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Diffraction of plane waves by a periodic array of nonlinear circular cylinders
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It is well known that standing waves, as special bound states in the radiation continuum, may exist on a periodic
array of dielectric cylinders at a discrete set of frequencies if the medium is linear. Recent numerical studies
indicate that nonlinear standing waves could exist continuously with respect to the frequency on a periodic array
of cylinders with a Kerr nonlinearity. In this paper, we study the diffraction of a normal incident plane wave
by a periodic array of circular cylinders with a Kerr nonlinearity. Using a perturbation method and a highly
accurate numerical method, we show that a plane incident wave may couple to a nonlinear standing wave, and
in general, there are four different couplings leading to four asymmetric solutions in two pairs. The existence
of these asymmetric solutions provides another example for the symmetry-breaking phenomenon. Importantly,
it seems that the asymmetric solutions (thus the symmetry-breaking phenomenon) appear for incident waves of
arbitrarily low intensity.
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I. INTRODUCTION

The optical Kerr effect is responsible for many interesting
nonlinear phenomena, such as self-focusing and filamenta-
tion of laser beams, temporal and spatial solitons, optical
bistability, symmetry breaking, etc. [1]. In particular, optical
bistability [2–5] and symmetry breaking [6–10] are related to
the existence of multiple solutions for the same incident wave
and have potential applications in all-optical switching [11,12],
filtering [13], etc. However, since the nonlinear coefficients
of conventional dielectric materials are very small, most
nonlinear phenomena related to the Kerr nonlinearity can only
be observed for incident waves with a very high intensity
or over a very long interaction length. These constrains
put a serious limitation on applications of these nonlinear
phenomena in nanophotonics, where the device size, the
operating power, and operation time must all be extremely
small. One possible approach to overcome these limitations
is to enhance the nonlinear effect by microcavities [4,14].
In that case, even when the incident wave is not so strong,
the field in the microcavity is enhanced due to resonances,
and the nonlinear phenomena such as optical bistability and
symmetry breaking can be observed. However, there is still
a minimum incident power or intensity for the appearance of
these nonlinear phenomena, and it could still be too high when
practical microcavities are used. In this paper, we show that
the symmetry-breaking phenomenon could occur in a simple
periodic structure for incident plane waves with arbitrarily low
intensity.

We consider a one-dimensional (1D) array of parallel and
infinitely long dielectric cylinders surrounded by air. Such
an array can be regarded as a two-dimensional (2D) periodic
waveguide [15]. For linear cylinders, the array supports various
guided modes that are invariant along the cylinder axes, prop-
agate along the periodic direction, and decay exponentially
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in the transverse direction [16]. The guided modes typically
exist below the lightline, that is, ωn0/c < |β|, where ω is the
angular frequency, n0 = 1 is the refractive index of air, c is
the speed of light in vacuum, and β is the Bloch wave number
(or propagation constant) of the guided mode. Notice that
the guided modes below the lightline exist continuously with
respect to the frequency, and ω and β are related to each other
by the dispersion curves. Above the lightline is the continuum
of radiation modes; thus, guided modes that do not radiate
power are more difficult to find. Nevertheless, it is known
that guided modes could exist above the lightline [17–24].
These modes are bound states in the radiation continuum; they
correspond to eigenvalues in the continuous spectrum and only
exist as isolated points in the βω plane. The special guided
modes above the lightline with β = 0 are standing waves
that do not propagate. For arrays with a reflection symmetry
along the periodic direction, the existence of standing waves
is well established [17,21]. The existence of guided modes
above the lightline is related to the nonuniqueness of the
diffraction problem for incident plane waves [17,21]. More
precisely, if there is a guided mode above the lightline at
(β,ω), then the boundary-value problem for an incident plane
wave with frequency ω and wave-vector component β has
no uniqueness. In addition, strong resonant effects may be
observed for incident waves with a slightly different β [25,26].

