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Inverse problem for light emission from weakly deformed microdisk cavities
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Microdisk cavities with a smoothly deformed boundary allow for highly directional light emission. The
conventional direct problem is to determine the far-field emission pattern of an optical mode for a given cavity
shape by solving Maxwell’s equations. We introduce the inverse problem of finding the cavity shape for which
the far-field intensity pattern of the optical mode best fits a desired profile. We find an optimal solution within a
second-order perturbation theory for weakly deformed cavities with a mirror reflection symmetry. Surprisingly,
in this case the optimal solution is unique for specified mode numbers and refractive index. The perturbative
results are confirmed by full numerical simulations.
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I. INTRODUCTION

Optical microcavities have played a significant role in
fundamental and applied research in the past decade [1]. A
popular geometry is the microdisk [2–4], which confines light
by total internal reflection at the circular-shaped dielectric
boundary. The optical modes in such a cavity are called
whispering-gallery modes. These modes have high-quality
factors Q = ωτ , where τ is the lifetime and ω is the resonance
frequency of the given mode. The in-plane light emission from
an ideal microdisk is isotropic due to the rotational symmetry,
which is a considerable disadvantage for applications. To
overcome this problem, microcavities with deformed bound-
aries have been suggested and fabricated [5–9]. For various
shape deformations, unidirectional emission, i.e., emission
into a single direction with small angular spread, has been
demonstrated [10–23]. A recent review provides an in-depth
account of the rich physics of deformed microcavities [24].

When the boundary deformation is weak in the sense that
the perturbation area is small compared to the wavelength
squared, it is possible to compute the Q-factor, the frequency
ω, the spatial mode pattern, and the far-field pattern using a
perturbation theory [25,26]. This second-order perturbation
theory is nontrivial, as an optical microcavity is an open
system. Several shapes have been considered: the cut disk
cavity [25], cavities subjected to local boundary perturba-
tions [27], and the limaçon cavity [28]. The perturbation
theory has given great insight into an extreme sensitivity of
the far-field pattern observed in cavities with subwavelength
boundary deformations [26]. Moreover, it allows a description
of multimode coupling in terms of boundary-wave scatter-
ing [29].

The perturbation theory, and in fact all theory, numerical
simulations, and experiments done so far on deformed mi-
crodisk cavities, treat the direct problem; see the illustration
in Fig. 1. It consists of determining the far-field emission
pattern of an optical mode for a given boundary shape. In
this paper, we introduce the corresponding inverse problem
of finding the cavity shape for which the far-field intensity
pattern of an optical mode best matches the desired pattern.
We show that within the second-order perturbation theory, an
optimal solution of the inverse problem exists and is unique.
The inverse problem is not only interesting from the academic
point of view, but it can also serve as a useful tool to design
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FIG. 1. Deformed boundary of a microdisk cavity (left) and in-
plane far-field intensity pattern of a corresponding optical mode in a
polar plot (right). The direct problem consists in solving Maxwell’s
equations to determine the far-field pattern of an optical mode for
a given cavity shape. In the opposite case of the inverse problem,
the far-field intensity pattern of the optical mode is known, and the
best-fitting cavity shape is to be determined.

microcavity devices suitable for various kinds of applications.
Moreover, there are situations in which the shape of a cavity is
difficult to measure experimentally, but the far-field intensity
pattern can be accurately determined; see [30]. In this case,
the inverse problem may allow us to extract the cavity shape
from the observed far-field data.

Inverse problems enjoy a long history in science and
engineering, and several textbooks on this topic are available,
e.g., [31]. We briefly remark on inverse problems related to the
one discussed in this paper. The most similar one appears to be
the pump-controlled light emission from random lasers [32].
The fixed geometry consists of small dielectric scatterers
randomly placed within a two-dimensional circular area. In
the weak-scattering regime, the direct problem is to determine
the far-field pattern for a given spatially nonuniform pumping
profile. The inverse problem, i.e., finding the nonuniform
pumping profile leading to a desired far-field pattern, has
been treated by brute-force numerics. Note that nonuniform
pumping has also been used for microdisk lasers to control the
emission directionality [33] but not on the basis of an inverse
problem.

