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Quantum-optical model for the dynamics of high-order-harmonic generation
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We investigate a two-level atom in the field of a strong laser pulse. The resulting time-dependent polarization
is the source of a radiation the frequency components of which are essentially harmonics of the driving field’s
carrier frequency. The time evolution of this secondary radiation is analyzed in terms of the expectation values
of the photon-number operators for a large number of electromagnetic modes that are initially in the vacuum
state. Our method is based on a multimode version of the Jaynes-Cummings-Paul model and can be generalized
to different radiating systems as well. We show that, after the exciting pulse, the final distribution of the photon
numbers is close to the conventional (Fourier-transform-based) power spectrum of the secondary radiation. The
details of the high-order-harmonic spectra (HHG spectra) are also analyzed; for many-cycle excitations a clear
physical interpretation is given in terms of the Floquet quasienergies. A first step towards the determination of
the photon statistics of the high-order-harmonic modes reveals states with slightly super-Poissonian distribution.
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I. INTRODUCTION

High-order-harmonic generation (HHG) [1-4] is a strongly
nonlinear effect that is observed in several state-of-the-art
experiments, using gaseous targets (see, e.g., [5] for a
review), plasma surfaces [6], and—more recently—solid-state
samples as well [7]. One of the most important applications
is the generation of attosecond pulses [8,9], which can
monitor or induce physical processes on an experimentally
unprecedented time scale. Therefore, deep understanding
of the physical mechanisms underlying the phenomenon of
HHG is of crucial importance.

Although HHG is an inherently high-field effect, due to the
low efficiency of the process, the intensities of the generated
harmonics are orders of magnitude lower than that of the
exciting field. Therefore, the usual assumption [10,11] that the
exciting field (with high photon numbers) does not necessarily
need to be quantized can be verified, but the same does not
hold for the weak secondary radiation. Motivated by this, in
the following we introduce a model where a quantum system
interacts with a strong, classical electromagnetic field as well
as with quantized radiation modes that are initially in the
vacuum state.

The main features of the gas HHG spectra are well
described by the so-called three-step model [10], consisting
of the emission of the single active electron, its motion in
the laser field, and recombination with the parent ion. The
amount of energy the electron gained during this process is
assumed to be transferred into high-order-harmonic radiation.
In this picture the continuum plays a substantial role, and the
emerging exponential integrals can be performed both in the
adiabatic [11] and in the nonadiabatic [12] cases by means of
saddle-point approximation.

On the other hand, the appearance of HHG itself does
not require the presence of the continuum. As studies with
driven two-level systems (having only bound states) show
[13-16], the qualitative properties of the HHG spectra can
be calculated analytically using traditional quantum-optical
notions like, e.g., dressed states. An appropriately generalized
version of the Jaynes-Cummings-Paul model has also been
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used to describe high-field, multiphoton processes [17-19].
Although a strong analogy can be drawn between the dynamics
of a driven two-level system and the three-step model [20],
for the realistic description of HHG in gas samples (with
the obvious involvement of continuum states), the latter
became more widely used. For solid-state systems [7], on the
other hand, only bound states get populated, and even the
two-level approximation can be valid for quantum wells in
semiconductor heterostructures [21].

Motivated by this, we use a two-level system as a model for
the radiating quantum system (so that the resulting approach
will be similar to that used in driven spin-boson models [22] or
for the description of resonance fluorescence [23]). Following
the tradition, we keep using the term ‘““atom,” although, as
we have seen above, solid-state systems can be described by
this model more appropriately. The simplicity of the two-level
system helps in understanding the dynamics of HHG, and, as
we see, certain important aspects of our approach can be easily
generalized to more complex high-order-harmonic sources as
well. Let us emphasize that although many important results
were obtained using a two-level system as a model—even
in the context of HHG (see, e.g., Refs. [13—16])—we are not
aware of any work focusing on the quantum-optical description
of the high-order-harmonic modes. Additionally, the focus is
usually on the spectrum of the secondary radiation, while our
model allows monitoring the time evolution of the photon
numbers corresponding to different modes of the emitted
electromagnetic field.

