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Origin of ellipticity of high-order harmonics generated by a two-color laser field
in the cross-polarized configuration
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Recently several techniques demonstrated the production of elliptically polarized high harmonics. One of these
techniques consists of the interaction in a noble gas of two-color laser beams having orthogonal linear polariza-
tions. Here we present the theoretical explanation of such a result observed in Lambert et al. [Nat. Commun.
6, 6167 (2015)]. Numerical calculations based on the nonperturbative light-atom interaction theory reproduce
well the experimental data. The degree of polarization is analyzed for different harmonic orders and found to be
high. With the help of a simplified theoretical model it is shown that the degree of harmonic ellipticity depends
mainly on the population of atomic state sublevels with different angular momentum projections.
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I. INTRODUCTION

High-order harmonic generation (HHG) in gases is a
well-known technique leading to the generation of coherent
ultraviolet to soft x-ray femtosecond pulses [1]. To overcome
its major limitation for applications, i.e., the weak number of
photons, a lot of methods have been developed, using different
media (gases [2], molecules [3], plasma plumes [4], and
mixtures of gases [5,6]) different optical geometries [7–9], and
different laser sources (single-color [10], two-color [11], three-
color [12], even five-color setups [13]). Another fundamental
limitation was, up to recent results, the restriction to linear
polarizations which prevents for instance the development of
a number of polarization spectroscopy methods, especially
based on dichroism. Indeed, the polarization of the harmonics
coincides with the polarization of the driving laser field. When
harmonics are produced by an elliptically polarized laser field,
they have nonzero ellipticity [14–16] but a weak number
of photons since the efficiency of the generating process
drops dramatically along with the degree of ellipticity [17,18].
In order to solve this issue, several techniques have been
proposed [19–30], but only a few of them have produced
elliptically polarized high harmonics with non-negligible
efficiency. The first method is based on the use of prealigned
molecules [31,32]. This approach requires, however, a com-
plex optical setup, and the measured ellipticity does not exceed
35% and only in the narrow part of the generated spectrum.
Alternatively, the linear polarization of harmonics can be
converted into circular polarization using a reflector phase
shifter [33]. This system, technically challenging, reduces
additionally the harmonic signal by one to two orders of
magnitude depending on the degree of circular polarization
required and is limited to photon energies up to about 70 eV.
Recently, three methods for producing intense and highly
elliptical harmonics have been demonstrated almost simul-
taneously [34–36]. The first scheme, presented previously in
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Ref. [37], is based on the use of two-color counter-rotating
elliptically polarized beams [34]. In this setup, both beams
are separated into two arms and recombined spatially and
temporally inside the gas medium, constituting a quite complex
setup. Yet, the advantages of this scheme are numerous:
The polarization of the generated harmonics is completely
controlled, circularly polarized harmonics can be generated,
and investigation of the behavior of spin angular momentum in
the HHG process is enabled [38,39]. In the second scheme, the
use of the below-threshold atomic resonances and continuum
resonances allows to produce efficient low-order quasicircu-
lar harmonics in an elliptically polarized single-color laser
field [35]. The apparent ellipticity achieved in that experiment
is quite high (up to 75%), although it is only an upper bound
for the ellipticity, not ruling out the presence of randomly
polarized radiation [35]. Also, such a high value of ellipticity
is only available at the resonance energies for gases with
complex structures. Third, the scheme in which is here focused
is presented in Ref. [36] and is based on a two-color laser field
in the cross-polarized configuration. It simply consists of a
linearly polarized fundamental radiation (ω) which generates
its second harmonic (2ω) by means of a β-barium borate
(BBO) crystal placed in the laser path. The polarization of
the second harmonic is also linear but orthogonal to the one
of the fundamental. As for the first scheme, a proof that the
generated radiation is polarized at least partially is brought by
the study of a typical polarization-sensitive phenomenon, such
as the x-ray magnetic circular dichroism.

Here is presented a detailed theoretical description of the
phenomena observed in Ref. [36], which helps to discover
the origin of the high elliptical harmonics in the case of the
orthogonally polarized waves. The theory describes the break
in the temporal symmetry appearing in the process of an atom
interacting with a two-color laser field and even predicts the
appearance of both even and odd high-order harmonics with a
high degree of ellipticity.