Another similar problem is the inverse problem of antenna
theory, namely the determination of a line source current
distribution from its radiation pattern; see [34]. In our case,
however, there is no current distribution; the far-field pattern
is directly associated with a given electromagnetic mode of
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the cavity. Another class of inverse problems is the inverse
scattering problem; for a review of such problems, e.g. in
acoustics, see Ref. [35]. The inverse-scattering problem is
to determine the shape of an obstacle (usually Dirichlet
or Neumann boundary conditions) from the knowledge of
the time-harmonic incident wave and the far-field pattern
of the scattered wave. In our case, there is no incident wave; the
outgoing wave is emitted from inside the cavity according to
the electromagnetic boundary conditions. There is also a loose
relation to the famous question, “Can one hear the shape of
a drum?” by Kac [36]. The inverse problem is to find the
shape of a drumhead for a given (infinite) set of acoustic
eigenfrequencies. In contrast to our problem, Kac’s inverse
problem does not generally possess a unique solution giving a
negative answer to the above question [37].

The outline of the paper is as follows. In Sec. II we
recapitulate the perturbation theory for deformed microdisks.
To present the perturbative expressions in a more convenient
form, Sec. III provides a reformulation in terms of a Fourier
basis. Section IV A is devoted to our theory of solving the
inverse problem. Numerical results are presented in Sec. IV B.
Section V contains a summary.

II. PERTURBATION THEORY

In this section, we briefly recapitulate the perturbation the-
ory for passive cavity modes in weakly deformed microdisks
introduced by Dubertrand et al. [25]. As in most studies
of microdisk cavities, the mode properties are computed in
a two-dimensional configuration within the effective index
approximation. Inside the cavity, the effective refractive index
is n > 1. Outside the cavity, the refractive index is assumed to
be unity. The perturbed boundary is given in polar coordinates

r(θ )

R
= 1 + εf (θ ), (1)

with single-valued, 2π -periodic, and dimensionless defor-
mation function f (θ ) and formal perturbation parameter ε.

For ε → 0, the boundary converges to a circle of radius R.
The theory in Ref. [25] is restricted to TM polarization (for
TE polarization, see [26]) and to boundary deformations with
mirror-reflection symmetry, i.e., f (−θ ) = f (θ ). Most cavities
studied in the literature have such a symmetry, e.g., [6,7,15],
although some counterexamples do exist; see [10,38,39]. In
the situation with mirror-reflection symmetry, the modes can
be divided into two symmetry classes, one with positive and
one with negative parity with respect to the symmetry line.
The formulas given below are restricted to modes with positive
parity.

The basic idea is to expand the solutions of the perturbed
cavity in terms of the well-known solutions of the unperturbed
circular cavity. A mode with fixed parity in a circular cavity
is characterized by an azimuthal mode number m � 0 and a
radial mode number l > 0. The frequency of the mode can
be written as a dimensionless quantity, x0 = ω0R/c = k0R;
c is the vacuum speed of light and k0 is the wave number.
The frequency is a complex number due to the outgoing-wave
conditions. The real part is the usual frequency and the
imaginary part determines the decay rate of the mode. Inside
and outside of the deformed cavity, the expansion for fixed
mode numbers m and l is given by

�1(r,θ ) = Jm(nkr)

Jm(nx)
cos (mθ ) +

∑
p �=m

ap

Jp(nkr)

Jp(nx)
cos (pθ ),

(2)

�2(r,θ ) = (1 + bm)
H (1)

m (kr)

H
(1)
m (x)

cos (mθ )

+
∑
p �=m

(ap + bp)
H (1)

p (kr)

H
(1)
p (x)

cos (pθ ), (3)

with expansion coefficients ap,bp ∈ C, the Bessel function
Jm of order m, and the Hankel function H (1)

m of the first kind
and order m. The sums run over all non-negative p excluding
p = m. Up to second order in ε, the perturbed frequency x =
kR ∈ C and the expansion coefficients turn out to be

x = x0

⎡
⎣1 − εAmm + ε2

⎛
⎝3A2

mm − Bmm

2
+ x0

(
A2

mm − Bmm

)H (1)′
m

H
(1)
m

(x0) − (n2 − 1)x0

∑
k �=m

AmkAkm

Sk(x0)

⎞
⎠
⎤
⎦+ O(ε3), (4)

ap = εx0(n2 − 1)
1

Sp(x0)

⎛
⎝Apm + ε

⎧⎨
⎩ApmAmm

(
x0

Sp(x0)

∂Sp

∂x
(x0) − 1

)

+ 1

2
Bpm

[
1 + x0

(
H (1)′

m

H
(1)
m

(x0) + H (1)′
p

H
(1)
p

(x0)

)]
+ x0(n2 − 1)