In a recent work [27], we found nonlinear standing waves
(NSWs) on a periodic array of circular cylinders with a Kerr
nonlinearity through rigorous numerical simulations using a
highly accurate numerical method. The NSWs are special
nonlinear bound states in the radiation continuum [28,29].
They are solutions without any incident waves, are localized
around the cylinders, and do not propagate along the array.
Unlike the linear standing waves, the NSWs exist continuously
with respect to the frequency, and their amplitudes vary with
the frequency. Near the frequencies of the linear standing
waves, there are NSWs with relatively small amplitudes. In
this paper, we study the diffraction of a normal incident plane
wave by a periodic array of nonlinear circular cylinders and
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show that the incident wave may couple with the NSWs, so that
the diffraction problem has multiple solutions for any given
frequency. Importantly, an incident wave of arbitrarily small
amplitude may couple to the NSWs, so that multiple solutions
exist without any condition on the intensity of the incident
wave. Due to the different symmetries between the incident
wave and the NSWs, their coupling is a symmetry-breaking
phenomenon.

The rest of this paper is organized as follows. In Sec. II,
we describe the problem and give a mathematical formulation.
In Sec. III, we present some results on NSWs. In Sec. IV,
a perturbation theory is developed for incident waves with
small amplitudes. The main results on the nonlinear diffraction
problem are presented in Sec. V. We conclude the paper with
some discussion in Sec. VI.

II. FORMULATION

In Fig. 1, we show a periodic array of parallel and infinitely
long circular cylinders surrounded by air. In a Cartesian
coordinate system {x,y,z}, the cylinders are parallel to the z

axis and the array is periodic in y with period L. The refractive
index and the radius of the cylinders are n1 and a, respectively,
where n1 > 1 and a < L/2. As shown in Fig. 1, the structure
is symmetric with respect to both x and y axes. We assume
that cylinders are made from a dielectric material with a Kerr
nonlinearity.

For the E polarization and assuming the higher har-
monics can be ignored, the nonlinear Maxwell’s equations
can be reduced to the following nonlinear Helmholtz equa-
tion [1,3,5,30–32]:

∂2u

∂x2
+ ∂2u

∂y2
+ k2

0(n2 + γ |u|2)u = 0, (1)

where u is the z component of the electric field, k0 = ω/c is
the free space wave number, n = n(x,y) is the refractive index
function, γ = 3

4χ (3) is the nonlinear coefficient satisfying γ =
γ1 > 0 in the cylinders and γ = 0 outside the cylinders, and
χ (3) is an element of the third-order nonlinear susceptibility
tensor. The normal incident plane wave is given by

u(i)(x,y) = A(i)eik0n0(x+L/2), (2)

x

y

n=n0=1

γ=0

n=n1

γ=γ1

u(i)

L

FIG. 1. A plane wave u(i) impinges on a periodic array of circular
cylinders under the normal incidence.

where A(i) is the amplitude. Our objective is to analyze the
diffraction of normal incident plane waves by this array of
nonlinear cylinders.

Since the structure is periodic in y and the incident wave is
invariant in y, we consider solutions that are also periodic in
y. Therefore, u satisfies

u(x,y + L) = u(x,y). (3)

Meanwhile, the solution can be expanded in plane waves for
|x| > a. For the transmitted and reflected waves, the wave
vectors are (αm,βm) and (−αm,βm), respectively, where m is
any integer,

βm = 2πm

L
, αm =

√
k2

0n
2
0 − β2

m. (4)

Comparing the plane-wave expansions of u and ∂u/∂x, we
can write down rigorous nonlocal boundary conditions at
x = ±L/2 [33]. If we define a linear operator T by

T eiβmy = iαmeiβmy for m = 0,±1,±2, . . . , (5)

then the boundary conditions are

∂u

∂x
= −T u + 2iα0A

(i), x = −L

2
, (6)

∂u

∂x
= T u, x = L

2
. (7)

The term 2iα0A
(i) in the right-hand side of Eq. (6) is related to

the incident wave. Because of the boundary conditions (3), (6),
and (7), Eq. (1) only needs to be solved on the square:

S = {(x,y) : |x| < L/2, |y| < L/2}. (8)

Due to the nonlinearity, Eq. (1) can only be solved by
an iterative method. We use an efficient iterative method and
a highly accurate discretization scheme to find the solutions
of Eq. (1). The numerical methods are briefly described in
Appendix A.