The current paper is organized as follows. In Sec. II
we introduce the model. The time evolution of the photon-
number expectation values is presented in Sec. III, and the
corresponding HHG spectra are analyzed in Sec. IV. We
discuss the photon statistics of the high-order-harmonic modes
in Sec. V and draw conclusions in Sec. VI.

II. MODEL

Let us consider the following Hamiltonian:

H([) =H,+ H, + Hy, + Hex([)’ (1)
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where the first term describes a two-level atom and the second
one corresponds to quantized radiation modes,

wo ~
H, = hTUza H, = Xn:hwnaiana 2

while their interaction [without rotating-wave approximation
(RWA)] can be written in the form

Q
Hon = ) B (@, +a))or, (3)

where o, and o, denote the usual Pauli matrices. Note that
H,, = —DE, where the atomic dipole moment operator is
given by D = do, (for the sake of simplicity, the matrix
element d is chosen to be real), and the quantized electric field

is a sum of operators E, = 1/%(61” +a,") (with V denoting
hay,
GQV :
Additionally, we assume a strong, pulsed excitation that is
described by a classical, time-dependent electric field:

Q@)
H,.(t1)=—DE(t) = —do, E(t) = —hTO’x, “)

the quantization volume). This means that 2, = 2d

where
E(t) = Eysin® <n£> cos(vt) (®)]

if 0 <t <1, and E(f) = 0 otherwise. T = 27/v is used to
denote the cycle time of the carrier wave. The initial state of
the system is assumed to be a tensorial product state,

|\If(t = O))am = |¢)m0|w>a0a (6)
where the modes at ¢t = 0 are in their vacuum state
|#)mo = 10,0, ...,0). (7N

Note that for semiconductor quantum dots—to which our
model is most directly applicable—dipole moment matrix
elements d range from 1 to 100 D, depending mainly on the
size of the dots and their constituent materials. For practically
resonant near-infrared excitations, the condition Eyd = hv
means peak field amplitudes E of the order of GV /m, which
can be realized relatively easily using currently available
Ti:sapphire technology. The corresponding pulse durations are
in the femtosecond range.

The dynamics induced by the Hamiltonian (1) practically
cannot be solved without approximations. Let us summarize
the general physical and technical properties of the model,
which can serve as a basis of the approximative methods. Using
Eq. (7) and assuming that the atomic system is initially in its
ground state, if there is no external driving (i.e., [¥),0 = |g),
Ey =0), there is essentially no dynamics. On the other
hand, with |y¥),0 = |e), there are interfering vacuum Rabi
oscillations that can serve as a simple model for spontaneous
emission: the excitation of the atomic system is distributed
among the degrees of freedom of the radiation modes. This
is the point where the question of which modes we take into
account becomes important. In principle, the sum in Eq. (2) is
infinite. However, when focusing on the process of HHG, only
a finite number of harmonics (a few times ten) appear, so only
modes with frequencies roughly in the range (0—100)v play
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a relevant role. Practically (from the viewpoint of numerical
feasibility), a few thousand modes can be taken into account
in this interval. As a consequence, the initially excited atomic
state will not monotonically decay: when oscillations with
the finite number of Rabi frequencies €2,, rephase, we would
observe a revival process that does not appear in free space.
Technically, this allows us the determination of the time
scale on which our model with a finite number of modes
describes the process appropriately: since for usual excitations,
spontaneous emission plays a negligible role (the lifetimes of
the atomic levels can be orders of magnitude longer than the
duration of the HHG process), our theoretical description is
valid until the quantized modes do not cause significant atomic
decay. This limit can be identified using our model based on
expectation values (see the next section), and the parameters
found to be valid for that calculation are used later on to
calculate, e.g., photon statistics.