According to traditional studies, due to the temporal
symmetry: (1) the harmonics generated in a ω + 2ω field
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with components linearly and orthogonally polarized and both
with relatively weak intensity should be linearly polarized,
and (2) the polarization direction of odd harmonics should
coincide with the polarization direction of ω, and the po-
larization direction of even harmonics should coincide with
the polarization direction of 2ω [40]. This conclusion follows
from the perturbation theory analysis and was obtained for
the p-ground-state atom under strong assumptions: (i) only
the m = 0 (m—projection of the orbital quantum number)
sublevel of the ground state was taken into account as for
other sublevels of both ground and continuum states—as a
consequence the impact of all the other projections of the
orbital quantum number were neglected; (ii) the impact of
excited bound states on the HHG process was not taken into
account, and the whole analysis is valid when the ground state
is not preexcited. Otherwise saying the analysis presented in
Ref. [40] can be applied to a medium consisting of atoms
interacting with a sufficiently weak laser field. Indeed, a s

state has the orbital quantum number l = 0 and its projection
m = 0. The states with the other symmetries (p, d, f , etc.)
have more than one m. As short femtosecond laser pulses are
here considered and such pulses have broad energy spectra,
different m’s should be taken into account because the wave
functions corresponding to different m’s will make different
impacts on the atomic current as well as on the high harmonic
spectrum. In the experiments [36] considered here, neon (Ne)
atomic gas has been used. With the ground state of Ne being a
2p state, the impact of the different m’s in the atomic current
has been analyzed analytically. The result of this analysis,
which is valid to describe the atomic response to a weak
field [40], clearly provides the origin of the observed ellipticity.
To describe the features of the HHG at a moderate intensity
(which is used in the experiment [36]) one should use a more
advanced model of the atomic energy structure where both
discrete and continuum states are accounted. The results of
these numerical simulations, presented further in the paper,
are in excellent agreement with the results of experimental
measurements, which opens a way to the interpretation of
the rare gas interaction with multicomponent laser fields.
The degree of polarization of the generated radiation is also
discussed in the coming sections.

The paper is organized as follows. In Sec. II a short
summary of the theoretical approach is presented, and the
numerical model which has been used in the numerical
simulations is discussed. In addition, the results of two tests
showing the good validity of the model for describing the
experimentally observed phenomena are provided. Section III
is devoted to the description of the experimental environment
and to the comparison between the experimental and the
simulated data. The degree of polarization of the generated
harmonics is evaluated in Sec. IV. In Sec. V, we provide further
insight into the origin of this high ellipticity. The conclusions
are presented in Sec. VI.

II. THEORY AND NUMERICAL MODEL

This section provides a short summary of the basic
principles of nonperturbative theory and specific details of
the numerical model used here. The detailed description of the
theory is given in Ref. [41].

The Schrödinger equation for an atom interacting with an
external electromagnetic field is as follows:

i�
∂ψ(�r,t)

∂t
=

[
1

2m

(
�p − q

c
�A(t)

)2

+ U (r)

]
ψ(�r,t). (1)

To solve Eq. (1) a nontraditional basis of functions ϕN (�r,t)
is used which is the exact solution of the boundary value
problem for an atom in the external field,[

1

2m

(
�p − q

c
�A(t)

)2

+ U (r)

]
ϕN (�r,t) = ENϕN (�r,t). (2)

The operator of the boundary value problem (2) coincides
with the Hamiltonian of Eq. (1), so, these two equations have
the same symmetry properties. The eigenfunctions ϕN (�r,t) can
be analytically expressed in terms of eigenfunctions un(�r) for
the free-atom boundary value problem,

ϕN (�r,t) = V̂ −1un(�r), V̂ = exp

(
−i

q

�c
�A(t)�r

)
.

Similar to the set of free-atom eigenfunctions un(�r) which
form a complete basis of the orthonormal functions, the
eigenfunctions ϕN (�r,t) of the boundary value problem (2) for
“an atom in the external field” also form a complete basis of
orthonormal functions. There is a one-to-one correspondence
between these two bases. It has to be noted that the eigenfunc-
tions ϕN (�r,t) coincide exactly with the eigenfunctions un(�r)
when the instant value of the external field amplitude is equal
to zero. Hence, these two bases coincide in the moments of
time when I (t) = 0; what is more important, they coincide
before and after the action of the laser pulse.

As mentioned above, the eigenfunctions ϕN (�r,t) have
the symmetry properties of the wave functions of the
time-dependent Schrödinger Eq. (1). Therefore, it appears
quite natural to use the basis of these functions in order to
solve Eq. (1). However, due to the time derivative on the
left-hand side of Eq. (1), the equations for the probability
amplitudes of such expansion will inevitably include the
integrals over the products of these eigenfunctions and
their time derivatives. But the operator of boundary value
problem (2) is time dependent; hence, the eigenfunctions of
this problem and their time derivatives are not orthogonal.
To overcome this problem the wave function ψ(�r,t) can be
initially expanded into a series of eigenfunctions un(�r),

ψ(�r,t) =
∑
n,l

an,l(t)un,l(�r) +
∫

a(k,l,t)u(k,l,�r)dk,

and then the one-to-one correspondence of these two bases can
be used. Whereas, moving from Eq. (1) to a set of equations
for the probability amplitudes, the following integrals should
be calculated:∫

u∗
n

{
1

2m

[
�p − e

c
�A(t)

]2

+ U (r)

}
umdV .