III. STANDING WAVES

For the periodic array shown in Fig. 1, a guided mode is a
solution of Eq. (1) given as

u(x,y) = φ(x,y)eiβy, (9)

where β is the Bloch wave number (or propagation constant)
of the mode, and φ is periodic in y with period L and decays
exponentially to zero as |x| → ∞. For linear cylinders, i.e., if
γ = 0, guided modes exist continuously below the lightline
(that is, k0n0 < |β|), and ω is related to β by dispersion
curves [15,16]. Standing waves are special guided modes
with β = 0. Away from the cylinders, a standing wave can
be expanded in plane waves as

φ(x,y) =
⎧⎨
⎩

∑
m

b−
m ei[βmy−αm(x+L/2)], x < −a,

∑
m

b+
m ei[βmy+αm(x−L/2)], x > a,

(10)

where αm and βm are given in Eq. (4), and b±
m are unknown

coefficients. If the frequency satisfies ωL/(2πc) < 1 (for
n0 = 1), then α0 is positive and all other αm for m �= 0 are
purely imaginary. In that case, to ensure that φ decays to zero
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FIG. 2. Amplitude-frequency relations of seven nonlinear stand-
ing waves on a periodic array of circular cylinders with a Kerr
nonlinearity.

as |x| → ∞, we only need the condition b±
0 = 0. Notice that

if φ is an odd function of y, i.e., φ(x,y) = −φ(x,−y), then
this condition is automatically satisfied.

For arrays with a reflection symmetry in the periodic direc-
tion, the existence of antisymmetric linear standing waves (i.e.,
odd functions in y) are well established [17–21,23,24]. The
linear standing waves exist only at a discrete set of frequencies.
For an array of circular cylinders with refractive index n1 = 2.5
and radius a = 0.3L, there are two antisymmetric linear
standing waves within the frequency interval ωL/(2πc) < 1.
These two modes appear at ωL/(2πc) = 0.550 2 and 0.780 0,
respectively.

In a recent work [27], we analyzed NSWs on periodic
arrays of circular cylinders. Unlike the linear standing waves,
the NSWs exist continuously with respect to the frequency
and their amplitudes depend on the frequency. For the
array with n1 = 2.5, a = 0.3L, and γ1 > 0, the amplitude-
frequency relations of the first few NSWs are shown in
Fig. 2. The amplitude A is defined as max |φ(x,y)|, and it is
inversely proportional to

√
γ1. Since γ1 is extremely small, the
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FIG. 3. Electric field patterns of the nonlinear standing waves at
frequency ωL/(2πc) = 0.53 corresponding to points A, B, and C
in Fig. 2.

amplitudes are typically very large. However, two NSWs are
directly linked to the linear standing waves. Their amplitudes
tend to zero as ω approaches the corresponding frequencies
of the linear standing waves. Notice that the NSWs can have
arbitrary phases. If φ(x,y) is a NSW, then so is Cφ(x,y),
where C is a complex number with unit magnitude. For
γ1 = 2×10−12 m2/V2, the electric field patterns of the first
three NSWs at frequency ωL/(2πc) = 0.53, corresponding to
points A, B, and C in Fig. 2, are shown in Fig. 3. These NSWs
are odd functions of y, and they vanish on horizontal lines at
y = 0 and y = ±L/2.

IV. PERTURBATION ANALYSIS

Nonlinear wave phenomena such as optical bistability and
symmetry breaking are related to the existence of multiple
solutions for the same incident wave, but they seem to appear
only when the power or intensity of the incident wave is
sufficiently high. This is true even when the nonlinear effect is
enhanced by resonant cavities. In this and the next sections, we
show that multiple solutions related to the symmetry-breaking
phenomenon can appear for incident waves of arbitrarily low
intensity. Of course, this is only true for the ideal infinite
periodic structure. The multiple solutions are the consequence
of nonlinear coupling between the incident wave and the
NSWs. In the following, we analyze the coupled solutions
by a perturbation method.

