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Enhanced high-order-harmonic generation and wave mixing via two-color multiphoton excitation
of atoms and molecules
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We consider harmonics generation and wave mixing by two-color multiphoton resonant excitation of three-
level atoms and molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor
harmonics generation is investigated. The obtained analytical results on the basis of a generalized rotating wave
approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atoms
and homonuclear diatomic molecular ions show that one can achieve efficient generation of moderately high
multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.

DOI: 10.1103/PhysRevA.94.013856

I. INTRODUCTION

Harmonics generation and wave mixing are one of the
basic phenomena of nonlinear optics which have been
extensively studied both theoretically and experimentally
with the advent of lasers [1]. Recent advances in laser
technologies has provided ultrahigh intensities for supershort
laser pulses that make a nonperturbative regime of harmonic
generation achievable, which significantly extends the
spectral region accessible by lasers, in particular, for short
wavelengths towards VUV/XUV or even x-ray radiation
[2–6]. Such short wavelength radiation is of great interest due
to numerous significant applications, e.g., in quantum control,
spectroscopy, sensing, and imaging etc.

Depending on the laser-atom interaction parameters, har-
monic generation may arise from bound-bound [7–11] and
bound-free-bound transitions via the continuum spectrum
[12,13]. The bound-bound mechanism of harmonic generation
without ionization is more efficient for generation of mod-
erately high harmonics [8,9]. For this mechanism resonant
interaction is of importance. Besides pure theoretical interest
as a simple model, the resonant interaction regime exhibits
significant enhancement of frequency conversion efficiencies
[8,9]. However, to access highly excited states of atoms
and molecules by optical lasers, the multiphoton excitation
problem arises. The required resonantly driven multiphoton
transition is effective for the systems with the mean dipole
moments in the stationary states, or three-level atomic systems
with two states close enough to each other and a nonzero
transition dipole moment between them [14]. As a candidate,
we have studied the hydrogenlike atomic and ionic systems
where the atom has a mean dipole moment in the excited
stationary states, because of accidental degeneracy for the
orbital momentum [15,16]. Other interesting examples of
efficient direct multiphoton excitation are molecules with
permanent dipole moments [17], evenly charged molecular
ions at large internuclear distances [18], and artificial atoms
[19,20] realized in circuit quantum electrodynamics (QED)
setups [21].

In the work [16] we have shown that the multiphoton
resonant excitation of a three-level atomic and/or molecular
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system is efficient by the bichromatic laser fields. Hence,
having an efficient two-color multiphoton resonant excitation
scheme is of interest to consider multicolor harmonic gener-
ation and wave-mixing processes by an atomic or molecular
system under such circumstances when only bound states are
involved in the interaction process, which is the purpose of
the current paper. The presence of the second laser provides
additional flexibility for the implementation of multiphoton
resonance, expanding the spectrum of possible combinations.
Moreover, two-color excitation extends accessible scattering
frequencies with sum and difference components. In the
current paper, we employ an analytical approach for high-order
multiphoton resonant excitation of quantum systems which
has been previously developed by us [14,16]. An expression
for the time-dependent mean dipole moment describing the
coherent part of the scattering spectrum is obtained. The results
based on this expression are applied to hydrogen atoms and
evenly charged homonuclear diatomic molecular ions. The
main spectral characteristics of the considered process are in
good agreement with the results of the performed numerical
calculations. Estimations show that one can achieve enhanced
generation of moderately high harmonics and wave mixing via
multiphoton resonant excitation by appropriate laser pulses.
Our interest is also motivated by the advent of circuit QED
setups [21] where one can realize artificial atoms of desired
configuration. Thus, the obtained results may also be of interest
for artificial atoms, and the presented results can be scaled
to other systems and diverse domains of the electromagnetic
spectrum.

The paper is organized as follows. In Sec. II, we present
the analytical model and derive the coherent contribution
to the multicolor harmonic spectra. In Sec. III, we present
some results of numerical calculations of the considered issue
without a multiphoton resonant approximation and compare
the obtained spectra with the analytical results. Here, we
consider concrete systems, such as a hydrogenlike atom and an
evenly charged molecular ion. Finally, conclusions are given
in Sec. IV.