∑
k �=m

ApkAkm

Sk(x0)

⎫⎬
⎭
⎞
⎠+ O(ε3), (5)

bp = ε2 1

2
x2

0 (n2 − 1)Bpm + O(ε3). (6)

Here, the following definition is used:

Sp(x) := n
J ′

p

Jp

(nx) − H (1)′
p

H
(1)
p

(x) (7)

and the coupling matrices

Apm = εp

π

∫ π

0
f (θ ) cos (pθ ) cos (mθ ) dθ, (8)

Bpm = εp

π

∫ π

0
f 2(θ ) cos (pθ ) cos (mθ ) dθ, (9)
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with

εp :=

⎧⎪⎨
⎪⎩

2 for p �= 0,

1 for p = 0,

0 for p < 0.

(10)

All the relevant information of the deformation function f (θ )
is encoded in the coupling matrices Apm and Bpm, which
determine the contribution of the circular cavity modes to the
considered mode of the perturbed cavity.

The far-field amplitude F (θ ) follows from Eq. (3) and the
asymptotic behavior of the Hankel function for large r ,

�2(r,θ ) =
√

2

πkr
ei(kr−π/4)F (θ ), (11)

F (θ ) = (1 + bm)
e−iπ m

2

H
(1)
m (x)

cos (mθ )

+
∑
p �=m

(ap + bp)
e−iπ

p

2

H
(1)
p (x)

cos (pθ ). (12)

The theory is formally valid in the perturbative regime,

sn

δa

8π
k2n2 � 1, (13)

with

sn = 1 − 2

π

(
arcsin

1

n
+ 1

n

√
1 − 1

n2

)
(14)

and δa being the area where the perturbation in terms of the
refractive index is nonzero. However, numerical simulations
indicate that the second-order perturbation theory gives reli-
able results also for much larger δa [28].

III. FOURIER EXPANSION

For the purpose of this paper, it is convenient to express
the relevant functions appearing in the perturbation theory
from Sec. II in terms of Fourier expansions. The deformation
function and its square can be written as

εf (θ ) = ã0

2
+

∞∑
j=1

ãj cos (jθ ), (15)

ãj = 2

π

∫ π

0
εf (θ ) cos (jθ ) dθ, (16)

ε2f 2(θ ) = g(θ ) = b̃0

2
+

∞∑
j=1

b̃j cos (jθ ), (17)

b̃j = 2

π

∫ π

0
g(θ ) cos (jθ ) dθ. (18)

A straightforward calculation relates the Fourier coefficients
ãj and b̃j ,

b̃j =

⎧⎪⎨
⎪⎩

1
2 ã2

0 +∑∞
n=1 ã2

n for j = 0,

ã0ãj κj + 1
2

∑∞
n=1 ãn(ãj−nκj−n

+ãj+nκj+n + ãn−j κn−j ) for j > 0,

(19)

with

κj :=
{

0 for j � 0,

1 for j � 1.
(20)

The Fourier coefficients ãj and b̃j are used to write the
coupling matrices as

Apm = εp

4
[ã0(δp,m + δp,−m) + ãp−mκp−m

+ ãm+pκm+p + ãm−pκm−p], (21)

Bpm = εp

4
[b̃0(δp,m + δp,−m) + b̃p−mκp−m

+ b̃m+pκm+p + b̃m−pκm−p] (22)

with the Kronecker delta δi,j .
In the same spirit, we rewrite the far-field amplitude F (θ )

in Eq. (12) as

F (θ ) = hm cos (mθ ) +
∞∑

p=0
p �=m

hp cos (pθ ) (23)

with

hm = (1 + bm)H̃m, (24)

hp = (ap + bp)H̃p for p �= m, (25)

H̃j := κj+1e
−iπ

j

2

H
(1)
j (x)

. (26)

Equally, we expand the far-field intensity I (θ ) = |F (θ )|2,

I (θ ) =
∞∑

p=0

εp

2
fp cos (pθ ), (27)

fp = 2

π

∫ π

0
I (θ ) cos (pθ ) dθ, (28)

with

fp = 1

2

∞∑
k=0

hk(h∗
k−p + h∗

p−k + h∗
k+p + h∗

0δp,0δk,0). (29)

IV. INVERSE PROBLEM

A. Theory

Next we study the inverse problem within the second-order
perturbation theory from Sec. II using the Fourier expansion
from Sec. III. We restrict ourselves to modes with positive
parity. The extension to negative parity is straightforward.