In Sec. II, we formulated the nonlinear diffraction problem
on square S for governing equation (1) with boundary
conditions (3), (6), and (7). Let δ = A(i)/A be the ratio of
the amplitudes of the incident plane wave and a NSW φ(x,y),
and we assume δ is small and seek the solution in a power
series of δ:

u = C[φ + A(δφ1 + δ2φ2 + · · · )], (11)

where C is an unknown complex number satisfying |C| = 1.
Substituting Eq. (11) into Eq. (1), and gathering terms of equal
powers of δ, we obtain

Lφ + k2
0γ |φ|2φ = 0, (12)

Lφ1 + k2
0γ (2|φ|2φ1 + φ2φ̄1) = 0, (13)

Lφ2 + k2
0γ

(
2|φ|2φ2 + φ2φ̄2 + 2Aφ|φ1|2 + Aφ̄φ2

1

) = 0,

(14)

where φ̄ is the complex conjugate of φ and L is given by

L = ∂2
x + ∂2

y + k2
0n

2(x,y). (15)

Substituting Eq. (11) into the boundary conditions (6) and (7),
we obtain

∂xφ = ±T φ, x = ±L/2, (16)

∂xφ1 = T φ1, x = L/2, (17)

∂xφ1 = −T φ1 + 2iα0C̄, x = −L/2, (18)

∂xφ2 = ±T φ2, x = ±L/2, (19)
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where T is defined in Sec. II. In addition, φ,φ1, and φ2 must
all satisfy the periodic condition (3).

Equation (12) and boundary condition (16) for φ are not
new. For any given C,φ1 can be solved from Eqs. (13), (17),
and (18). To determine C, we multiply Eq. (14) by φ̄ and
integrate the result on S. After an integration by parts and
some calculations on the boundary of S given in Appendix B,
we obtain ∫

D

γ |φ|2(φ̄φ2 + φφ̄2 + 2A|φ1|2)dxdy

+A

∫
D

γ φ̄2φ2
1 dxdy = 0, (20)

where D is the disk of radius a. Since γ = γ1 in D and γ1 is a
constant, the imaginary part of Eq. (20) gives

Im

(∫
D

φ̄2φ2
1 dxdy

)
= 0. (21)

In Appendix B, we show that the above condition is also a
direct consequence of the power balance law, namely, the
incident power should be equal to the total of reflected and
transmitted powers.

Since φ1 depends on C, Eq. (21) is actually a nonlinear
equation for C. Let C = exp(id) for a real d ∈ (−π,π ], it
is shown in Appendix B that φ1 = cos(d)ψ + sin(d)ϕ, where
ψ and ϕ are independent of C, and satisfy (13), (17) and
conditions similar to (18). This leads to real numbers θ∗ and
K depending on φ,ψ , and ϕ such that

sin(2d + θ∗) = K. (22)

It is clear that Eq. (22) has four, two, or zero solutions in
(−π,π ], for |K| < 1,|K| = 1, or |K| > 1, respectively. More
details are given in Appendix B.

V. NUMERICAL RESULTS

In this section, we show numerical solutions of the
nonlinear diffraction problem for an array of circular cylinders
with n1 = 2.5, a = 0.3L, and γ1 = 2×10−12 m2/V2. For the
coordinate system shown in Fig. 1, the structure and the in-
cident wave have a reflection symmetry with respect to the
x axis, but the diffraction problem can have both symmetric
solutions (even functions of y) or asymmetric solutions. In
Fig. 4, we show a symmetric solution for normalized frequency
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FIG. 4. Real (top) and imaginary (bottom) parts of u for the sym-
metric solution of the nonlinear diffraction problem at ωL/(2πc) =
0.53 and A(i) = 103 V/m.
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FIG. 5. Frequency dependence of polar angle d for coefficient
C = eid in the perturbation theory. The panels (a), (b), and (c)
correspond to the three lowest NSWs shown in Fig. 2.

ωL/(2πc) = 0.53 and incident amplitude A(i) = 103 V/m. It
is clear that u(x,y) is an even function of y, and its magnitude
is on the same order as A(i).