It is convenient to use the following relations:∫
u∗

n

{
1

2m

[
�p − e

c
�A(t)

]2

+ U (r)

}
umdV

=
∑

p

V −1
np (t)EpVpm(t),
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where we have used the relations between the base functions
un(�r) and ϕN (�r,t). Then, the set of differential equations for
the population amplitudes of the discrete states and continuum
quasistates becomes

i�
dan

dt
=

∑
m,k

V −1
nk EkVkmam, (3)

where Ek are the energy eigenvalues.
The spectrum of atomic response is determined by the

equation for the atomic current density,

�j (�r,t) = q

2m

[
ψ∗ ×

(
�p − q

c
�A
)

ψ+
[(

�p − q

c
�A
)

ψ

]∗
× ψ

]
.

(4)

The spectrum of the atomic response in the far-field zone
is given by [42,43]

�Aresp(�r,ω) = exp(ikr)

rc

∫
�j (�r ′,ω) exp(−i�k�r ′)dV ′.

The field strength in the far-field zone is

�Eresp(�r,ω) = −i
ω exp(ikr)

rc2
[[ �J (ω) × �n] × �n],

where

�J (ω) =
∫

�j (�r,ω)dV,

and [[ �J (ω) × �n] × �n] is a vector triple product.
As a result, the spectral and polarization properties of the

generated photoemission spectrum follow those of the atomic
current spectrum, which is [41] as follows:

�J (t) = i
∑

n,m,p,q

a∗
n(t)am(t)ωpqV

−1
np (t) �dpqVqm(t), (5)

where an(t) are the probability amplitudes of the atomic states,
�dpq are matrix elements of the dipole momentum operator, and
ωpq = (Ep − Eq)/�. The relation between the matrix elements
of the momentum operator and the dipole momentum operator
from Ref. [41] is used in (5). It is seen from the last equations
that the field strength is proportional to the time derivative of
the atomic current.

It should be noticed that in all the equations above the
atomic states are marked by the one-letter symbol (n). How-
ever, the atomic states of the three-dimensional (3D) boundary
value problem depend on the three quantum numbers: the
principal quantum number n, the orbital quantum number l,
and its projection m. The one-letter symbols are used here for
compactness only.

Equations (3) and (5) enable us to calculate the HHG spec-
trum at given parameters of the laser pulse interacting with an
atom. The most important conclusion of the above discussion
is that the atomic response on the action of the laser field
with arbitrary polarization and amplitude temporal profiles
can be simulated by using (3) and (5), i.e., the temporal profile
of the laser field can be taken directly coinciding with those
of real experiments. However, the set (3) includes an infinite
number of equations. The infinite set of Eqs. (3) and (5) cannot
be solved neither analytically nor numerically. On the other
hand, at any finite amplitude of the laser field, only a certain

finite number of atomic states make an appreciable input in
the atomic response. The main advantage of “an atom in the
external field” basis is the following: the input of each state
can be numerically calculated before the set of equations for
probability amplitudes is solved. The accuracy of calculations
with the help of any truncated basis at an arbitrary amplitude of
the laser field can be exactly estimated. It should be also noted
that each eigenfunction of “an atom in the external field” basis
is the infinite series over the eigenfunction of the free-atom
basis. So, in any truncated basis the whole basis of free-atom
states is taken into account. The number and amplitudes of
decomposition coefficients depend on the laser field amplitude.

In accordance with the selection procedure discussed above,
in the case of the Ne atom and the laser pulse intensity of
about 1014 W cm−2, one should take into account the following
limited number of “an atom in the external field” wave
functions corresponding to the excited discrete states of the
Ne energy spectrum: 2p (ground state), 3s, 3p, 3d, 4s, 4p, 4d,
4f , 5s, 5p, 5d, 5f , and 6s. It should be noticed that due to
the wide spectral width of a femtosecond pulse it is assumed
that the sublevels corresponding to different orbital momentum
projections (m) for given l are populated equally.

On the basis of the theoretical model above, the Ne photoe-
mission spectra have been calculated at different parameters of
the laser pulses. The ellipticity and polarization angles of har-
monics have been reconstructed with the help of the calculated
Stokes parameters. To make a reliable comparison with the
experimentally measured spectra, the transmission effects [44]
and the material dispersion [45] have been taken into account
for calculating the phase-matching effects for the harmonics
with the help of Eq. (2) from Ref. [45] for ω and for 2ω [46].
The problem of the harmonic propagation in the atomic gas
has been solved in the integral form where the solutions of the
single atom problem are used as the field sources. The main
influence of propagation effects is due to the dispersion which
affects the frequency-angular spectra of emission.