II. BASIC MODEL AND ANALYTICAL ANSATZ

We consider a three-level quantum system interacting with
the two laser fields of frequencies ω1 and ω2 as shown in
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FIG. 1. Three-level atomic structures for (a) V type with mean
dipole moments in the excited states and (b) � configuration with
the coupling transition between the excited states. The considered
configurations are unitary equivalent to each other.

Fig. 1(a). It is assumed that the system is in a V configuration
in which a pair of upper levels |2〉 and |3〉 with permanent
dipole moments are coupled to a lower level |1〉. Another
possible three-level scheme is the � configuration shown in
Fig. 1(b). In this case the lower level |1〉 is coupled to an upper
level |2〉 which has a strong dipole coupling to an adjacent
level |3〉. If the separation of the energy levels of the excited
states is smaller than laser-atom interaction energy, then by
a unitary transformation [14] the problem can be reduced
to the V configuration Fig. 1(a). As an illustrative example
a hydrogenlike atom considered in parabolic [22] and more
conventional spherical coordinates may serve. In parabolic
coordinates, the atom has a mean dipole moment in the
excited states, while in the second case because of the random
degeneracy of the orbital moment there is a dipole coupling
between the degenerate states, but the mean dipole moment is
zero for the stationary states. The inverse with respect to the
V configuration is the polar � configuration, which can be
realized for artificial atoms [19]. Hence, as a general model
we will consider the scheme of the V configuration.

The Hamiltonian for the system within the semiclassical
dipole approximation is given in the form

Ĥ = ε1|1〉〈1| + (ε2 + V22)|2〉〈2| + (ε3 + V33)|3〉〈3|
+ (V12|1〉〈2| + V13|1〉〈3| + H.c.), (1)

where, ε1, ε2, and ε3 are the energies of the stationary states
|1〉, |2〉, and |3〉, respectively, and

Vην = −dην[E1 cos(ω1t + ϕ) + E2 cos(ω2t)] (2)

is the interaction part of the Hamiltonian with a real matrix
element of the electric dipole moment projection dην = dην ·ê,
and E1,2 are slowly varying amplitudes of linearly polarized
laser fields, with unit polarization vector ê and constant relative
phase ϕ. The diagonal terms in (2) describe the interaction
due to the mean dipole moments and are crucial for effective
multiphoton coupling.

We consider the Schrödinger equation

i
∂|
(t)〉

∂t
= Ĥ |
(t)〉, (3)

with Hamiltonian (1) at the resonance |δ2,3| � ω1,2 for
efficient multiphoton coupling. The resonance detunings are
given by relations

δ2,3 = ε1 − ε2,3 + n1ω1 + n2ω2 (4)

for (n1,n2) pair of photon numbers. Here and below, unless oth-
erwise stated, atomic units (� = e = me = 1) are employed.

Our method of solving the Schrödinger equation with
Hamiltonian (1) has been described in detail in [16] and will
be excluded here. The time-dependent wave function can be
expressed as

|
(t)〉 = (a1(t) + α1(t))e−iε1t |1〉
+ (a2(t) + α2(t))e−i(ε2t+

∫ t

0 V22dt)|2〉
+ (a3(t) + α3(t))e−i(ε3t+

∫ t

0 V33dt)|3〉, (5)

where ai(t) are the time-averaged probability amplitudes and
αi(t) are rapidly changing functions on the scale of waves’
periods. Depending on the ratio of frequencies ω1/ω2 the
resonant condition (4) can hold for a single pair of photon
numbers, normal resonance, or can also be satisfied by diverse
pairs of photons numbers (in principle infinity), degenerate
resonance. Let us first consider the case of normal resonance.
Hence, if the resonant condition holds for a pair (n,m) then
assuming the smooth turn-on of the pump waves, the relation
between rapidly oscillating and slow oscillating parts of the
probability amplitudes can be written

α1(t) = ā2

∞∑
s1,s2 = −∞,

(s1,s2) �= (0,0)

ζ12(s1,s2)ei(s1ω1+s2ω2)t

+ ā3

∞∑
s1,s2 = −∞,

(s1,s2) �= (0,0)