The asymmetric solutions are those coupled to the NSWs.
They are neither symmetric nor antisymmetric (odd functions
of y), and they appear in pairs. If u(x,y) is an asymmetric
solution, then u(x,−y) is also a solution. In most cases, for
a fixed incident wave, there are four asymmetric solutions
coupled to each NSW. The perturbation theory developed in
Sec. IV allows us to determine the coefficient C or its polar
angle d. The pair u(x,y) and u(x,−y) are related to C and −C,
respectively. In Fig. 5, we show d as functions of the frequency
for the first three NSWs. The three panels in Fig. 5 correspond
to the NSWs marked with A, B, and C in Fig. 2, respectively.
The solid red and dashed blue curves represent two different
values of d. Each d gives rise to a pair of coefficients C = ±eid .
In general, there are two different values of d for each NSW,
but the solid red and dashed blue curves in Fig. 5 can intersect.
For the third NSW, there is a frequency interval (0.504,0.52)
in which the coefficient C does not exist. In Table I, we list the

TABLE I. Coefficient C of the perturbation theory for three
NSWs marked A, B, and C in Fig. 2.

NSW Coefficient C

A ±(0.9910 + 0.1340i), ±(0.3084 − 0.9513i)
B ±(0.9965 − 0.0832i), ±(0.5297 + 0.8482i)
C ±(0.0544 − 0.9985i), ±(0.2194 − 0.9756i)
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FIG. 6. Wave field patterns (real part of u) of two asymmetric
solutions coupled to the first NSW.

values of C for the first three NSWs at frequency ωL/(2πc) =
0.53, corresponding exactly to points A, B, and C in Fig. 2.

The perturbation theory is derived under the assumption that
the incident amplitude A(i) is much smaller than the amplitude
A of a NSW φ. For a given A(i), we can find the asymmetric
solution numerically using Cφ or C(φ + Aδφ1) as the initial
guess. For the iterations, we use the modified Newton’s method
given in Eq. (A4). For ωL/(2πc) = 0.53 and A(i) = 103 V/m,
we calculate two asymmetric solutions for each NSW. In Fig. 6,
we show the two solutions coupled to the first NSW for C =
0.991 0 + 0.134 0i and C = 0.308 4 − 0.951 3i, respectively.
Since the amplitude of the NSW is around 6×105 V/m, and it is
much larger than A(i), the solutions are dominated by the NSW.
To see more clearly the wave field away from the cylinders,
we limit the field values from −1.5×103 to 1.5×103 V/m. It
can be seen that away from the cylinders the field is dominated
by plane waves propagating along the x axis, but around the
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FIG. 7. Wave field patterns (real part of u) of the four asymmetric
solutions coupled to the second and third NSWs.

cylinders, the field pattern looks like the one shown in Fig. 3.
As mentioned earlier, there are two more asymmetric solutions
associated with the NSW, and they are the mirror reflections
(with respect to the x axis) of the two solutions obtained.

We have also calculated asymmetric solutions coupled
to the second and third NSWs. In Fig. 7, we show four
solutions. The first two panels show solutions coupled to the
second NSW for C = 0.996 5 − 0.083 2i and C = 0.529 7 +
0.848 2i, respectively. The third and fourth panels correspond
to the third NSW with C = 0.054 4 − 0.998 5i and C =
0.219 4 − 0.975 6i, respectively. The field values are also
limited from −1.5×103 to 1.5×103 V/m.

While our main concerns are the solutions for weak
incident waves, we also try to track the solutions as the
incident amplitude A(i) is increased. In Fig. 8, we show
the transmission coefficients as functions of A(i) for seven
solutions of the nonlinear diffraction problem at the fixed
frequency ωL/(2πc) = 0.53. The transmission coefficient is
defined as the ratio between the transmitted power and the
incident power. The first panel of Fig. 8 shows the transmission
coefficients for the symmetric solution (solid curve) and
the two asymmetric solutions (dashed and dash-dot curves)
coupled to the first NSW. In the second panel, the blue and red
curves correspond to the solutions coupled to the second and
third NSWs, respectively.