The perturbation theory naturally solves the direct problem
f (θ ) → I (θ ), i.e., the far-field intensity pattern I (θ ) is com-
puted from the deformation function f (θ ). The parameter set
(m,l,n) consists of the mode numbers m, l and the refractive
index n. The inverse problem G(θ ) → f (θ ) starts with a given
far-field intensity pattern G(θ ) � 0 and ends with the boundary
shape. The given far-field intensity pattern is normalized to
unity by

∫ 2π

0 G(θ ) dθ = 1. We formulate this problem as the
least-square optimization of an appropriate cost functional,
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which measures the difference between the desired profile
G(θ ) and the resulting far-field intensity pattern I (θ ),

L({ãi},m,l) =
∫ 2π

0
[αG(θ ) − I ({ãi},m,l,θ )]2dθ (30)

with the Fourier coefficients ãj of the deformation function
f (θ ). The real-valued normalization factor α depends on the
yet unknown boundary deformation via

α =
∫ 2π

0
I ({ãi},m,l,θ )dθ. (31)

We therefore treat the inverse problem as a bilevel opti-
mization. The lower-level optimization task is to minimize
L analytically while keeping α constant. This task is nested
within the upper-level optimization task in which L is
minimized numerically by varying α. As a good initial value
for α, we identify the lowest-order result from the perturbation
theory, α0 = π |h(0)

m |2.
Using the Fourier expansions (27) and

G(θ ) =
∞∑

j=0

εj

2
gj cos (jθ ),

gj = 2

π

∫ π

0
G(θ ) cos (jθ ) dθ, (32)

a tedious but straightforward calculation gives

L = α2 π

2

∞∑
j=0

εjg
2
j − α

π

2

∞∑
i,j=0

εjgjh
∗
i

× (hi−j + hj−i + hi+j + h0δi,0δj,0) + π

4

∞∑
i,j,k=0

h∗
i h

∗
khj

× (hi+j−k + hk+i+j + hk+i−j + hi−j−k + hj+k−i

+hj−k−i + hk−i−j + h0δi,0δj,0δk,0). (33)

The dependence on {ãi},m,l is hidden in the Fourier coeffi-
cients. As we restrict ourselves to a second-order perturbation
theory, we expand also the cost functional to second order,

L = L0 +
∞∑
i=0

di ãi + 1

2

∞∑
i,j=0

Cij ãi ãj + O
(
ã3

i

)
(34)

with

di = ∂L

∂ãi

∣∣∣∣
{ãj }=0

, Cij = ∂2L

∂ãi∂ãj

∣∣∣∣
{ãj }=0

. (35)

To compute di and Cij , one first has to replace hj in the cost
functional (33) by the coefficients aj and bj using Eqs. (24)–
(26). Here, one has to bear in mind that H̃j depends on the
resonant frequency x. Second, aj , bj , and x have to be replaced
by ãj using Eqs. (4)–(6), Eqs. (21) and (22), and Eq. (19).
Finally, the resulting expression for L has to be expanded in
ãj up to second order. We have done this calculation using the
computer algebra system MATHEMATICA. The explicit result is
far too long to be shown here.

Minimizing L leads to a linear set of equations,⎛
⎜⎝

C11 · · · C1N

...
...

CN1 · · · CNN

⎞
⎟⎠
⎛
⎜⎝

ã1
...

ãN

⎞
⎟⎠ = −

⎛
⎜⎝

d1
...

dN

⎞
⎟⎠, (36)

where both Fourier spaces are consistently truncated at N

leading to an even-determined problem. This linear problem
can be uniquely solved for the Fourier coefficients ãj of the
deformation function provided that the square matrix C has full
rank. Indeed, we find numerically for a variety of parameter
sets and given far-field intensity patterns that this seems to be
always the case.

Up to now we have treated the inverse problem for a
fixed mode. Now, we discuss the possibility to optimize the
boundary shape for several modes simultaneously. The simple
strategy is to add the cost functionals for different m (different
l are implicitly included) with weighting factors wm � 0:

L({ãj }) =
∑
m

wmL({ãj },m). (37)

Again we end up with Eq. (36), where Cij and di have to be
replaced by

Ĉij =
∑
m

wmCij (m), (38)

d̂i =
∑
m

wmdi(m). (39)

B. Numerical results

This section provides numerical results based on the theory
developed in the previous sections. As examples for the target
function G(θ ) = G(−θ ), we choose directed emission into
one, two, and six directions. We would like to mention that,
with conventional personal computer technology, finding the
optimal solution to the inverse problem takes typically just a
few minutes.