ζ13(s1,s2)ei(s1ω1+s2ω2)t , (6)

α2(t) = −ā1

∞∑
s1,s2 = −∞,

(s1,s2) �= (0,0)

ζ ∗
12(s1,s2)e−i(s1ω1+s2ω2)t , (7)

α3(t) = −ā1

∞∑
s1,s2 = −∞,

(s1,s2) �= (0,0)

ζ ∗
13(s1,s2)e−i(s1ω1+s2ω2)t , (8)

where

ζ12(s1,s2) = d12

d22

(s1 + n)ω1 + (s2 + m)ω2

s1ω1 + s2ω2

× Js1+n

(
d22E1

ω1

)
Js2+m

(
d22E2

ω2

)
ei(s1+n)ϕ, (9)

and

ζ13(s1,s2) = d13

d33

(s1 + n)ω1 + (s2 + m)ω2

s1ω1 + s2ω2

× Js1+n

(
d33E1

ω1

)
Js2+m

(
d33E2

ω2

)
ei(s1+n)ϕ. (10)

In deriving these equations we have applied well-known
Jacobi-Anger expansion via Bessel functions:

eiZ sin α =
∞∑

s=−∞
Js(Z)eisα. (11)

Now let us proceed to the case of degenerate resonance.
Particularly if ω1/ω2 = k, where k is an integer number, then
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there are many channels of resonance transitions and one
should take into account all possible transitions and the relation

between rapidly oscillating and slow oscillating parts of the
probability amplitudes can be written

α1(t) =
∞∑

s1,s2 = −∞,

s2 �= 0

[
ā2

d12

d22
Js1

(
d22E1

kω2

)
Js2+n−ks1

(
d22E2

ω2

)
+ ā3

d13

d33
Js1

(
d33E1

kω2

)
Js2+n−ks1

(
d33E2

ω2

)]
s2 + n

s2
eis1ϕeis2ω2t , (12)

α2(t) = −ā1
d12

d22

∞∑
s1,s2 = −∞,

s2 �= 0

Js1

(
d22E1

kω2

)
Js2+n−ks1

(
d22E2

ω2

)
s2 + n

s2
e−is1ϕe−is2ω2t , (13)

α3(t) = −ā1
d13

d33

∞∑
s1,s2 = −∞,

s2 �= 0

Js1

(
d33E1

kω2

)
Js2+n−ks1

(
d33E2

ω2

)
s2 + n

s2
e−is1ϕe−is2ω2t , (14)

where n is given by resonance condition

ε1 − ε2,3 + nω2 � 0. (15)

In the Schrödinger picture the coherent part of the dipole spectrum is expressed as follows [23]:

Sc(ω) =
∣∣∣∣
∫ ∞

−∞
dte−iωt 〈d(t)〉

∣∣∣∣2

, (16)

where

〈d(t)〉 = 〈
(t)|ê · d̂(0)|
(t)〉 (17)

is the time-dependent expectation value of dipole operator. With the help of wave function (5) the expectation value of the dipole
operator (17) can be written as

〈d(t)〉 = d22

2
|a2(t) + α2(t)|2 + d33

2
|a3(t) + α3(t)|2 + d12[a∗

1(t) + α∗
1 (t)][a2(t) + α2(t)]

×
∞∑

s1,s2=−∞
Js1

(
d22E1

ω1

)
Js2

(
d22E2

ω2

)
ei(s1ω1+s2ω2)t ei(ε1−ε2)t+is1ϕ + d13[a∗

1(t) + α∗
1 (t)][a3(t) + α3(t)]

×
∞∑

s1,s2=−∞
Js1

(
d33E1

ω1

)
Js2

(
d33E2

ω2

)
ei(s1ω1+s2ω2)t ei(ε1−ε3)t+is1ϕ + c.c. (18)

Combining the solution for slow oscillating parts of the
probability amplitudes with (9), (10) and (18) one can calculate
analytically the expectation value of the dipole operator for an
arbitrary initial atomic state. The Fourier transform of 〈d(t)〉
gives the coherent part of the dipole spectrum. As is seen from
Eq. (18), in general, the spectrum contains radiation where
the number of photons involved at harmonics generation and
wave mixing from both waves, sph = |s1| + |s2|, can be odd
as well as even. However, depending on the symmetry, in
particular, in the presence of inversion symmetry and at the
smooth turn-on-off of the wave fields the terms corresponding
to even sph cancel each other. For generation of harmonics with
the even number of photons one should break the inversion
symmetry.