Our numerical results indicate that the two asymmetric
solutions related to the first NSW are merged to the symmetric
solution and disappear when A(i) is increased. In Fig. 8 (top
panel), the dashed and dash-dot curves have end points on the
solid curve. This phenomenon is more clearly illustrated in
Fig. 9, where a dimensionless quantity η is shown for the two
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FIG. 8. Dependence of transmission coefficients on incident
amplitude A(i) for solutions of the nonlinear diffraction problem at
ωL/(2πc) = 0.53. Top panel: the symmetric and two asymmetric
solutions coupled to the first NSW are shown as the solid, dashed,
and dash-dot lines, respectively. Bottom panel: asymmetric solutions
coupled to the second and third NSWs are shown as the blue and red
curves, respectively.

013852-5



LIJUN YUAN AND YA YAN LU PHYSICAL REVIEW A 94, 013852 (2016)

0 2 4 6 8

x 10
5

0

0.5

1

A(i)

η

FIG. 9. Measure of asymmetry η for two asymmetric solutions
coupled to the first NSW.

asymmetric solutions. The number η measures the difference
between the symmetric solution us and an asymmetric solution
ua , and is defined as

η =
∫
D

|us − ua|2dxdy∫
D

|us |2dxdy + ∫
D

|ua|2dxdy
,

where D is the disk of radius a. A small η indicates that ua

is close to us , and η equals to zero when the two solutions
are identical. In Fig. 9, the blue and red curves correspond
to dashed and dash-dot curves in the top panel of Fig. 8,
respectively. For each solution, η decreases to zero as the
incident amplitude reaches a critical value. To understand the
disappearance of the asymmetric solutions better, we need to
look at the field patterns for larger A(i). In Fig. 10, we show the
wave field patterns of the three solutions marked as A, B, and C
in the top panel of Fig. 8. It seems that the field patterns of the
asymmetric solutions rotate as A(i) is increased and become
symmetric (with respect to the x axis) when they disappear.
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FIG. 10. Wave field patterns, Re(u) in the left and Im(u) in the
right, of the three solutions marked as A, B, and C in Fig. 8 (top
panel), for A(i) = √

5 × 105 V/m and ωL/(2πc) = 0.53.

Asymmetric solutions associated with the second and third
NSWs persist as A(i) is increased (at least up to 9×105 V/m),
probably due to different field patterns between these NSWs
and the symmetric solution.

The above solutions are obtained by the numerical method
described in Appendix A. Due to the high order of accuracy of
the method, our numerical results are obtained using 52 points
to discretize the circle at r = a and 26 points to discretize the
radial variable r . The solutions are computed by increasing A(i)

in small steps, and Newton’s method is used as the iterative
scheme when A(i) is increased.

VI. CONCLUSION

In this paper, we analyzed the diffraction of plane incident
waves by a periodic array of circular cylinders with a Kerr
nonlinearity. Through a perturbation analysis and numerical
simulations, we found that normally incident plane waves can
couple to the NSWs, leading the existence of multiple solutions
related to the symmetry-breaking phenomenon. Unlike exist-
ing studies on optical bistability and symmetry breaking, the
asymmetric solutions appear for incident waves of arbitrarily
low intensity and for any frequency satisfying ωL/(2πc) < 1.
Mathematically, our study indicates that the boundary-value
problem of the nonlinear Helmholtz equation for a periodic
structure has no uniqueness for all frequencies. This is very
different from the linear case, where nonuniqueness can
happen only at a discrete set of frequencies.

The existence of asymmetric solutions for arbitrarily weak
incident waves is only possible on an infinite structure such as
the periodic array. For any finite structure surrounded by air,
there are only resonance modes with finite Q factors. It is well
known that nonlinear effects can be enhanced by resonances
with large Q factors [4,14], but on a finite structure, phenomena
like symmetry breaking appear only when the intensity of
the incident wave is sufficiently large. The periodic array is
different, since the linear standing waves are resonances with
infinite Q factors. In the linear case, a normal incident wave
cannot couple to a standing wave due to the different symmetry.
But if the incident wave has a small incident angle, it couples
to a resonance mode which is close to the linear standing wave,
and the solution has a large amplitude on the array [25,26]. For
the nonlinear case, the nonlinear terms break the symmetry and
make it possible for the normal incident wave to couple to the
NSWs.

