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Collective dipole-dipole interactions in an atomic array
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The coherent photon scattering of atoms in an atomic array is studied. It is found that due to cooperative
photon exchanges, the excitation probability of an atom in an array parallel to the direction of laser propagation
(k̂) will either grow or decay along k̂, depending on the detuning of the laser. The symmetry of the system for
atomic separations of a = jλ/2 causes the excitation distribution and scattered radiation to abruptly become
symmetric about the center of the array, where j is an integer and λ is the transition wavelength. For atomic
separations of a < λ/2, a collection of nonradiating states (� ∼ 0) disrupts the described trend. In order to
interpret this surprising result, a band-structure calculation in the N → ∞ limit is conducted, where the decay
rates and the collective Lamb shifts of the eigenmodes versus quasimomentum are obtained. This calculation
shows that the collective exchange of photons in an array strongly affects its scattered radiation, allowing one to
easily manipulate the collective Lamb shift and directly excite either superradiant or subradiant eigenmodes by
correctly choosing the angle of the driving laser.
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I. INTRODUCTION

The coherent nature of the coupling between a collection
of radiators and the electromagnetic field [1] has proven to be
a fruitful field of study for over 60 years. Despite its history,
the study of collective radiation is still providing important
insights into quantum optics, leading to deeper understandings
of waveguides [2], quantum information [3], biophysics [4,5],
and cold atom clouds [6–14]. In particular, cold atom clouds
have proven to be an important system for studying collective
phenomena. For example, it has been noted that cooperative
photon scattering can cause the excitation distribution of a
cigar-shaped cloud to deviate from the results predicted by the
Beer-Lambert law [6]. Further, the interplay between the col-
lective Lamb shift [15–18], the energy shift due to the exchange
of virtual photons between radiators [19], and its relationship
to superradiance and subradiance [12,20–23] has produced a
plethora of new physics. Notably, the study of the large-scale
coherent buildup of forward photon emission in cold atom
clouds has shown that coherent dipole-dipole interactions can
produce superradiance in extended samples [6,7,24–26]. On
the other hand, despite rapidly increasing interest, subradiance
is still a difficult subject to study. Although recent work has
made impressive progress [10,21,22], schemes for producing
and studying subradiant states are rare.

Collective interactions in atomic arrays and/or lattices are
also well studied and can produce exciting effects, such as
the appearance of superradiant and subradiant eigenmodes
[27–33]. However, these studies do not fully address the
physics of position-dependent phase correlations in the array.
When an extended system is illuminated by a laser, it excites
the atoms to a state where the phase of the excitation amplitude
of each atom is proportional to the laser’s own phase (a timed-
Dicke state) [26]. This produces coherences that dramatically
change the photon scattering [16,22,24,34]. This effect has
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recently been studied by considering the emission of timed-
Dicke states when an array has spacings, a, much less than
the resonance wavelength (λ), where only nearest-neighbor
interactions are considered [35]. However, the limit a � λ

is not relevant to most experimental setups. Also, in this
regime the near field term in the dipole field propagator
[see Eq. (2)] overshadows the interesting physics resulting
from the coherent buildup of the ∝ 1/r term over the whole
system. When a ∼ λ or larger, even though the individual
dipole-dipole interactions are small, they can coherently build
over an extended sample and cause surprisingly large effects.
In this paper, we show that when both the phase correlations
caused by the driving laser and the collective dipole-dipole
interactions between all the atoms in an array are considered,
they produce novel physics that allows for the manipulation of
both the atoms’ scattered light and excitation probability in a
straightforward manner.

Specifically, it is shown that an array’s probability distri-
bution, when driven by a laser parallel to the array, is highly
dependent on the detuning of the laser. For red (blue) detuned
light, the dipole radiation in the direction of the laser causes the
probability of excitation to increase (decrease) logarithmically
(see Fig. 1). For atomic separations, a, of jλ/2, where j is
an integer, the excitation distribution along the direction of
the laser (k̂) rapidly changes so that it becomes completely
symmetric about the center of the array.