The most interesting case for applications is directional
emission into a single direction with a small angular spread.
To study such a situation, we first consider as a given far-
field intensity pattern G(θ ) a normalized Gaussian function
with standard deviation (≈0.4247 full width at half-maximum)
σ = 0.04 in radians (a Lorentz function gives similar results)
placed at θ = 0, corresponding to a very narrow emission
profile. Strictly speaking, one should use an infinite sum of
Gaussian functions placed at θ = 0,2π, . . ., but in practice this
is not needed, as for the chosen σ � π the Gaussian function
decays very rapidly such that the 2π -periodicity of G(θ ) is not
spoiled. Figure 2 shows the solution of the inverse problem
for mode numbers (m,l) = (16,1) and refractive index n = 2.
The resulting cavity shape is depicted in Fig. 2(b). Its far-field
emission profile I (θ ) is plotted in the same panel as a polar plot
and also in Fig. 2(a) in direct comparison to the desired pattern
G(θ ). A reasonable but not fully satisfactory agreement can
be seen. To assess the performance of the perturbation theory
itself, the far-field intensity I (θ ) is compared to the result of
full numerical calculations using the boundary element method
(BEM) [40] based on the same boundary shape. No differences
can be observed by eye. It is mentioned that the internal spatial
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FIG. 2. Solution of the inverse problem for mode numbers
(m,l) = (16,1) and refractive index n = 2. The desired far-field
intensity pattern is a Gaussian function with standard deviation
σ = 0.04 in radians. (a) Desired far-field intensity pattern (solid
red curve) and resulting far-field intensity pattern (dashed purple
curve). The dotted green curve is computed by the BEM based on
the same boundary shape. Both curves lie on top of each other. Note
that only the interval θ ∈ [0,π ] ([0◦,180◦]) is shown. The remaining
part is given by symmetry. (b) Resulting boundary shape (solid
curve) and corresponding far-field intensity pattern in a polar plot
(green dashed). (c) Fourier coefficients ãj (dimensionless) of the
deformation function with j = 1, . . . ,N .

mode pattern is barely changed under the deformation (not
shown).

Figure 2(c) shows the Fourier coefficients ãj with j =
1, . . . ,N of the deformation function f (θ ). It can be seen that
a broad range of coefficients contribute. The absolute values
of the individual coefficients are, however, below 0.01.

Figure 3 contains an example with larger azimuthal mode
number m. As a general trend, we observe that for larger
m the inverse problem can be solved more accurately. A
hand-waving argument is that a smaller wavelength along the
azimuthal direction allows us to resolve small features of the
given far-field pattern more easily. Moreover, we notice that
for larger m, the size of the Fourier coefficients ãj becomes
smaller. Here, |ãj | < 2×10−4. The resulting cavity shape,
therefore, looks very much like a circle. The tiny deformation
is revealed by the deformation function f (θ ) in Fig. 4. The
observed bound |f (θ )| < 2×10−3 corresponds to a variation
of less than 20 nm for a 10-μm-radius cavity. Even though this
is a very small variation, it is still one order of magnitude larger
than the surface roughness of the high-Q silicon microdisk
fabricated in Ref. [41]. Hence, it is possible to fabricate
such slightly deformed cavities with present technology. It
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FIG. 3. Solution of the inverse problem for mode numbers
(m,l) = (27,1) and refractive index n = 2. The desired far-field
intensity pattern is a Gaussian function with standard deviation
σ = 0.06 in radians; cf. Fig. 2.

is interesting that such a tiny deformation can lead to a highly
directional emission pattern. This extreme sensitivity of the
far-field pattern to tiny deformations of the circular shape has
been witnessed before [42–44]. It is worth mentioning that
reducing N (the number of Fourier coefficients ãj ) from 60
down to about 20 here still gives reasonably accurate solutions
of the inverse problem.

The beam divergence in Fig. 3 of ±0.06 (±3.4◦) is
comparable to what has been achieved for the notched
ellipse [21] and the shortegg cavity [23]. The former works
best for the high refractive index regime n � 3 [45] and the
latter exclusively in the low-index regime 1.5 � n � 1.8. In
our approach, the refractive index can be arbitrarily chosen.
It is worth mentioning that the nice Gaussian profile that our
approach delivers is advantageous for light coupling into a
fiber.
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FIG. 4. Deformation function f (θ ) (dimensionless) of the opti-
mal solution from Fig. 3.
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FIG. 5. Solution of the inverse problem with a desired far-field
intensity pattern consisting of two Gaussian functions each with
σ = 0.06. The parameter set is m = 27, l = 1, and n = 2; cf. Fig. 2.