In general, the amplitude of a NSW is very large, since it is
proportional to 1/

√
γ1; thus an asymmetric solution coupled

to the NSW has large stored energy, and a switching between
the symmetric and asymmetric solutions may be difficult.
However, near the frequency ω∗ of a linear standing wave, the
amplitude of the NSW can be small, since it is proportional to√

ω∗ − ω. Therefore, useful applications may be realized for
ω near ω∗.

Related to this work, there are a number of important
questions. First of all, the stability of the symmetric and
asymmetric solutions must be studied. Potential applications
are possible only if some asymmetric solutions are stable.
Secondly, it is important to know whether there are solutions
that are nonperiodic in y or have a period larger than L. If there
are solutions that do not satisfy the periodic condition Eq. (3),
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we also need to study their stability. Finally, the limitation
of the nonlinear Helmholtz equation must be analyzed. Even
for the ideal 2D periodic structure, the equation is derived
assuming the third and higher harmonics can be ignored. It
is necessary to understand the effect of this approximation to
the asymmetric solutions. These questions will be addressed
in our future studies.
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APPENDIX A

In Sec. II, the problem is formulated on the square S. Since
the governing equation is nonlinear, an iterative method is
needed. To speed up the iterations, it is desirable to further
reduce the computational domain. Similar to the case studied
in [5], we can reduce the domain to the disk

D = {(x,y) : r =
√

x2 + y2 < a}. (A1)

The boundary condition is

∂u

∂r
= Bu + A(i)f (θ ), at r = a, (A2)

where B is an operator, f is a function related to the incident
wave but independent of A(i), and θ is the angle variable of the
polar coordinate system. It is not possible to write down B and
f analytically, but once the circle � (at r = a) is discretized,
they can be easily calculated. The key idea is to first calculate
the so-called Dirichlet-to-Neumann (DtN) operator � for the
linear Helmholtz equation in S\D (the domain inside S and
outside D), then combine � with boundary conditions (3), (6),
and (7) to obtain Eq. (A2). The details can be found in [5].

A number of iterative methods can be used to solve the
nonlinear Helmholtz equation [34]. Newton’s method for
Eq. (1) can be written as

Lu(j+1) + k2
0γ {2|u(j )|2u(j+1) + [u(j )]2ū(j+1)}

= 2k2
0γ |u(j )|2u(j ), (A3)

where u(j ) is the current iteration, u(j+1) is the next iteration
to be solved, ū is the complex conjugate of u, and L is
defined in Eq. (15). When the Jacobian is not singular or ill
conditioned at the solution, the method converges quickly if
there is a good initial guess [35]. However, the linear system
discretizing Eq. (A3) may be singular or near singular for some
special initial guesses, and then Newton’s method becomes
numerically unstable and must be avoided. In such a case, we
use the modified Newton’s method which replaces the constant
2 in Eq. (A3) by σ > 2, i.e.,

Lu(j+1) + k2
0γ {σ |u(j )|2u(j+1) + [u(j )]2ū(j+1)}

= σk2
0γ |u(j )|2u(j ). (A4)

We discretize Eqs. (A3) and (A4) on D by a mixed
pseudospectral method that uses Chebyshev and Fourier
collocation schemes for r and θ , respectively [36]. As shown
in our previous works [5,10,27], the method is capable of
producing accurate solutions with a relatively small number
of discretization points.

APPENDIX B

For n0 = 1 and ωL/(2πc) < 1,αm (for m �= 0) given in

Eq. (4) satisfies iαm = −ρm, where ρm =
√

β2
m − k2

0n
2
0 > 0.