In the interest of understanding the nature of the scattered
emission of a finite array of atoms, the N → ∞ limit is
investigated through a band-structure calculation that gives
both the collective Lamb shift and the decay rate of the
eigenmodes for a given quasimomentum. It is then shown
that the appearance and disappearance of Bragg diffraction
peaks causes the eigenmodes to discontinuously jump from
subradiant (superradiant) to superradiant (subradiant) when
plotted versus quasimomentum. For extended samples (much
larger than λ), it is straightforward to produce subradiant
states with decay rates much less than a single atom. Where
in the Dicke limit (samples much smaller than λ) subradiant
states are the set of antisymmetrical states, subradiant states
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FIG. 1. When a red detuned laser drives an array of atoms, the
probability of excitation grows logarithmically down the line
of the array. This effect and the others discussed in this paper, are
due to the spatially dependent phase correlations between the driving
laser and the dipole radiation.

for our extended periodic system are those with a specific
quasimomentum (see Sec. V). Lastly, it is demonstrated how
the relationship between an eigenmode’s quasimomentum and
its decay rate allows one to directly and specifically excite
subradiant eigenmodes by correctly choosing the angle of the
driving laser.

II. THEORY AND METHODS

For a weak laser, a collection of two-level atoms polarized
in the x̂ direction can be treated as coupled damped harmonic
oscillators [9,34,36,37],

ḃn(t) = (i� − �/2)bn(t) − i(d/�)E(rn)

− (�/2)
∑
m�=n

G(rm − rn)bm(t), (1)

where bn represents the polarization amplitude of atom n, d is
the electric dipole matrix element, E(rn) = E0e

ik·rn is the the
laser field at atom n, � is the detuning, � is the single-atom
decay rate, and G(r) is the usual dipole field propagator [38]:

G(r) = 3eikr

2ikr

{
[1 − (r̂ · x̂)2] + [1 − 3(r̂ · x̂)2]

[
i

kr
− 1

(kr)2

]}
,

(2)

where r = |r|, and r̂ is the vector r̂ = r/r . These coupled
equations can be rewritten in matrix-vector form,

ḃ = Mb − i
d

�
E, (3)

and the steady-state solution (ḃ = 0) may be obtained by
inverting a complex symmetric N × N matrix.

One may gain insight into this system by examining the
eigenvalues and eigenvectors defined by

Mvμ =
{
i(δμ + �) − �μ

2

}
vμ. (4)

Here vμ represents the μth eigenmode, (δμ + �) corresponds
to the imaginary part of the eigenvalue and gives the laser’s
detuning from the collective Lamb shift of the eigenmode, and
�μ corresponds to the real part of the eigenvalue and gives
the decay rate. Since M is complex symmetric rather than
Hermitian, v†

νvμ = δνμ does not hold under the assumption of
nondegenerate eigenvalues. However, vT

ν vμ = δνμ does [39].
Using this identity, we may rewrite Eq. (3) as

ċμ(t) =
{
i(δμ + �) − �μ

2

}
cμ(t) − iαμ(t), (5)

where cμ = vT
μb and αμ = d

�
vT

μ E. This may be rewritten in
the t → ∞ limit as

cμ(∞) = αμ

(δμ + �) + i�μ/2
. (6)

The steady-state population of the eigenmode, cμ(∞), will
be at a maximum when � = −δμ and will have a linewidth
of �μ/2. This shows that the amplitude of an eigenmode is
dependent on both its projection onto the driving laser, αμ, as
well as its detuning with respect to �.

For the band-structure calculations of Sec. V, the N → ∞
limit is implemented in order to calculate the eigenvalues of M
for a specific quasimomentum, q. In this limit, the translational
symmetry of the system may be used in order to rewrite the
eigenvalue problem∑

n

Mmnvnq =
{
i(δq + �) − �q

2

}
vmq (7)

as ∑
n

Mmne
inaqv0 =

{
i(δq + �) − �q

2

}
eimaqv0,

(8)∑
n

Mmne
i(n−m)aq =

{
i(δq + �) − �q

2

}
,

where we have replaced vnq with v0e
inaq . The calculation has

now been reduced to an infinite sum that converges for most
values of q (see Sec. V).

III. EXCITATION DISTRIBUTION

A. Numerical results

An understanding of the highly directional nature of the
interactions that add coherently can be gained by noting the
similarities in the phases accumulated between the driving
laser and the dipole-dipole interactions [6]. Essentially, the
phase a laser will accumulate when going from atom n to
atom m is eik·(rn−rm), while the phase accumulated in a photon
exchanged by the two atoms is eik|rn−rm|. These two phases
are equivalent when (rn − rm) is parallel to k̂. Because of this,
all of the radiation and virtual photon exchanges along k̂ add
coherently, while they add incoherently along −k̂ relative to
atom n. Therefore, the excitation probability of atom n,