As a final, general note, let us mention that neither specific
mode functions nor the density of modes were taken explicitly
into account. In an actual experiment, these issues must be
relevant, but it is not inconsistent to neglect them on the
level of the model of two-level atoms. Additionally, although
a complete description of the HHG signal emerging from a
given sample requires taking propagation effects also into
account (see, e.g., Ref. [24]), here we focus on the single-atom
response.

III. TIME EVOLUTION OF THE PHOTON-NUMBER
EXPECTATION VALUES

Our first approach is based on the Heisenberg equations
of motion for both the atomic and electromagnetic field
operators. As one can check easily, one cannot obtain an
exact closed set of dynamical equations, since the time
derivatives of two-operator products involve three-operator
products, whose time derivatives contain terms being the
products of four operators, etc. Because of this hierarchy,
we have to restrict ourselves to expectation values and—at
some point—introduce a factorization that is based on physical
considerations.

The simplest Heisenberg equations of motion read

d

—-0x = W0y, (8)

dt
d

EG,V = —wo0x + 0; |:Q(t) + Xn: Q, (an + a;):| , 9

d
0. =0, [Q(z) + Zn: Qulan + ai)}, (10)

d i @nan + 2 (11)
—da, = —1| wya, ——0x ),
dt 2

d Q

ENH = Ea,ﬁan = iT(an —a)o,. (12)

One can assume already at this point that the expectation
values of the products of atomic and field operators factorize
(e.g., (0,a,) = (0;){a,)), but in this case the influence of
the photon-number operators on the atomic system’s time
evolution—which should be weak—is exactly zero. Addi-
tionally, since the photon annihilation operators’ dynamics
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are governed by a “classical” quantity (the expectation value
of the dipole moment), the resulting photon statistics is
necessarily Poissonian (i.e., the high-order-harmonic modes
are in coherent states).

The next level of equations of motion can be obtained
by assuming that the dynamical variables are the following
expectation values of Hermitian operators that appear in
Egs. (8)—(12):

Uy = {oxtan +aD), Uy

n

= i{oy(ay, —ai)), (13)

and similarly
vE = )" F (0, (a, £a))), (14)

wE = )"FV(o,(a, £ a))), (15)

which are analogous to the “phonon-assisted” density matrix
elements that appear, e.g., in semiconductor Bloch equations
[25]. UsingU = {(ox), V = (0,), W = (0;),and (N,), aclosed
set of dynamical equations can be obtained (see the Appendix),
provided one neglects cross correlations of different modes.
[More precisely, with A being U, V, or W, we set (Ab,.c,,) =
0 if (i) n # m, and (ii) the mode operators b, and c, are
both creation or both annihilation operators. We verify this
assumption in Sec. V.]

Technically, this approach, with N modes being taken into
account, means following the dynamics of 7N + 3 real vari-
ables. According to our experience, for most of our results, the
frequency interval [0,30v] with N = 3000 together with the
realistic assumption of €2,/wy = 0.001,/@®,/wy satisfies
the requirement mentioned at the end of the previous section:
even an exciting pulse as long as a few hundred optical cycles is
much shorter than the time scale on which the quantized modes
observably modify the atom’s dynamics. This means that the
number of modes that we take into account has negligible
influence on the time evolution of the atom; it is mainly the
resolution of the spectra that is determined by the value of N.
By requiring 100 frequency values (points on the graphs) in an
interval of “length” v, the value of N = 3000 means covering
the interval of [0,30v] sufficiently densely. For most of the
cases we considered, this is appropriate, since no harmonics of
higher order than 30 appear. However, for the strongly detuned
excitation shown in Fig. 3(d), there are roughly ten times more
observable harmonics and the value of N had to be increased
correspondingly.

As an indication of the correctness of the factorization
described above, let us mention that without excitation (Ey =
0), the initial conditions (N;) = nd;y (Where @y = wy) lead to
Rabi flopping between mode 0 and the atomic system with a
frequency very close to Qp+/n + 1.