Outside the disk D,φ2 satisfies the linear Helmholtz equation
Lφ2 = 0; thus φ2 can be expanded as Eq. (10) with coefficients
d±

m . This leads to

∫ L
2

− L
2

[
φ2

∂φ̄

∂x

]
x= L

2

dy = L

⎛
⎝−iα0b̄

+
0 d+

0 −
∑
m�=0

ρmb̄+
md+

m

⎞
⎠,

∫ L
2

− L
2

[
φ̄

∂φ2

∂x

]
x= L

2

dy = L

⎛
⎝iα0b̄

+
0 d+

0 −
∑
m�=0

ρmb̄+
mdm

⎞
⎠

+

.

Since φ is an odd function of y, we have b±
0 = 0, and thus

∫ L
2

− L
2

[
φ2

∂φ̄

∂x
− φ̄

∂φ2

∂x

]
x= L

2

dy = −2iα0b̄
+
0 d+

0 L = 0.

Based on the above equation, a similar equation at x = −L/2,
and the periodic condition, we get∫

∂S

[
φ2

∂φ̄

∂ν
− φ̄

∂φ2

∂ν

]
ds = 0, (B1)

where ∂S is the boundary of square S, and ν is the outward
unit normal vector of ∂S. Equation (20) can be obtained if we
multiply Eq. (14) by φ̄, integrate on S, perform an integration
by parts, and make use of Eq. (B1) and the complex conjugate
of Eq. (12).

Let u(r) and u(t) be the reflected and transmitted waves, such
that u = u(i) + u(r) for x < −a and u = u(t) for x > a. They
can be expanded as

u(r) =
∞∑

m=−∞
Rmei[βmy−αm(x+L/2)], x < −a,

u(t) =
∞∑

m=−∞
Tm ei[βmy+αm(x−L/2)], x > a.

Multiplying Eq. (1) by ū and integrating the result on S, we
obtain the power balance law:

|R0|2 + |T0|2 = |A(i)|2. (B2)

Assuming

φ1(±L/2,y) =
∞∑

m=−∞
c±
meiβmy,

then Eq. (11) gives

T0 = CA(i)c+
0 + · · · ,

A(i) + R0 = CA(i)c−
0 + · · · .
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If Eq. (B2) is also expanded in a power series of δ, then the
leading term gives

|c+
0 |2 + |c−

0 − C̄|2 = 1

or

|c+
0 |2 + |c−

0 |2 − 2Re(Cc−
0 ) = 0.

Multiplying Eq. (13) by φ̄1 and integrating the result on S, we
obtain

∫
S

(−|∇φ1|2 + k2
0n

2|φ1|2 + 2k2
0γ |φ|2|φ1|2

)
dxdy

+ k2
0

∫
D

γφ2φ̄2
1dxdy +

∫
∂S

φ̄1
∂φ1

∂ν
ds = 0. (B3)

It can be verified that

Im

(∫
∂S

φ̄1
∂φ1

∂ν
ds

)

= α0L
[|c+

0 |2 + |c−
0 |2 − 2Re(Cc−

0 )
] = 0.

Thus, the imaginary part of Eq. (B3) gives

Im

(∫
D

γφ2φ̄2
1dxdy

)
= 0.

The above is identical to Eq. (21).

We let ψ and ϕ satisfy Eqs. (13) and (17), and

∂xψ = −T ψ + 2iα0, x = −L/2,

∂xϕ = −T ϕ + 2α0, x = −L/2,

then φ1 = cos(d)ψ + sin(d)ϕ, and

φ2
1 = cos2(d)ψ2 + sin(2d)ψϕ + sin2(d)ϕ2.

Let K1,K2, and K3 be given by

K1 = Im

(∫
D

φ̄2ψ2 dxdy

)
,

K2 = Im

(∫
D

φ̄2ψϕdxdy

)
,

K3 = Im

(∫
D

φ̄2ϕ2dxdy

)
,

then Eq. (21) gives

K1 cos2(d) + K2 sin(2d) + K3 sin2(d) = 0.

The above can be written as a quadratic equation for tan(d) or
cot(d), and it can also be reduced to Eq. (22), if we define θ∗
and K by

K0 =
√

(K1 − K3)2 + 4K2
2 ,

cos θ∗ = 2K2/K0,

sin θ∗ = (K1 − K3)/K0,

K = −(K1 + K3)/K0.
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