P (n) ≡ |bn|2, (9)

depends mainly on the dipole-dipole interactions from the
n − 1 atoms in the −k̂ direction relative to n. This is shown
in Fig. 2(a), where except for small oscillations caused by
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FIG. 2. (a) Probability of excitation of atom n [P (n)] divided
by the single-atom excitation probability (P0) for that detuning (�).
For the top two plots, P (n)/P0 is shown for a detuning of −0.6�

using 50 and 100 atoms. Note that except for small oscillations,
both plots lie on top of each other for up to n = 50. This is due
to the highly forward character of the coherent interactions. For
the bottom two plots, P (N )/P0 is shown for a detuning of +0.6�

using 50 and 100 atoms. The noninteracting probability for the same
Rabi frequency and |�| is shown for reference. (b) The symmetric
probability distribution present for integer and half-integer values of
a is shown for red and blue detunings.

reflections off of the end of the array, the value of P (n) follows
approximately the same curve for an array of 50 atoms as an
array of 100 atoms for both red and blue detunings. Note that
this mechanism is only true when a �= jλ/2, where j is an
integer, as will be discussed shortly.

The nature of P (n) can be intuitively understood by
considering that the nth atom in the array will only see a
significant contribution of electric field from the driving laser
and the n − 1 atoms located in the −k̂ direction relative to it,
as well as the fact that the dominant term in the dipole-dipole
interaction is ∝ 1/(kr) for large spacings. It can now be seen
that atom n will feel a sum of dipole-dipole interactions that
add either constructively or destructively with the driving laser.
This results in the polarization amplitude having the form

bn − b1 ∝ 1

ka

∑
m<n

1

m
, (10)

which is ∼ ln(n) for large values of n. This gives the
approximate form of P (n) shown in Fig. 2(a). Also note that
in Fig. 2, the magnitude of the the change in P (n) for a given
array is larger for red detunings than blue detunings of the
same magnitude, since the resonance frequency for an array
of atoms parallel to k̂ is redshifted (see Sec. V).

The above description holds only for values of a �= jλ

2 ,
where j is an integer. This can be understood from the fact that

FIG. 3. Photon scattering rate (γ ) in the −k̂ direction versus array
spacing a for an array of 100 atoms for values of detuning � = 0.5�

(green solid line) and � = −0.5� (red dotted line). The inset shows
the same graph zoomed in around a = 2λ. Note that the difference in
the heights of the peaks is mainly due to the fact that the collective
Lamb shift of the driven eigenmode changes with a.

the only terms in Eq. (1) distinguishing b1 from bN , b2 from
bN−1, etc. are the phase factors eikna , where n is the atom label.
If eikna → ±1 for all n, Eq. (1) is symmetric about the center
of the array. Resultantly, when a → jλ

2 , P (n) must have mirror
symmetry. Because of this, the only parameter determining the
value of P (n) is the total magnitude of all the dipole-dipole
interactions atom n experiences. For red detunings this causes
the atoms experiencing the strongest interactions (atoms in the
center of the array) to be the most excited. For blue detunings,
dipole-dipole interactions add such that the atoms in the center
are the least excited. Both of these effects may be seen in
Fig. 2. Because both the forward and backward dipole-dipole
interactions now add coherently, the dependence described in
Eq. (10) becomes

bn − b1 ∝ 1

ka

∑
m�=n

1

|m − n| . (11)

The symmetry about the center of the array also causes
a large increase in the coherent backscattering (see Fig. 3).
Normally the phase correlations of an array of atoms parallel
to k̂ only allow for coherent forward scattering [16,25];
however, because of the symmetry about ±k̂ when a → jλ

2 ,

light scattered in the −k̂ direction also adds coherently,
causing a Bragg diffraction peak. The inset in Fig. 3 shows
a closeup of one of the peaks. Near a given peak, the
coherent backscattering has the approximate form {j0(kNα)}2,
where α = a − jλ/2 and j0(x) is the zeroth spherical Bessel
function. This can be shown using the equation for the angular
distribution of the photon scattering rate:

dγ

d	
= 3�

8π
{1 − (k̂ · x̂)2}

∑
n,m

ei	k·(	rm−	rn)bnb
∗
m, (12)

where γ is the photon scattering rate, and making the
approximation that the atoms are in the timed-Dicke state
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FIG. 4. The probability of excitation of atom n [P (n)] divided
by the probability of excitation of the first atom [P (1)] for an array
containing 500 atoms. (a) Comparison between the full numerical
calculation (green), Eq. (13) (red), and our analytic model (blue) for
a = 2.3λ. Since the approximations made in the analytic derivation
hold only for ka � 1, the analytic model is only qualitatively accurate
in this regime. Note that when P (n) is generated from Eq. (13), it lies
on top of the full calculation (excluding small oscillations at large n)
for all a > λ. (b) Comparison between the full numerical calculation
(green) and the analytic model (blue) for ka � 1. This illustrates
the fact that the analytic model approaches the quantitative numerical
result for this condition, as well as the fact that the logarithmic growth
holds for very large array spacings. Note that these results are only
true for a �= jλ

2 .