In order to illustrate the good validity of the numerical
model in standard conditions, the latter has been tested by
simulating two standard cases which are quite clear for under-
standing. The first one is the study of the HHG generated by a
noble gas in elliptically polarized laser light. An 800-nm ellip-
tically polarized light of moderate intensity (∼1014 W cm−2,
38 fs) irradiating an Ar gas has been considered. For these
simulations a very precise model of the Ar atom energy
structure (it also contains excited states and their substates as
the model described above) has been used. The results of the
comparison between experimentally measured data, obtained
on the same installation and close setup similar to Ref. [36] and
corresponding simulations, are presented in Fig. 1. It shows
good agreement for the considered H25 and H27 harmonics.
Note that both these theoretical (filled squares for H25 and
filled circles for H27) and experimental (open squares for H25
and open circles for H27) evolutions fit quite well the results
presented recently in Ref. [47]. Moreover, the numerically cal-
culated behavior demonstrates qualitative coincidence with the
experimental results presented in Refs. [17,18] and obtained
for pulses of longer duration. There is also a close coincidence
with numerical calculations presented in Ref. [48].

In the second standard study, the case discussed in Ref. [40]
has been represented: the two-color (ω + 2ω) orthogonally
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FIG. 1. Simulated H25 (filled squares), H27 (filled circles),
measured H25 (open squares), and H27 (open circles) harmonics
yields as a function of the laser field ellipticity in the single-color
(800-nm laser wavelength) experiments.

polarized laser field interacting with the Ne atom has been
simulated. This simulation implies low laser pulse intensities
(Iω ∼ I2ω ∼ 1013 W cm−2) in order not to disturb strongly
the ground state (2p), i.e., to avoid preexcitation and to boil
down to the same assumptions which are in Ref. [40]. The
intensities of ω and 2ω fields are then lower than those used
in Ref. [40]. Yet, our objective was not in the here presented
investigation to precisely describe their results but to show
that, if the ground state is not preexcited, then the ellipticity
of high harmonics cannot appear at these low intensities. Zero
delay time between the pulses, zero value of the relative phase,
and the same temporal width of 38 fs for the ω and 2ω pulses
(FWHM) have been used as parameters of the calculation.
The results are presented in Fig. 2. Figure 2(a) represents the
temporal dependence of the ground state [the blue (upper)
curve 1] and the sum of excited states [the pink (lower) curve
2] populations. It is clearly seen that, even in the region where
the laser field achieves the maximum value, the population of
the ground state is much higher than the one of all the excited
states. Figure 2(b) shows that in these numerical conditions
the generated spectrum contains linearly polarized odd and
even harmonics. Most importantly, it also coincides with the
interpretation described in Refs. [40,49], the odd and even
harmonics being orthogonally polarized to each other and fol-
lowing the polarizations of ω and 2ω radiations, respectively.

To summarize, the two considered cases illustrate that our
numerical model is able to reproduce some typical behavior
of the HHG in standard conditions.

III. COMPARISON WITH EXPERIMENTAL DATA

In a second step, the consistency of our numerical model
is demonstrated by simulating the experimental cases of
Ref. [36]. With respect to the second standard study (see the
previous section), it mainly differs by the likely preexcitation
of the ground state, made possible at laser intensities of
∼1014 W cm−2. In this scheme, the laser field radiation at
the basic frequency of a Ti:Sa laser (λ = 800 nm) is focused
inside a 5-mm-long gas cell filled with 40 mbars of neon.
After the lens, the BBO crystal is implemented directly
inside the laser beam path, the position of the BBO crystal
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FIG. 2. (a) Calculated temporal behavior of the ground-state
population [blue (upper) curve 1] and the sum of the excited-state
populations [pink (lower) curve 2]. (b) Simulated ellipticity (open
star) and polarization angle (blue star) as a function of harmonic
orders. The case of a two-color orthogonally polarized laser field for
which each corresponding laser pulse component has relatively low
intensity (about 1013 W cm−2) in order not to disturb strongly the
ground state (2p) of the neon atoms.

axes corresponding to the perfect phase-matching conditions
for the second-harmonic generation. After the crystal, the
ω + 2ω coherent field is present with components delayed by
�t having a phase shift of �ϕ = π/2 and both with linear
polarization but orthogonal to each other. The two-color field
illuminates the Ne medium producing a burst of harmonics.
In the experiments, BBO crystals of two different thicknesses
have been used: 100 and 250 μm. The temporal delay between
the ω and the 2ω pulses is equal to �t = 14 and �t = 42 fs,
respectively. The variation of the crystal thickness results in
the variation of the absolute and relative intensity of ω and 2ω

fields: Iω = 1.5×1014, I2ω = 1.3×1013 W cm−2 (for 100 μm),
and Iω = 3×1014, I2ω = 0.4×1014 W cm−2 (for 250 μm).