The solution for slowly oscillating parts of the probability
amplitudes analytically is very complicated, and in order
to reveal the physics of the multiphoton resonant excitation
process, let us consider systems with inversion symmetry
d12 = −d13 ≡ dtr and d22 = −d33 ≡ d. As is seen from (18),
for effective harmonic generation in certain resonance con-
ditions one should provide considerable population transfer
between the atomic states |1〉 and upper levels |2〉 and |3〉.

Dynamic Stark shifts can take the states off resonance, so
appropriate detunings for compensation are chosen.

Let us first consider the case of normal resonance. For the
system initially situated in the ground state, the solution for
slowly oscillating parts of the probability amplitudes is [16]

a1(t) = e−i2�t sin(�Rt), (19)

a2(t) = (−1)n+m

i
√

2
e−i2�t sin(�Rt), (20)

a3(t) = 1

i
√

2
e−i2�t sin(�Rt), (21)

where � describes dynamic Stark shifts

� ≡
(

dtr

d

)2 ∞∑
s1,s2 = −∞,

(s1,s2) �= (n,m)

(s1ω1 + s2ω2)2

(s1 − n)ω1 + (s2 − m)ω2

× J 2
s1

(
dE1

ω1

)
J 2

s2

(
dE2

ω2

)
(22)
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and �R expresses the frequency of Rabi oscillations

�R ≡
∣∣∣∣2√

2(nω1 + mω2)
dtr

d
Jn

(
dE1

ω1

)
Jm

(
dE2

ω2

)∣∣∣∣. (23)

Replacing the probability amplitudes in (18) by the corre-
sponding expressions (19)–(21) and taking into account the
relations (6)–(8) one can derive the final analytical expression
for 〈d(t)〉. As is seen from Eq. (22), the dynamic Stark shift
is proportional to the ratio d2

tr /d
2, while the multiphoton cou-

pling is proportional to dtr/d. Since large dynamic Stark shifts
are detrimental for maintenance of considerable population
transfer, here we consider systems with |dtr/d| � 1. Taking
into account the smallness of the parameter |dtr/d|, from (18)
at the first approximation we derive the following compact
analytic formula:

〈d(t)〉 =
∞∑

s1,s2 = −∞,

(s1,s2) �= (0,0)

Ds1s2 sin[(s1ω1 + s2ω2)t + s1ϕ], (24)

where

Ds1s2 = dtr√
2

sin(�Rt)
nω1 + mω2

s1ω1 + s2ω2
[1 − (−1)s1+s2 ]

× Js1+n

(
dE1

ω1

)
Js2+m

(
dE2

ω2

)
. (25)

As we can see from (24), (25), the spectrum consists of
doublets s1ω1 + s2ω2 ± �R . At that only harmonics with an
odd sum of harmonic numbers s1 + s2 exist, as it was expected
because of inversion symmetry of the considered problem.

Now let us consider the degenerate resonance. Particularly
if ω1/ω2 = k, where k is odd, the dipole expectation value can
be obtained from Eqs. (12)–(14), (18) and is given as

〈d(t)〉 = dtrn√
2

∞∑
s1,s2 = −∞,

s2 �= 0

Js2+n−ks1

(
dE2

ω2

)
Js1

(
dE1

kω2

)

× 1 − (−1)s2

s2
sin(�′

Rt) sin(s2ω2t + s1ϕ), (26)

where the Rabi frequency is given as

�′
R ≡

∣∣∣∣2√
2
dtr

d
nω2

∑
s

Jn−ks

(
dE2

ω2

)
Js

(
dE1

kω2

)∣∣∣∣. (27)