The time evolution of the photon-number expectation
values is shown in Figs. 1 and 2. As we can see, the longer
the exciting pulse is, the more pronounced peaks can be
observed. As one can expect, these peaks appear around
integer multiples of the carrier frequency of the exciting pulse.
For long enough pulses (see Fig. 2) and higher harmonic
orders, a significant, qualitative difference can be perceived
between the consecutive peaks: the ones at odd multiples of
v are considerably broader than those corresponding to even
harmonics. We return to this point in the next section.
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FIG. 1. Center: Time evolution of the expectation values of the
photon-number operators (N,) as a function of the frequency of
the modes @, (measured in units of v). The time dependence of
the resonant exciting pulse (v = wp) can be seen in the left panel,
while the final (t = 12 T') distribution of the photon number operator
expectation values is shown on the top.

The time instants when the peaks corresponding to the
various harmonic orders appear are related to the presence
of sufficiently strong excitation: at the beginning of the pulse,
when the envelope of the exciting electric field is far from its
maximum, lower-order harmonics appear. The higher-order
ones become visible only around the maximum of the pulse.
Note that—according to our calculations (not shown here)—
for a simply sinusoidally oscillating excitation, the transient
time interval is practically the same for all harmonics; in other
words, the corresponding peaks become observable almost at
the same time.

Figure 3 shows the effect of detuning on the final (¢ > 1)
distribution of the photon-number expectation values. As we
can see, not only the internal structure and height of the peaks,

N
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FIG. 2. The same as Fig. 1, but for a longer, resonant exciting
pulse (compare the left panels).
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FIG. 3. The final (¢ > t) distribution of the photon-number
expectation vales for excitations with different frequencies (see the
legend). The time evolution of the exciting pulses is the same in all
panels as the one shown in the left panel of Fig. 2, provided we
measure time in units of 7. (Without this scaling, the duration of the
pulse corresponding to the top panel is the shortest.)

but even the number of the observable harmonics strongly
depends on the frequency of the excitation. As we see in the
next section, all these properties can be understood in terms of
the Floquet quasienergies and the corresponding states.

Note that the features of typical HHG spectra can be
recognized in Fig. 3: the heights of the peaks corresponding
to low-order harmonics is decreasing fast, then we see a
“plateau” with comparable peak heights and finally a cutoff,
i.e., the disappearance of the pronounced peaks. However,
focusing on the details and comparing these spectra to the
high-order-harmonic emission spectra computed for real noble
gas atoms (i.e., the real single atom response) [26] shows
certain qualitative differences. Close to resonance, the peaks
of the two-level atom’s spectrum emerge from a smooth
background, which is mostly missing from the real single-atom
response. This is more explicit around the cutoff region,
which means simply the disappearance of the pronounced
peaks in the case of the two-level atom, while it is a smooth
but substantial drop to much lower spectral amplitude in
the real single-atom response. Although the cutoff in the
strongly detuned case [Fig. 3(d)] seems more similar to this
real single-atom spectrum, this is only apparent: the cutoff
consists of densely placed peaks in the two-level case. These
differences are due to the different physical mechanisms being
responsible for the process of HHG for a real atom and a
two-level one.
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As we see in the next section, the final photon-number
distributions shown in Fig. 3 are very close to the HHG spectra
that can be obtained in the usual way, i.e., by calculating the
power spectrum of the second time derivative of the dipole
moment [27]. The dependence of these power spectra on the
excitation parameters was studied extensively; e.g., analytic
formulas for the plateau and the cutoff frequency were obtained
in Refs. [13—15]. Our results show good agreement with these
analytic estimations. Therefore, instead of investigating these
details further, we turn to the interpretation of the spectra and
the analysis of the corresponding photon statistics.