With these parameters, the temporal behavior of the ground
and excited states becomes drastically different as compared to
the previous case. The population of the ground state at the end
of the pulses becomes much lower than those of the excited
states (see Fig. 3 which is calculated for the case of 100 μm).
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FIG. 3. Calculated temporal behavior of the ground-state popula-
tion (blue curve 1) and the sum of the excited-state population (pink
curve 2) for neon atoms. The case of Ref. [36] and a 100-μm-thick
BBO crystal.

Comparisons between the theoretically calculated (stars)
and the experimentally measured main characteristics of the
harmonics are then presented in the coming section. For
each characteristic, odd and even harmonics are presented
separately for clarity. In Figs. 4(a) and 5(a), the ellipticity as a

FIG. 4. (a) Measured (solid lines) and simulated (star) ellipticity,
(b) intensity, and (c) polarization axis for the 100-μm-thick BBO
crystal as functions of the harmonic orders: odd (pink) and even
(violet). In (c) the dotted lines indicate the polarization axes of ω

[red (upper)] and 2ω [blue (lower)]. Simulation points have been
calculated for Iω = 1.5×1014, I2ω = 1.3×1013 W cm−2, �t = 14 fs,
and �ϕ = π/2.

FIG. 5. (a) Measured (dashed lines) and simulated (stars) el-
lipticity and (b) intensity as functions of the harmonic order for
odd (pink) and even (violet) harmonics for the case of a 250-μm-
thick BBO crystal. Simulation points have been calculated for Iω =
3×1014 W cm−2, I2ω = 0.4×1014 W/cm−2, �t = 42 fs, and �ϕ =
π/2. The 100-μm-thickness measured data (solid line, from Fig. 4)
have been superimposed for direct comparison.

function of the harmonic order is shown for BBO crystal
thickness equal to 100 and 250 μm, respectively, as used in
Ref. [36]. The comparison in intensity is presented in Fig. 4(b)
(100 μm) and Fig. 5(b) (250 μm). In order to calculate the
harmonics intensities, the phase-matching conditions for both
ω and 2ω waves [45] as well as the transmission of generated
harmonics through the gas and filters (aluminum filter con-
taining 2×10 nm of Al2O3) [44] have been taken into account.
In Fig. 4(c) the direction of the polarization axis is shown as
a function of the harmonic order. To summarize, Figs. 4 and 5
show evidently that the results of simulations reproduce accu-
rately the results of measurements with both BBO thicknesses.
Hence, the results of such a simulation can enable to provide
a deep insight in the nature of the observed phenomena.

IV. DEGREE OF POLARIZATION

The results of the above simulations have been based
on the single atom model. But in the in situ experiments,
one has to deal with a gas cell, i.e., an extended atomic
medium. Different atoms of the medium can emit radiations
with different parameters. So, it is difficult to assume that the
integral emission of the extended gas volume will be ideally
polarized. To solve that, the polarization properties are studied
for some specific harmonics. On the basis of the method
presented in Ref. [48] both temporal and spatial degrees of
polarization have been evaluated.

First, the part of the total atomic current density temporal
distribution corresponding to the H36 and the H37 (these
harmonics correspond to the maxima of spectra, see Fig. 5)
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FIG. 6. Temporal behavior of the (a) H36 and (b) H37 harmonics
calculated for the 100-μm-thick BBO crystal [black 3D curve] and
its projections [blue (gray) curve] on the polarization axes of ω

(corresponding to E x = 0) and of 2ω (E y = 0).

harmonics has been extracted by performing in sequence a
Fourier transformation, the filtering by choosing a harmonic’s
peak, and its imaging over the Nyquist frequency and the
inverse of the Fourier transformation. As a result, a temporal
behavior of the field strength which is presented in Fig. 6(a) for
H36 and in Fig. 6(b) for H37 has been obtained. The temporal
behavior of the presented harmonics is quite homogeneous
in time. To give some numerical characteristics of these
dependencies, an integration over time has been made by
using the formula (46), and then the degrees of ellipticity and
polarization have been calculated by using formulas (44) and
(45) from Ref. [48]. For H36/H37, respectively, 0.48/0.26 has
been obtained for the degree of ellipticity, and 0.87/0.81 has
been obtained for the degree of polarization. The ellipticity
values are very close to the experimentally measured ones.