Next, we make the desired far-field intensity pattern more
complicated. Figure 5 shows the case in which the far-
field intensity pattern consists of two Gaussian functions
of equal standard deviation. The first Gaussian function
is localized at θ = 0 and the second one at θ = π . The
mode numbers are chosen to be (m,l) = (27,1). Again,
we find a very weak deformation (|ãj | < 2.5×10−4) that
reproduces the desired far-field intensity pattern with high
accuracy.

Figure 6 displays the case of a desired far-field intensity
pattern consisting of six equally spaced Gaussian functions
of equal standard deviation. Here, we choose (m,l) = (24,1)
and a larger refractive index, n = 3. The resulting boundary
shape has an even weaker deformation (|ãj | < 8 × 10−7). It
reproduces the desired far-field intensity pattern with high
accuracy.

Figure 7 demonstrates that an optimal solution can also be
found for several modes simultaneously. The equally weighted
modes with azimuthal mode numbers m = 20, 21, and 22 have
been used. Again, the deformation is weak (|ãj | < 6×10−4)
and the desired profile is well reproduced.

Our results indicate that the far-field pattern can depend
strongly on a tiny deformation of the circular boundary.
Nevertheless, the far-field pattern itself is stable against
further changes of the boundary shape. Changes of the
Fourier coefficients of the boundary function below 5%
only barely change the far-field pattern (not shown).
This finding makes the emission robust with respect to
a surface roughness well below the resulting boundary
variations.
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FIG. 6. Solution of the inverse problem with a desired far-field
intensity pattern consisting of six equally spaced Gaussian functions
with σ = 0.04. The parameter set is m = 24, l = 1, and n = 3;
cf. Fig. 2.
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V. SUMMARY

We have introduced an inverse problem for weakly de-
formed microdisk cavities with mirror-reflection symmetry.
Based on the far-field intensity data, the best-fitting shape
of the microcavity can be determined. Within a second-order
perturbation theory, the optimal solution of the inverse problem
is unique for specified mode numbers and refractive index. In
the regime where the perturbation theory is valid [Eq. (13)], we
observed that with an increasing azimuthal mode number, the
quality of the solution improves and the resulting deformation
becomes weaker. Interestingly, even very weakly deformed
cavities are capable of emitting in a highly directional manner.
Comparison with full numerical solutions of Maxwell’s
equations have confirmed the perturbative results nicely.

This solution of the inverse problem might be useful for (i)
the design of optical microcavity devices with a certain needed
far-field pattern, (ii) determination of unknown cavity shapes

from given far-field data, and (iii) achieving unidirectional
light emission from very weakly deformed microdisk cavities
(preserving an ultrahigh-quality factor) for any given refractive
index. In the latter case, the experimental realization may
require a very low surface roughness.

A generic far-field intensity pattern is only possible for
a microcavity without mirror-reflection symmetry. To apply
our theory of the inverse problem to this general case, first the
perturbation theory of Dubertrand et al. [25] has to be extended
to cavities without mirror-reflection symmetry. This nontrivial
extension to a degenerate perturbation theory is the topic of
future work.
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Cao, Phys. Rev. A 88, 043801 (2013).
[30] Z. Ballard, M. Baaske, and F. Vollmer, Sensors 15, 8968

(2015).
[31] A. Tarantola, Inverse Problem Theory (SIAM, Philadelphia,

2005).
[32] T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter,

Phys. Rev. Lett. 111, 023902 (2013).
[33] S. F. Liew, B. Redding, L. Ge, G. S. Solomon, and H. Cao,

Appl. Phys. Lett. 104, 231108 (2014).
[34] D. R. Rhodes, IEEE Trans. Antennas Propag. 11, 440

(1963).
[35] B. D. Sleeman, IMA J. Appl. Math. 29, 113 (1982).
[36] M. Kac, Am. Math. Mon. 73, 1 (1966).
[37] C. Gordon, D. Webb, and S. Wolpert, Inv. Math. 110, 1

(1992).
[38] R. Sarma, L. Ge, J. Wiersig, and H. Cao, Phys. Rev. Lett. 114,

053903 (2015).
[39] J. Kullig and Wiersig, New J. Phys. 18, 015005 (2016).