IV. PROPERTIES OF THE HHG SPECTRA

As we can see in Fig. 3, HHG spectra show an alternating
sequence of narrow and broader peaks. For long pulses, this
effect can be understood via the Floquet analysis [28] of the
problem. Note that although this idea itself can be useful
for more complex radiating systems as well (with obviously
increasing computational costs of performing the analysis; see,
e.g., Ref. [29] for early results related to atomic hydrogen), this
section is specific to two-level systems. (In other words, e.g.,
neither the internal structure nor the heights of the HHG peaks
can be transferred to different systems.)

In order to see the predictions of Floquet’s theory, let us
consider a sinusoidal exciting field

E'(t) = Eysin(vt), (16)
which results in a periodic Hamiltonian
H'(t+T)=H,— DE'(t+T)= H'(1t), 17)

where the weak corrections H,, and H,, are neglected, and
T = 2w /v. According to the general theorem [28,30], H'(¢)
has “time-dependent eigenstates”

|Be(D)) = ¢4 " che™ ™ o)y, (18)

where ¢, are called Floquet quasienergies (now written in
units of frequency). There are only two of the states above
that are not equivalent (and these states are orthogonal). (The
formulas €, — & = e +mv and ¢* — & = ¢k define the
equivalence, resulting in physically undistinguishable states
|px(2)) and |@r(¢)).) Let us use indices 1 and 2 for the two
nonequivalent states, the quasienergies of which have the
smallest magnitude. This means that §¢ = |e; — €| < v. The
dependence of ¢ on the amplitude E, and the detuning
A = wy — v can be seen in Fig. 4. (Note that if we applied the
RWA, 8¢, which is essentially the Rabi frequency, would scale
linearly with Eq and change as §e(A) = /(8¢(0))? + A2))

Let us assume that the state of the atomic system at r = 0
can be expanded as

[W(0)) = a¢1(0)) + Bl¢2(0)). 19)

The time dependence of the expectation value of the dipole
moment operator reads

(D)(t) = (W(1)| D|W(1))
= |a|*(¢1()| DIp1(1)) + |B1*(d2(1)| D] (1))
+aB* (¢ D|p1(1)) + a*Bidi(1)| D|ga(t)), (20)
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FIG. 4. The smallest difference between two nonequivalent Flo-
quet quasienergies (8¢ = |€; — €|, measured in units of v) as a
function of the amplitude and frequency of the exciting field. Note
that in this case, by construction, the excitation is assumed to be
monochromatic with an amplitude of Ey. The white circle denotes
parameters corresponding to Fig. 5.

and—as we can check easily—contains frequency components
nv (the first two terms on the right-hand side of the equation
above) and nv % de (the last two terms). Additionally, the
symmetry of the time-periodic Hamiltonian (17) implies [31]
that ¢! is nonzero only for odd n, while the frequency
components of |@(#)) can be written as €; + mv, with m
being even. Combining these, we obtain that for infinite,
periodic excitation the Fourier spectrum of (D)(¢) contains
discrete peaks that are situated at mv for odd values of m,
and at mv £ ¢ when m is even. In other words, this Fourier
spectrum—as well as that of d*>(D)/dt>—is an alternating
sequence of single and double peaks, which is in qualitative
agreement with Figs. 2 and 3. Let us emphasize that the
qualitative difference between the HHG peaks corresponding
to odd and even harmonics has symmetry-related origin,
similarly to the case of HHG spectra in gas samples [1].

An additional remarkable point to be noticed is the
appearance of the expansion coefficients o and g in Eq. (20).
This fact directly shows that the state of the atomic system
at + = 0 plays an important role in determining the relative
heights of the harmonic peaks. Specifically, when « =0
(B = 0), the peaks corresponding to even (odd) harmonics
are completely absent. Note that similar consequences of the
atomic coherence have been pointed out, e.g., in Refs. [32,33].