The spectrum is noticeably different for even k. In
particular, for bichromatic waves with frequencies 2ω and
ω, according to the above-mentioned symmetry with odd
number of photons sph = |s1| + |s2| one can generate also even
harmonics of the main frequency and tunable low-frequency
radiation (the terms s2 = −2s1). The dipole spectrum also
contains six hyper-Raman lines per harmonic. The dipole
moment expectation value in this case is expressed by a very
bulky formula and therefore will not be given here.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present numerical calculations for the
hydrogen atom and homonuclear diatomic molecular ion
N4+

2 [18] with the specific parameters of available laboratory
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FIG. 2. The logarithm of the coherent part of the spectrum SC(ω)
at four-photon two-color resonance (n = 2,m = 2) of the hydrogen
atom with E1 = E2 = 0.02 a.u, ω1 = 0.13 a.u, and ω2 = 0.057 9 a.u.

The solid (red) line corresponds to numerical calculations; the dashed
(green) line corresponds to the approximate solution. (For better
visibility the latter has been slightly shifted to the right.)

lasers. The numerical results will be compared with exact
results of the dipole spectrum to estimate the accuracy and
applicability of a generalized rotating wave approximation.
The time-dependent Schrödinger equation for a three-level
model with Hamiltonian (1) is considered. The solution for the
probability amplitudes has been obtained using Runge-Kutta
algorithm, and the scattering spectrum is estimated by applying
the fast Fourier transform method [24]. For smooth turn-on of
the laser fields, we consider envelopes with hyperbolic tangent
tanh(t/τ ) temporal shape, where τ characterizes the turn-on
time and is chosen to be 40π/ω2. It is assumed that quantum
systems are initially in the ground state |1〉. For both systems
the main transitions fall in the vacuum ultraviolet range. Thus,
ε1 − ε2,3 � 0.375 atomic units (a.u.) and � 0.683 8 a.u. for the
hydrogen atom and ion N4+

2 , respectively. This is a spectral
domain where strong coherent radiation is difficult to generate
and two or higher photon multicolor resonant excitation is of
interest.

Figure 2 displays the multicolor harmonic and wave-mixing
emission rate (coherent part) as a function of the ratio ω/ω2

(we assume ω2 < ω1 and ϕ = 0) at the four-photon two-color
resonant excitation of the hydrogen atom with XeF excimer
(351 nm, n = 2) and Ti:sapphire (780 nm, m = 2) laser
systems with E1 = E2 = 0.02 a.u. For the hydrogen atom
dtr = 0.526 7 a.u. and d = −3.0 a.u. Here and below, for the
chosen parameters the dynamic Stark shift is compensated.
The latter provides almost complete population transfer.
The solid (red) line corresponds to numerical calculations,
while the dashed (green) line corresponds to the approximate
expression (24). Note that the numerical and analytical calcu-
lations coincide with high accuracy, so for visual convenience
to distinguish these curves the spectrum corresponding to
analytical calculations (24) has been slightly shifted to the
right for Figs. 2–5.

Figure 3 displays the multicolor harmonic and wave-
mixing emission rate at the five-photon two-color resonant
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FIG. 3. The logarithm of the coherent part of the spectrum
SC(ω) at five-photon two-color resonance (n = 2,m = 3) of the
hydrogen atom with E1 = E2 = 0.02 a.u., ω1 = 0.093 5 a.u., and
ω2 = 0.063 a.u. The solid (red) line corresponds to numerical
calculations; the dashed (green) line corresponds to the approximate
solution.

excitation of the hydrogen atom with Ar+ (488 nm, n = 2)
and Ti:sapphire (724 nm, m = 3) laser systems with E1 =
E2 = 0.02 a.u.

In Fig. 4 we plot harmonic and wave-mixing emission
rate at the seven-photon two-color resonant excitation of a
N2

4+ molecular ion with XeF excimer (351 nm, n = 4) and
Ti:sapphire (820 nm, m = 3) laser systems with E1 = E2 =
0.07 a.u. For this system we take dtr = 0.353 6 a.u. and
d = 3.0 a.u.

