The second inequality

is saturated if and only if 〈x̂i〉ρ̂sep = 〈p̂i〉ρ̂sep = 0, for all
i = 1, . . . ,N . If the number of modes N and the total
number of particles n = ∑N

i=1 ni are known from independent
measurements, Eq. (7) can be used as an entanglement witness
without measurement of the local variances.

Application to discrete-variable entanglement. From
Eq. (1) it is possible to derive state-independent upper bounds,
using 4Var(Â)ρ̂ � [λmax(Â) − λmin(Â)]2, which holds for all
ρ̂ and λmin / max(Â) denote minimal and maximal eigenvalues
of Â. This yields the state-independent separability bound

FQ[ρ̂sep,Â(c)] �
N∑

i=1

[λmax(ci · Âi) − λmin(ci · Âi)]
2. (8)

In the special case of N qubit systems, we recover the shot-
noise bound FQ[ρ̂sep,

∑N
i=1 ci · σ̂ i/2] � N , whose violation

identifies entangled states of N qubits that are useful for
sub-shot-noise interferometry [27] when ci = n ∈ R3 is a unit
vector (leading to |c|2 = N ). Here, σ̂ i = (σ̂ (x)

i ,σ̂
(y)
i ,σ̂

(z)
i ) is the

vector of Pauli matrices for the ith qubit. Certain entangled
N -qubit states, however, cannot be detected by the shot-noise
criterion, even if the state is further optimized by means of
local unitary manipulations [29], i.e., by optimization of the ci

under the normalization constraints |ci |2 = 1. More generally,
without respecting these constraints, we obtain the separability
criterion λmax(QS

ρ̂sep
) � 1, where S = {σ̂ 1/2, . . . ,σ̂N/2}. Yet,

the entanglement of states of the form

|�q〉 = √
q|0〉⊗N +

√
1 − qeiϕ|1〉⊗N (9)

will be overlooked by any of these state-independent
bounds when q � (1 − √

(N − 1)/N )/2 or q � (1 +√
(N − 1)/N)/2 and N � 3 [29]. In contrast, the stronger

state-dependent criterion (4), which for pure states reduces
to (5), is necessary and sufficient for all pure states, since
the Pauli matrices span a complete set of qubit observables—
together with the identity operator which commutes with all
operators and can therefore be omitted. Figure 2 shows that,
indeed, the stronger criterion (4) (red continuous line) detects
the entanglement of |�q〉 for arbitrary values of 0 < q < 1,
while the optimized quantum Fisher information (blue dashed
line) does not overcome the shot-noise bound (gray dotted line)
in the intervals mentioned above (gray shaded areas). Choosing
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FIG. 2. Detection of qubit entanglement in the state Eq. (9) as a
function of q and for N = 3. This state is undetected by the shot-
noise limit in the gray shaded area: the optimized quantum Fisher
information (blue dashed line) does not exceed the separable limit of
1, which corresponds to the shot-noise limit of FQ = N (gray dashed
line). For N = 3 the undetected region is the largest. In contrast, the
red solid line shows λmax(QS

|�q 〉 − 4	S

(|�q 〉)), which is positive and

thus violates the separability criterion (5) for all values of 0 < q < 1.
For q = 0,1 the state is separable.

an orientation along the z axis, i.e., ci = (0,0,1)T for all
i = 1, . . . ,N , yields the largest positive values of the witness
W [Eq. (3)], for all parameters q, while it maximizes the
quantum Fisher information only outside of the gray-shaded
parameter regime.

Entanglement depth, hybrid variables, and experiments.
The state-independent bounds (8) can be generalized to
distinguish among the hierarchical classes of k-partite entan-
glement [48]. Consider an N -mode state which contains at
most k-partite entanglement, i.e., ρ̂k-prod = ∑

γ pγ |ϕγ

1 〉〈ϕγ

1 | ⊗
|ϕγ

2 〉〈ϕγ

2 | ⊗ · · · , where each of the states |ϕγ

l 〉 describes N
(γ )
l �

k modes with
∑

l N
(γ )
l = N for all γ . An upper bound for the

quantum Fisher information is given by

FQ[ρ̂k-prod,Â(c)] � �2
max(sk2 + r2), (10)

where s = �N/k	 and r = N − sk, and the maximum spectral
span of all local operators is denoted by �max = maxi{λmax(ci ·
Âi) − λmin(ci · Âi)}. The above result is obtained following
Refs. [48] together with λmax(