The finite width of the HHG peaks in Fig. 3 is due to the
finite duration of the exciting pulse, as well as to the fact that
the envelope of the exciting pulse is not constant. (See Fig. 4 for
the sensitivity of §¢ on Ej.) So in order to be able to perform a
quantitative comparison between the predictions of the Floquet
analysis and the numerical results, an exciting pulse with an
envelope that is constant on a relatively long time interval is
needed. To this end, let us relax the waveform (5) and consider
a simple sinusoidal excitation the duration of which is 100
optical cycles, so that E(¢) reaches its maximum during the
first 5 cycles, and decays to zero during the last 5 cycles (see the

2 4 6 8 10 12 14 16 18 20
harmonic order

FIG. 5. HHG spectra obtained in different ways. Open circles in
both panels correspond to the Floquet estimation. (The parameters
are the ones that were denoted by the white circle in Fig. 4.) The
finite-duration pulse that mimics the corresponding monochromatic
excitation is shown by the insets (where time on the horizontal axis
has units of 7', and we plotted d E(t)/hwy, similarly to Figs. 1 and 2).
The spectra plotted by solid red lines were obtained using our model
based on the expectation values (top) and the power spectrum of
d*(D)/dt* (bottom). We normalized the results so that they have the
same value at the strong, single peak at ®/v = 9.

insets in Fig. 5). We compare a representative HHG spectrum
obtained using the model of the previous section with results
of the Floquet analysis and the Fourier-transform-based power
spectrum of d? (D) /dt* (which is usually considered the source
of the secondary radiation [27]) in Fig. 5. As we can see, the
positions of the peaks are practically the same for the Floquet
estimation and the numerical result, and even the relative
heights of the peaks are qualitatively similar. Additionally,
there are remarkable similarities between the spectra that are
based on the photon-number expectation values and the Fourier
transform of d?(D)/dt>.

Finally, let us return to Fig. 3. As we can see, for “blue-
detuned” excitation (i.e., when v > wy), there are considerably
fewer HHG peaks that are visible than for the resonant case,
and the number of these peaks is the highest for red detuning
(v < wyp). This is a consequence of the general fact that %d
is the parameter that determines the number of the relevant
high-order harmonics in the Floquet time evolution (as shown
by a simple transformation into dimensionless units; see, e.g.,
Ref. [34]). That is, if all other parameters are the same, an
excitation with lower frequency produces a higher number of
observable harmonics. As a remarkable example, see Fig. 3(d),
where v = w(/10. This case of strong red detuning (that
is relevant for real atoms and pulses in the infrared) is
interesting also from the viewpoint of short pulse generation:
the quasicontinuum of the frequencies corresponding to the
plateau can be shown to have phases that produce short bursts
of radiation in every half cycle. Assuming T = 27 /v to have
the order of magnitude of femtoseconds, the duration of these
bursts (intensity full width at half maximum) is around a few
tens of attoseconds.
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V. PHOTON STATISTICS AND CORRELATIONS

Besides the photon-number expectation value, higher mo-
menta as (N?2) are also required to determine the photon
statistics of the HHG modes. However, the method introduced
in Sec. III cannot be extended in a simple way, due to the
increasingly complex hierarchy of the Heisenberg equations.

The physical assumptions that led to Eqs. (A1)—(A10) offer
an alternative approach to obtain photon statistics. Since even
the collection of all the modes that are taken into account
affects negligibly the atomic dynamics on the time scale of
HHG, and there is no direct mode-mode interaction, the time
evolution of a given mode is not strongly perturbed by the
presence of the other ones. Thus it is reasonable to neglect
all but one mode, which formally means reducing the sum
in Eq. (3) to a single term. For the one and only mode that
we take into account, the calculation of the photon statistics
means no technical difficulty, the time-dependent Schrodinger
equation can be solved, e.g., in the Schrodinger picture by
expanding the atom-mode wave function |W,,) in the finite
basis of {|n,e),|n,g) n =0, ...,M}, where M is the maximal
photon number we take into account. The dynamics turns out
to be independent of the truncation of the single-mode Fock
space already for M =~ 10.