013851-7

http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1063/1.106688
http://dx.doi.org/10.1063/1.106688
http://dx.doi.org/10.1063/1.106688
http://dx.doi.org/10.1063/1.106688
http://dx.doi.org/10.1063/1.2435608
http://dx.doi.org/10.1063/1.2435608
http://dx.doi.org/10.1063/1.2435608
http://dx.doi.org/10.1063/1.2435608
http://dx.doi.org/10.1103/PhysRevB.83.205305
http://dx.doi.org/10.1103/PhysRevB.83.205305
http://dx.doi.org/10.1103/PhysRevB.83.205305
http://dx.doi.org/10.1103/PhysRevB.83.205305
http://dx.doi.org/10.1063/1.108911
http://dx.doi.org/10.1063/1.108911
http://dx.doi.org/10.1063/1.108911
http://dx.doi.org/10.1063/1.108911
http://dx.doi.org/10.1038/385045a0
http://dx.doi.org/10.1038/385045a0
http://dx.doi.org/10.1038/385045a0
http://dx.doi.org/10.1038/385045a0
http://dx.doi.org/10.1126/science.280.5369.1556
http://dx.doi.org/10.1126/science.280.5369.1556
http://dx.doi.org/10.1126/science.280.5369.1556
http://dx.doi.org/10.1126/science.280.5369.1556
http://dx.doi.org/10.1103/PhysRevLett.88.033903
http://dx.doi.org/10.1103/PhysRevLett.88.033903
http://dx.doi.org/10.1103/PhysRevLett.88.033903
http://dx.doi.org/10.1103/PhysRevLett.88.033903
http://dx.doi.org/10.1364/JOSAB.21.000923
http://dx.doi.org/10.1364/JOSAB.21.000923
http://dx.doi.org/10.1364/JOSAB.21.000923
http://dx.doi.org/10.1364/JOSAB.21.000923
http://dx.doi.org/10.1063/1.1605792
http://dx.doi.org/10.1063/1.1605792
http://dx.doi.org/10.1063/1.1605792
http://dx.doi.org/10.1063/1.1605792
http://dx.doi.org/10.1103/PhysRevLett.100.033901
http://dx.doi.org/10.1103/PhysRevLett.100.033901
http://dx.doi.org/10.1103/PhysRevLett.100.033901
http://dx.doi.org/10.1103/PhysRevLett.100.033901
http://dx.doi.org/10.1364/OL.34.000163
http://dx.doi.org/10.1364/OL.34.000163
http://dx.doi.org/10.1364/OL.34.000163
http://dx.doi.org/10.1364/OL.34.000163
http://dx.doi.org/10.1364/OE.17.010335
http://dx.doi.org/10.1364/OE.17.010335
http://dx.doi.org/10.1364/OE.17.010335
http://dx.doi.org/10.1364/OE.17.010335
http://dx.doi.org/10.1103/PhysRevA.80.041807
http://dx.doi.org/10.1103/PhysRevA.80.041807
http://dx.doi.org/10.1103/PhysRevA.80.041807
http://dx.doi.org/10.1103/PhysRevA.80.041807
http://dx.doi.org/10.1063/1.3153276
http://dx.doi.org/10.1063/1.3153276
http://dx.doi.org/10.1063/1.3153276
http://dx.doi.org/10.1063/1.3153276
http://dx.doi.org/10.1103/PhysRevA.80.031801
http://dx.doi.org/10.1103/PhysRevA.80.031801
http://dx.doi.org/10.1103/PhysRevA.80.031801
http://dx.doi.org/10.1103/PhysRevA.80.031801
http://dx.doi.org/10.1063/1.3242014
http://dx.doi.org/10.1063/1.3242014
http://dx.doi.org/10.1063/1.3242014
http://dx.doi.org/10.1063/1.3242014
http://dx.doi.org/10.1103/PhysRevLett.105.103902
http://dx.doi.org/10.1103/PhysRevLett.105.103902
http://dx.doi.org/10.1103/PhysRevLett.105.103902
http://dx.doi.org/10.1103/PhysRevLett.105.103902
http://dx.doi.org/10.1063/1.4733726
http://dx.doi.org/10.1063/1.4733726
http://dx.doi.org/10.1063/1.4733726
http://dx.doi.org/10.1063/1.4733726
http://dx.doi.org/10.1109/JSTQE.2005.863002
http://dx.doi.org/10.1109/JSTQE.2005.863002
http://dx.doi.org/10.1109/JSTQE.2005.863002