∑
i Âi) �

∑
i λmax(Âi) and

λmin(
∑

i Âi) �
∑

i λmin(Âi), which is ensured by Weyl’s
inequality [49], and thereby generalizes the N -qubit result of
Refs. [48] to the case of unequal, arbitrary subsystems. Hence,
whenever the spectrum of the local operators is bounded,
Eq. (10) provides a criterion not only to test if any entanglement
is present, but also how many of the N modes are entangled.
Besides finite-dimensional systems [37,48], there may also
be applications to continuous variables if further knowledge
about the system limits the spectral range �max. For example,
if a gas is contained in a trap of extension L, the spectral
span of the position operator cannot exceed L. In such a
system, any observation of FQ[ρ̂,X̂] > L2(sk2 + r2) indicates
entanglement of k modes.

Entanglement detection protocols have traditionally been
developed for homogeneous systems of either discrete or
continuous variables [1,2]. Nevertheless, hybrid correlations
between the two are generated in many different experiments

[30,31,50–53], and their potential for quantum information
processing is recognized [32]. One of the advantages of the
separability criterion (1) is its independence of the Hilbert
space structure and dimension, allowing for the possibility of
witnessing hybrid entanglement. As a simple example, con-
sider the composition of a two-level atom, coupled to a single
harmonic oscillator mode [50,51]. Correlated states such as
|φn〉 = (|0,n〉 + |1,n + 1〉)/√2, where |n〉 denotes a Fock state
of n excitations, are produced in ion-trap experiments [52]. A
suitably designed hybrid criterion such as FQ[ρ̂sep,σ̂

(x) + x̂] �
4Var(σ̂ (x))ρ̂sep + 4Var(x̂)ρ̂sep is able to reveal this entanglement.
Recall from Eq. (5) that for pure states, separability requires
the absence of interparty covariances. The entanglement of
the state |φn〉 can thus be attributed to the coherences that
lead to 〈σ (x)x̂〉|φn〉 �= 〈σ (x)〉|φn〉〈x̂〉|φn〉, and ultimately cause the
violation of the separability criterion above.

Before we conclude, let us briefly discuss the experimental
implementation of our proposed entanglement criteria. In
order to measure the witness (3), two quantities need to be
obtained. On the one hand, the variances of the local operators
ci · Âi need to be measured. Single-site addressing is not
needed to achieve this. Instead, only the much less demanding
resolved imaging of the individual constituents is required.
Such measurements are possible in current experiments
with, e.g., multimode photonic states [13,30,31,54], trapped
ions [47,55], as well as with cold atoms distinguished by
multiwell potentials or internal states [12,14,15,56], and under
quantum-gas microscopes [46,57–61]. On the other hand,
the Fisher information can be extracted, e.g., following the
method of Ref. [14] by determining the impact of a collective
unitary operation with no need for local measurements (see
also [17,39–42]). Measurements of the Fisher information can
be completely avoided by using the lower bound FQ[ρ̂,Â] �
|〈[Â,B̂]〉ρ̂ |2/Var(B̂)ρ̂ , which holds for arbitrary operators
Â and B̂ [37]. Together with the separability condition
W [ρ̂,Â(c)] � 0 from Eq. (3), we obtain the simple criterion,

Var[Â(c)]
(ρ̂)Var(B̂)ρ̂ � |〈[Â(c),B̂]〉ρ̂ |2
4

, (11)

whose violation indicates entanglement of ρ̂.
Conclusions. We have introduced a family of entangle-

ment criteria that are applicable to multipartite systems of
discrete and/or continuous variables. The criteria are based
on a comparison of the Fisher information, which expresses
the sensitivity of the quantum state to a collective unitary
transformation, with the sum of variances of the local operators
that generate this transformation. We have illustrated the
applicability with examples of spins and continuous variables,
showing in both cases that our criteria are able to detect the
entanglement of states that remain undetected with commonly
employed methods that defined the state of the art throughout
the past years. In particular, we have constructed entanglement
criteria that are necessary and sufficient for all pure states.
Since any set of accessible local operators can be used
to generate a sufficient entanglement criterion, the strategy
presented here allows for versatile adaptations to a variety
of experiments, and can be readily implemented within the
current technology.
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[2] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474,
1 (2009).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2010).

[5] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[6] F. Mintert, A. R. R. Carvalho, M. Kuś, and A. Buchleitner,
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