The most general result (which is independent of the
frequency @ of the mode) is that the probabilities

Po(t) = [{n,e|Wam () > + (1,8 Wam (1)) 21

are fast-decreasing functions of the photon number n. In
agreement with the fact that the photon-number expectation
values are much below unity, Py dominates the photon statistics
by being orders of magnitude larger than probabilities that
correspond to nonzero photon numbers. Thus the HHG modes
are very close to the vacuum, and there can be time instants
when the photon-number expectation value becomes (exactly
or numerically) zero. This circumstance causes difficulties
when we are interested in, e.g., the Mandel parameter

_(aNy?
(N)

However, with careful evaluation, we see that Q, is typically
a small (around 10~%), positive number, indicating super-
Poissonian statistics. In the presence of the exciting field, there
can be short intervals, in which Q}, is negative, but finally,
when the exciting field is zero again, Q) becomes positive
for all the cases we investigated. Representative examples are
shown in Fig. 6. The narrow peaks at the early stage of the
time evolution are signatures of the initial transient effects
(see Figs. 1 and 2). Then rapid oscillations appear, which
have a considerably more regular pattern when the pulse is
over (¢ > 7). These “final” oscillations are solely due to the
interaction of the atomic system and the quantized mode.
(One may consider it a consequence of a very far detuned,
tiny-amplitude Rabi flopping.) Note that when wg > v, the
Mandel parameters have larger values.

Numerically, for all harmonics up to 30 (and for the same
exciting pulse as in Fig. 6), we observed that the minimal value
of Oy isbetween —4 x 10~%and 1 x 107>, while the maxima
are between 1 x 10™* and 0.04. During the oscillations for
t > t, Q) was always positive, with its time average being

Oum

1. (22)
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FIG. 6. The Mandel parameter (22) and the exciting classical
pulse as a function of time, for the eighth harmonics (&/v = 8), both
in the resonant and strongly detuned cases.

between 1 x 107 and 0.03. For excitations with different
waveforms, the orders of magnitude of these values were the
same.

Since the maximal photon number that we need to take
into account in order to obtain reliable results (M) is not too
large, it is also possible to consider the problem with two
quantized modes. (The corresponding Hilbert space is 2M?
dimensional.) The frequencies @; and @, of these modes can
be chosen arbitrarily, which allows us to systematically check
the validity of the assumptions that led to Egs. (A1)-(A10). By
calculating expectation values of the form (Aa;a;), (Aal.T aj),
and (Aaja}) (where A = U, V, or W; see the Appendix), it
turns out that for the initial conditions (7), they mean negligible
contributions to the dynamical equations. Numerically, the
terms we neglected in Eqs. (A1)—(A10) are four orders of

magnitude smaller than the ones we kept. The terms (Aal.T a;) =
(AN;) become important when (V; ) has the order of magnitude
of unity at r = 0, and in this case the factorization (AN;) =
(A)(N;) is an accurate approximation.

Besides verifying former approximations, the model with
two modes can also be used for the calculation of mode-mode
cross correlations. In the Schrodinger picture, the equal-time
second-order correlation function

Gt = (W@OIN;N;|W(t)) 23)
(WOIN; W (@0)) (W ()N, [W (1))

can be—in principle—calculated straightforwardly. The gen-
eral result is that, regardless whether i = j or not, gl.zj is
larger than unity. (Note that the former case is in accord
with the slightly super-Poissonian statistics we discussed
above.) However, a systematic analysis of these correlations
requires sophisticated numerical methods which are under
development. These difficulties suggest that a transparent,
analytically solvable model—which is obviously not easy to
construct—would be very useful for the deep understanding
of the process of HHG.
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VI. CONCLUSIONS