http://dx.doi.org/10.1109/JSTQE.2005.863002
http://dx.doi.org/10.1073/pnas.1015386107
http://dx.doi.org/10.1073/pnas.1015386107
http://dx.doi.org/10.1073/pnas.1015386107
http://dx.doi.org/10.1073/pnas.1015386107
http://dx.doi.org/10.1063/1.4914498
http://dx.doi.org/10.1063/1.4914498
http://dx.doi.org/10.1063/1.4914498
http://dx.doi.org/10.1063/1.4914498
http://dx.doi.org/10.1103/RevModPhys.87.61
http://dx.doi.org/10.1103/RevModPhys.87.61
http://dx.doi.org/10.1103/RevModPhys.87.61
http://dx.doi.org/10.1103/RevModPhys.87.61
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevA.87.023833
http://dx.doi.org/10.1103/PhysRevA.87.023833
http://dx.doi.org/10.1103/PhysRevA.87.023833
http://dx.doi.org/10.1103/PhysRevA.87.023833
http://dx.doi.org/10.1103/PhysRevA.85.063838
http://dx.doi.org/10.1103/PhysRevA.85.063838
http://dx.doi.org/10.1103/PhysRevA.85.063838
http://dx.doi.org/10.1103/PhysRevA.85.063838
http://dx.doi.org/10.1103/PhysRevA.89.023819
http://dx.doi.org/10.1103/PhysRevA.89.023819
http://dx.doi.org/10.1103/PhysRevA.89.023819
http://dx.doi.org/10.1103/PhysRevA.89.023819
http://dx.doi.org/10.1103/PhysRevA.88.043801
http://dx.doi.org/10.1103/PhysRevA.88.043801
http://dx.doi.org/10.1103/PhysRevA.88.043801
http://dx.doi.org/10.1103/PhysRevA.88.043801
http://dx.doi.org/10.3390/s150408968
http://dx.doi.org/10.3390/s150408968
http://dx.doi.org/10.3390/s150408968
http://dx.doi.org/10.3390/s150408968
http://dx.doi.org/10.1103/PhysRevLett.111.023902
http://dx.doi.org/10.1103/PhysRevLett.111.023902
http://dx.doi.org/10.1103/PhysRevLett.111.023902
http://dx.doi.org/10.1103/PhysRevLett.111.023902
http://dx.doi.org/10.1063/1.4883637
http://dx.doi.org/10.1063/1.4883637
http://dx.doi.org/10.1063/1.4883637
http://dx.doi.org/10.1063/1.4883637
http://dx.doi.org/10.1109/TAP.1963.1138075
http://dx.doi.org/10.1109/TAP.1963.1138075
http://dx.doi.org/10.1109/TAP.1963.1138075
http://dx.doi.org/10.1109/TAP.1963.1138075
http://dx.doi.org/10.1093/imamat/29.2.113
http://dx.doi.org/10.1093/imamat/29.2.113
http://dx.doi.org/10.1093/imamat/29.2.113
http://dx.doi.org/10.1093/imamat/29.2.113
http://dx.doi.org/10.2307/2313748
http://dx.doi.org/10.2307/2313748
http://dx.doi.org/10.2307/2313748
http://dx.doi.org/10.2307/2313748
http://dx.doi.org/10.1007/BF01231320
http://dx.doi.org/10.1007/BF01231320
http://dx.doi.org/10.1007/BF01231320
http://dx.doi.org/10.1007/BF01231320
http://dx.doi.org/10.1103/PhysRevLett.114.053903
http://dx.doi.org/10.1103/PhysRevLett.114.053903
http://dx.doi.org/10.1103/PhysRevLett.114.053903
http://dx.doi.org/10.1103/PhysRevLett.114.053903
http://dx.doi.org/10.1088/1367-2630/18/1/015005
http://dx.doi.org/10.1088/1367-2630/18/1/015005
http://dx.doi.org/10.1088/1367-2630/18/1/015005
http://dx.doi.org/10.1088/1367-2630/18/1/015005


MARCUS KRAFT AND JAN WIERSIG PHYSICAL REVIEW A 94, 013851 (2016)

[40] J. Wiersig, J. Opt. A 5, 53 (2003).
[41] Q. Li, A. A. Eftehkar, Z. Xia, and A. Adibi, Opt. Lett. 37, 1586

(2012).
[42] S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, Phys. Rev.
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