For a degenerate case of resonance in Fig. 5 we plot
harmonic and wave-mixing emission rate at ω1 = 3ω2 with
ω2 = 0.053 71 a.u. (849 nm) at the waves’ electric fields
E1 = E2 = 0.02 a.u. For the case ω1 = 2ω2 the radiation
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FIG. 4. The logarithm of the coherent part of the spectrum
SC(ω) at seven-photon two-color resonance (n = 4,m = 3) of the
N2

4+ molecular ion with E1 = E2 = 0.07 a.u., ω1 = 0.13 a.u., and
ω2 = 0.055 62 a.u. The solid (red) line corresponds to numerical
calculations; the dashed (green) line corresponds to the approximate
solution.
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FIG. 5. The radiation spectrum at two-color resonant excitation of
the hydrogen atom with laser fields E1 = E2 = 0.02 a.u., ω1 = 3ω2,
and ω2 = 0.053 71 a.u.

spectrum contains even harmonics of the main frequency and
a tunable low-frequency part on Rabi frequencies. In Fig. 6 we
plot the low-frequency part of the radiation spectrum. Here,
the presented triplet which can be tuned by laser parameters
lies in the THz-IR region of the spectrum.

As is seen from these figures, in the coherent spectrum there
are harmonics of the individual waves as well as frequencies
with sum and/or difference components and its harmonics,
in accordance with the analytical ansatz (26). From Eq. (25)
it is clear that for effective harmonic generation one should
provide large dipole interaction energy dE1,2 � ω1,2, since
the Bessel function exponentially decreases with increasing
index at the given argument. The Bessel function Js(Z) at
large argument values reaches its maximum at s ∼ Z. Thus,
the cutoff frequency depends linearly on the amplitudes of the
laser fields.

Let us make some estimations for reasonable interaction
parameters. The average number of photons at the frequency
ω emitted at each laser’s shot of duration τ , the Rayleigh length
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FIG. 6. The low-frequency part of the radiation spectrum at two-
color resonant excitation of the hydrogen atom with laser fields E1 =
E2 = 0.025 a.u., ω1 = 2ω2, and ω2 = 0.062 67 a.u.
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LR on the atomic or molecular ensemble of density Na can be
estimated as [8]

Nω � (2π )2

�
Sc(ω)N2

a L3
Rτ.

The incident pulse duration is assumed to be 50 ps, the
Rayleigh length is taken to be LR = 1 mm, and for the emitter
density we assume Na � 5 × 1017 cm−3. For the setup of
Figs. 3 and 4 with the chosen parameters, the average number
of radiated photons at frequencies up to ω � 20ω2 per shot
is Nω ∼ 1012, which is 2 orders of magnitude larger than
what one expects to achieve with tunneling harmonics gener-
ation [12].

IV. SUMMARY

We have presented a theoretical treatment of the mul-
ticolor harmonics generation and wave mixing in a three-
level atomic-molecular system under two-color multiphoton
resonant excitation. The coherent part of the dipole spectrum
was investigated. With the help of an approximate analytical
expression for the dynamic wave function of a three-level
atom driven by intense laser fields, we obtained an analytical
expression for the time-dependent expectation value of the
dipole operator. Then the results obtained were applied to the
hydrogen atom and homonuclear diatomic molecular ion. The
spectrum shows harmonics of the individual waves as well
as frequencies with sum and/or difference components and
its harmonics. These peaks have quite large amplitudes. The

latter is the result of multiphoton resonant interaction of the
system with the driving bichromatic laser radiation due to
the mean dipole moment in the stationary states. The cutoff
frequency depends linearly on the amplitudes of laser fields.
The analytical calculations in the generalized rotating wave
approximation [14,16] allow an explanation of the obtained
spectrum. The numerical simulations are in good agreement
with the analytical results. As is seen from the obtained results,
harmonic generation in the two-color laser fields has several
advantages with respect to the single-color case [8,9]. The
presence of the second laser field makes the implementation
of efficient multiphoton resonant population transfer with the
existing lasers easier, as well as allows the generation of
radiation with the richer spectrum. In case of degeneration
with the bichromatic waves of frequencies 2ω and ω one can
generate low-frequency radiation on Rabi frequencies which
can be tuned by laser parameters to the terahertz region of
frequencies. Thus, the considered scheme may serve as a
promising method for efficient production of multicolor high
harmonics and widely tunable powerful terahertz radiation. It
should be noted that the obtained results can be applied to other
quantum systems in the diverse domains of the electromagnetic
spectrum.
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