We introduced a quantum-optical model for the process of
HHG in a simple model system, a two-level atom. Considering
a large number of electromagnetic modes with frequencies
ranging from practically zero to the 30th harmonics of the
classical, pulsed exciting field, we analyzed the time evolution
of the photon-number expectation values. We observed that
high-order harmonics appear one after the other, and modes
with higher frequencies become visible later, when the
envelope of the excitation is large enough to populate these
modes. The final distribution of the photon-number operators
(when the exciting pulse is over) was shown to be close to tradi-
tional, Fourier-transform-based HHG spectra. For long enough
pulses, the fine structure of the spectral peaks was shown to
be closely related to the corresponding Floquet quasienergies
and eigenstates. The low photon-number expectation values
allowed us to analyze the single-mode photon statistics of the
high-order-harmonic modes, and we found that these states
have slightly super-Poissonian statistics; i.e., they are states
with positive Mandel parameter Q.

Although most of these results are specific to the two-level
systems, some of the methods we applied, and also a few of the
physical consequences, can be transferred to more complex
radiating systems, atoms, and molecules as well. However,
solving the coupled dynamical equations for a radiating system
and a large number of electromagnetic modes (in a way
analogous to the method presented in Sec. II) can cause
technical difficulties already for a hydrogen atom. On the
other hand, the coupling of a single, quantized high-order-
harmonic mode is generally feasible. This would allow the
investigation of the photon statistics also for more realistic
systems.
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APPENDIX: EQUATIONS OF MOTION
FOR THE EXPECTATION VALUES

For the consistency of the notation, let us use U = (o,) =
{0y, V= (oy) = (V), ... (ie., characters without a hat
denote the expectation values of the corresponding operators
denoted with a hat; see Sec. III). Equations (8)—(10) and (12)
can be reformulated easily using U, V¥, and W:. The exact
Heisenberg equations of motion for these operators read

d .
EU,f:a)oVn’L—a)nUn_,

d . o
2 woV,” +@,U; + Qp,

PHYSICAL REVIEW A 94, 013853 (2016)

d . . X .
ZV’:— = _a)OU,j_ _(Z)n‘/n_ +Q(I)W:—
+ W Qja, +al)a; +ab),
J
d ._ NI -
2V = ool + @,V + oW,
i Y 2 a, - al).ta; +ab))
i > ap —ay),(a; +a;},
J
d &4+ ~ A 7+
T =~ -,
—V > "9, + a)a; +ab),
J
d . .. .
EW” =a,W, —Q@)V,

N Q:
=iV} S — al).(a; + ah),
J

where {.,.} stands for the anticommutator. Approximations
take place when we calculate the expectation values of both
sides of the equations above. As it was mentioned in Sec. V,

for any atomic operator A, it is consistent to set (Aa,a;) =
(Aaj;a;) = 0, and to consider terms (Aana}), (Aaj;aj) to be
nonzero only for n = j. This, with factorizations (Aana,'t) =

(AV{anal), (Aaja,) = (A)(a)ay,), results in

d

EU’T =w)V," —a,U,, (A1)
d _ - LAt
EU,, =w)V, +&,U +Q,, (A2)
d. + _ sy +
EV” :—a)oUn —C()n‘/n +Q(I)Wn
+ W, (2(N,) + 1), (A3)
d _ oL _
EVn = —wU; +&,V,” + QOW,, (A4)
d + ~ - +
EWH =—o,W, —Q)V,” — VQ,(2(N,) +1), (AS)
d _
Wr = oW -0V, (A6)

For the sake of completeness, let us express the expectation
values of Egs. (8)—(10) and (12) using the dynamical variables:

d
ZU =wV, A7
dt wo ( )
d
_ +
V=l +Q0W + Z QW (AB)
d
—W =-Q@)V — Q, VT, A9
- (1) Z ; (A9)
d (N,) = Q"U’ (A10)
d[ n/ — 2 n -
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