Second, the impact of the spatial properties of the gas
media on the characteristics of the generated radiation has
been studied on the basis of a model containing a chain of
atoms placed on the focal plane of the laser beam. Accounting
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H37 harmonics generated by a chain of approximately 7×105

atoms calculated for the 100-μm-thick BBO crystal case. The
inset: corresponding intensity spatial distributions of H36 and H37
harmonics.

for the Gaussian profile of the laser beam, the single atom
photoemission spectrum has been calculated for the atoms
placed in different transversal positions where the intensity of
the laser beam is equal to 1, 0.9, 0.8, 0.5, and 0.3 of the maximal
intensity. The single atom calculations provide us with the
temporal behavior of the atomic current in vector form. In
order to find the spatial distribution of some of the generated
harmonics (H36,H37) the interpolations of the single atom
data have been performed, and the response of the chain
consisting of approximately 7×105 atoms has been calculated
(in order to achieve a step between the atoms of less than 0.1
of the wavelength of the generated harmonic). The results [the
ellipticity as well as the intensity (in the inset) distributions]
are presented in Fig. 7, the laser pulse propagating from the
left to the right. Due to the symmetry of the model (chain of
atoms), the spatial intensity distributions have two peaks: One
along the laser field propagation direction (Fig. 7), and one
against it, symmetric to the previous one (not shown). Due to
the small length of the chain (∼1.5 mm) and divergence, the
peak intensity of the generated radiation decreases along with
the propagation distance, and at the same time, the width of
the generated beam increases, so the energy remains constant.
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The results presented in Fig. 7 are calculated with the help of
formula (4) from Ref. [50]. To study the degree of polarization,
a spatial integration in (46) has been made, and formulas
(44) and (45) from Ref. [48] have been used. As a result,
for H36/H37, respectively, 0.58/0.1 has been obtained for the
degree of ellipticity, and 0.87/0.92 has been obtained for the
degree of polarization. The obtained results demonstrate a high
degree of polarization of the generated radiation.

V. ORIGIN OF ELLIPTICITY

In Sec. III good agreement between simulations and
experimental measurements has been shown. Hence, the
nonperturbative theory of light-atom interaction provides a
reliable description of the observed phenomena. However,
the account of a relatively large number of excited atomic
states prevents an obvious interpretation. Here, the qualitative
interpretation based on the use of a “one-level” approximation
is provided in the case of high driving intensities.

The atomic current is given by

�J (t) =
∑

n1l1m1
n2l2m2

a∗
n1l1m1

(t)an2l2m2 (t)〈n1l1m1| �j |n2l2m2〉,

where the summation includes all the atomic states char-
acterized by the principal quantum number n, the angular
momentum l, and its projection m. The matrix elements of
atomic current density are as follows:

〈n1l1m1| �j |n2l2m2〉
= i

∑
n3l3m3n4l4m4

ωn3l3m3n4l4m4〈n1l1m1|V −1(t)|n3l3m3〉

× 〈n3l3m3| �d|n4l4m4〉〈n4l4m4|V (t)|n2l2m2〉. (6)

On the basis of the hydrogenlike wave functions the matrix
elements of operator V are calculated analytically and have
the form of

〈n2l2m2|V −1|n1l1m1〉=
l1+l2∑

l=|l1−l2|

l∑
m=−l

Y ∗
lm(�e(t))C(lm|l2m2,l1m1)

×〈n2l2|
∣∣∣∣jl

(
q

�c
A(t)r

)∣∣∣∣|n1l1〉, (7)

where

C(lm|l2m2,l1m1 )

= il1−l2 (−1)m1

(
l2 l l1
m2 m −m1

)(
l2 l l1
0 0 0

)

×
√

4π (2l + 1)(2l1 + 1)(2l2 + 1),

〈n2l2|
∣∣∣∣jl

(
q

�c
A(t)r

)∣∣∣∣|n1l1〉

=
∫ ∞

0
Rn2l2 (r)jl

(
q

�c
A(t)r

)
Rn1l1 (r)r2dr.

According to Eq. (6), the direction of the atomic current
orientation depends on the orientation of the atomic dipole
momentum, which is the quantum-mechanical average of the
atomic electron radius vector. On the other hand, the matrix

elements Vnm(t) depend on the mutual orientation of the laser
pulse field and the angular momentum of atomic electron.
Hence, the atomic current depends in tensor form on the laser
field, polarization vector, and the atomic angular momentum,
the orientation of which determines the orientation of matrix
elements �dnm [41].

At subatomic laser field strength, the ground state (|0〉) is
basically populated, and it results in �J (t) = 〈0| �j (�r,t)|0〉, where

〈0| �j |0〉 = i
∑

n1l1m1

∑
n2l2m2

ωn1l1m1n2l2m2〈0|V −1|n1l1m1〉

× 〈n1l1m1| �d|n2l2m2〉〈n2l2m2|V |0〉. (8)

Neon gas was used in the experiments. The ground state of
Ne is a 2p state |0〉 = |n = 2,l = 1〉, which actually has three
sublevels corresponding to different values of m (m = 0, ± 1).
The dependence of matrix elements 〈n1l1‖jl(z)‖n2l2〉 on the
quantum numbers n1,2 and l1,2 was investigated in Ref. [51].
In the subatomic region of the laser field strength this de-
pendence is 〈n1l1‖jl‖n2l2〉 ∝ μ

|l2−l1|
0 , where μ0 = qA0aB/�c.

The selection rules for dipole matrix elements have the form of
l2 − l1 = ±1. As a result, even in the subatomic region of laser
field strength where the ground state is basically populated,
the atomic current (8) due to summations over (n1,l1,m1) and
(n2,l2,m2) includes the inputs of all other atomic states. The
use of the term one level is due only to the assumption that
anlm(t) ≈ δn|0〉δl|0〉. That is why the simplified model, called
one-level approximation, includes really the three sublevels of
the 2p state corresponding to different m’s as well as selected
previously excited states and the sublevels corresponding to
them. For simplicity only 3s(|1〉) and 3d (|2〉) states are shown
in the equations below, whereas the additional states do not
change the angular dependences (this is true only for one-level
approximation described above).

Thus, the matrix elements of the atomic current in the one-
level approximation have the form of

〈0| �j |0〉 =
∑
m1m2

〈2,1,m1| �j |2,1,m2〉. (9)

Simplifying the designation of matrix elements by writing
〈2,1,m1| �j |2,1,m2〉 = 〈m1| �j |m2〉, one can represent the set of
matrix elements in a form of the following matrix:⎛

⎜⎝
〈1| �j |1〉 〈1| �j |0〉 〈1| �j |−1〉
〈0| �j |1〉 〈0| �j |0〉 〈0| �j |−1〉

〈−1| �j |1〉 〈−1| �j |0〉 〈−1| �j |−1〉

⎞
⎟⎠. (10)

The elements of the matrix (10) obey the following
properties. First of all, the sum of the diagonal elements of
the matrix (10) is

+1∑
m=−1

〈m| �j |m〉 = −2

5
{5ω1d10〈1‖j1(z)‖0〉(〈1‖j0(z)‖1〉

− 2〈1‖j2(z)‖1〉) + 2ω2d12[5〈1‖j0(z)‖1〉
× 〈1‖j1(z)‖2〉 − 〈1‖j2(z)‖1〉(〈1‖j1(z)‖2〉
− 9〈1‖j3(z)‖2〉)]}[(�ex cos ϕ + �ey sin ϕ)

× sin θ + �ez cos θ ], (11)
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where �eα are the unit vectors of axes in the atomic configuration
space, i.e., in the Cartesian coordinate set with the z axis
coinciding with the direction of atom angular momentum 〈�l〉.
Angles θ and ϕ determine the orientation of the laser field
polarization vector,

�e(t) =
�A(t)

A(t)
= (�ex cos ϕ + �ey sin ϕ) sin θ + �ez cos θ.

Equation (11) clearly demonstrates that the atomic current
and the harmonic polarization vectors at each moment of time
follow the laser field polarization vector.

Thus, the polarization properties of the atomic current (9)
associated with the diagonal elements of the matrix (10)
coincide with the polarization properties of the incident laser
field. For example, if the incident laser field consists of
two-color orthogonally polarized ω + 2ω components, then,
the polarization of odd and even harmonics will be mutually
orthogonal. The polarization vector of odd (respectively, even)
harmonics will follow the polarization vector of fundamental
(respectively, second-harmonic) radiation. This is due to the
fact that the matrix elements of the dipole moment operator
have a nonzero value only for transitions between the states of
opposite parity. Hence, the matrix elements of operator V in
Eq. (8) (〈0|V −1|l1〉 and 〈l2|V |0〉) are the functions of opposite
parity with respect to A(t) (see Ref. [41]). As a result, the
right-hand side of (8) is the product of �A(t) and the even
function of A(t). When

�A(t) = �e1A1(t) cos ωt + �e2A2(t) cos 2ωt,

and �e1 and �e2 are orthogonally polarized, the odd and even
harmonics become as well orthogonally polarized to each
other.

The above conclusion coincides with the one for the s

ground state (which can be easily shown) and with the one
obtained in Ref. [40].

Second, the sum of the matrix elements of the matrix (10)
with �m = ±1 results in

〈1| �j |0〉 + 〈0| �j |−1〉 + 〈0| �j |1〉 + 〈−1| �j |0〉 = 0. (12)

It should be noted that, despite the fact that each term
of the sum in (12) is not equal to zero and that it has a
polarization dependence which differs from the one presented
in (11), their sum is equal to zero. This zero value is due to the
symmetry reasons, and any breaking of the symmetry by, for
example, implementing additional external fields will lead to
a nonzero impact of the matrix elements with �m = ±1 and,
as a consequence, to the direction of the atomic current not
coinciding with the laser field polarization.

The residual components of the matrix (10) are the atomic
current matrix elements corresponding to �m = ±2. These
matrix elements have the symmetry properties which are
drastically different from those of the incident laser field.
Even in the case of the Ne atom the equations for these
components are very overcomplicated; therefore, only the
functional dependency of the projection of the sum of these
matrix elements to the x axis in atomic configuration space is

shown

�ex

(
〈n0l0m0 = +1| �j |n0l0m0 = −1〉

+ 〈n0l0m0 = −1| �j |n0l0m0 = +1〉

−
+1∑

m=−1

〈n0l0m| �j |n0l0m〉
)

= sin θ{[f1(t) + f2(t) cos(2θ )] cos ϕ + f3(t) cos(3ϕ)sin2θ}.
(13)

Equation (13) includes trigonometrical functions of angles
θ and ϕ and their products. This leads to a dramatic change in
the polarization state of the generated harmonics in comparison
with the laser field.

Note that the impact of different sublevels of the p ground
state was also studied in Ref. [49]. Using a simpler model (only
one bound state was taken into consideration) the influence of
the sublevels on the harmonic spectrum and polarization was
studied especially in the near cutoff region.

Thus, the analytical approach based on the one-level
approximation provides a deep insight into the physics of
high harmonic ellipticity origin. In the frame of the light-
atom interaction theory based on a dipole approximation,
the atomic response is prescribed by the selection rules for
the dipole transitions. At the same time, in the frame of the
nonperturbative theory, the atomic response is determined by
the matrix elements of operator V [see Eq. (7)]. Operator V

includes all powers of operator �r . So, the initial and the final
states of the cascade transitions do not obey certain selection
rules. The analysis given above shows that the ellipticity of
harmonics is mainly due to the matrix elements of atomic
current which are most unusual for the dipole approximation
approach. For example, in the case of the 2p state of the Ne
atom, these matrix elements bind the sublevels of m = +1
and m = −1. This conclusion is an exact analytical result
obtained in the frame of the one-level approximation. At the
same time, the results of numerical simulations presented in
the previous section show evidently that, if this approximation
is freed up, one will have harmonics of high ellipticity, and
it is a strong belief that the origin of this phenomena is
exactly the same. In other words, the following transitions
between all the sublevels of the Ne states (with |�m| � 2,
especially for d and f excited states) are accounted for in
high ellipticity HHG processes, even if the intensities of ω

and 2ω are decreased. The given discussion provides the hint
that the polarization properties of the response field associated
with the atomic current matrix elements of the maximal �m

are mostly different from that for the incident field. When we
take into account the excited atomic states the number of such
terms increases. The numerically calculated atomic current (5)
includes, for example, the following term:

〈3,2,−2|V −1|2,1,−1〉(ω2,1,−1 − ω3,0,0)

×〈2,1,−1| �d|3,0,0〉〈3,0,0|V |4,1,1〉.
On one hand, all matrix elements here are the matrix

elements for the dipole allowed transitions. But, on the other
hand, the resultant matrix element is the matrix element
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with |�m| = |−2 − 1| = 3, i.e., |�m| � 2. That is why for
describing experimentally observed phenomenon excited
states have to be included. However, it does not mean that
other transitions (and even dipole forbidden) are not allowed.
All transitions between all states and substates are accounted
with their own weight, which depends nonlinearly on the laser
field strength.

Note that it is possible, however, to have ellipticities in the
case of |�m| = 1, especially experimentally, when beams are
focused inside a gas medium since their corresponding waves
are not planes anymore. For calculations in which plane waves
are assumed, highly elliptical harmonics can be produced when
excited states are populated (in order to include transitions with
|�m| = 2).

VI. CONCLUSIONS

The nonperturbative theory of the light-atom interaction
was applied to model numerically the results of experimental
measurements for a configuration in which two-color laser
beams having orthogonal linear polarizations interact with
a noble gas and generate high-order harmonics with high
ellipticity. The single atom model taking into account the
excited states was first validated on the standard effects of
the HHG, i.e., from a single-color laser field with elliptical
polarization and from a two-color laser field with orthogonal
polarization in the low intensity regime. Second, the model
was used to simulate the experimentally measured properties

of the generated high harmonics, such as intensity, ellipticity,
and the polarization axis [36]. Comparison between simula-
tions and experimental results showed good agreement. In
addition, the degree of polarization was evaluated and was
demonstrated to be high. Finally, the origin of the high value
of harmonics ellipticity was studied analytically, leading to
the conclusion that this phenomenon comes from the fact
that sublevels are populated with different projections of the
orbital quantum numbers of the atomic states. Mathematically,
this phenomenon comes from the fact that in the frames of
nonperturbative theory the atomic current depends in tensor
form on the laser field polarization vector and the atomic
angular momentum. This tensor includes the terms which do
not appear in the frame of perturbation theory approaches. The
contribution of these terms to the amplitude of the response
field increases along with the increase in driving laser field
intensity.
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