(bn = |b0|eikna) caused by a laser propagating in the +k̂
direction. The differences in the heights of the diffraction peaks
shown in Fig. 3 are mainly caused by the fact that the collective
Lamb shift of the eigenmode that the laser drives changes
with a. In Fig. 3, the intensity of successive diffraction peaks
increases until a = 2λ, where it then begins to decrease. For
different laser detunings, this pattern follows a different form.

Figure 2(a) is for a = 2.3λ and detunings of |�| = 0.6,
which for red detunings show an ∼70% difference between
the first and last atoms. However, due to the long-range nature
of the coherent buildup of dipole radiation, the logarithmic
growth of P (n) does not saturate for large values of a. For
example, in Fig. 4(b), an ∼2.6% growth in P (n) is seen for
a = 50.3λ. In fact, until other time scales, such as retardation

effects, become important, there is no value of a where this
logarithmic growth does not, in principle, happen.

The nature of P (n) described here is qualitatively valid
in nonideal circumstances. This is tested using Monte Carlo
routines where the filling factor and the randomness of
the position of each atom is varied. The magnitude of the
overall growth for noninteger wavelengths is approximately
proportional to the filling factor of the sample. For example,
if an experiment would have produced an array where the
first and last atoms have an excitation probability that differs
by 50%, a filling factor of 0.5 causes the overall effect to
reduce to ∼25%. It is also found that for a �= jλ

2 , when
each atom’s x,y,z values are allowed to randomly vary, the
noise of a given array’s P (n) increases while the average
value of P (n) does not change until the randomness of the
atoms’ positions is allowed to vary distances comparable to
a, not λ. For example, if a = 20.3, the sample is significantly
more resilient to random positions than if a = 2.3. However,
it is found that the described symmetry for a = jλ

2 is more
sensitive to nonideal scenarios. Unlike the logarithmic buildup,
the robustness of the symmetry about the center of the array
does not seem to depend on the value of a. It is found that for
all spacings, letting the atom positions randomly vary more
than ∼0.3λ causes the symmetric P (n) distribution to begin to
approach the logarithmic function seen for a �= jλ

2 . Note that

the probability distributions described here occur only when k̂
is parallel to the array.

B. Analytic derivation of excitation distribution

In this section, the approximation that dipole-dipole inter-
actions adding incoherently (occurring in the −k̂ direction)
are negligible is implemented in order to derive an equation
for P (n) analytically. Note that this is only valid when a �= jλ

2 .
Neglecting all incoherent interactions allows us to replace M
in Eq. (3) with a lower triangular matrix. When the ḃ → 0
limit is taken, solving for b is reduced to solving the system of
equations

0 �
(

i� − �

2

)
b1 − i(d/�)E(r1),

0 �
(

i� − �

2

)
b2 − i(d/�)E(r2) − �

2
G(a)b1,

0 �
(

i� − �

2

)
b3 − i(d/�)E(r3) − �

2
G(a)b2 − �

2
G(2a)b1,

... , (13)

where bn is the amplitude of the nth atom. This can be solved
for b1, which can be plugged into the equation for b2 etc. The
approximation indicated in Eq. (13) remains quantitatively
accurate when a > λ. This can be seen in Fig. 4(a) where,
except for small oscillations due to reflections off the end
of the array, the curve produced by solving Eq. (13) remains
nearly identical to the full numerical result. Assuming Eq. (13)
and keeping only the first-order terms in 1/(ka) allows one to
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obtain a closed-form solution for bn:

bne
−ik(n−1)a � idE0/�

i� − �/2

(
1 − 3i�

4ka(i� − �/2)

n−1∑
m=1

1

m

)
.

(14)
To the same order in (1/ka), one can now obtain a solution for
P (n):

P (n) � (dE0/�)2

�2 + �2/4

(
1 − 2Re

{
3i�

4ka(i� − �/2)

n−1∑
m=1

1

m

})
.

(15)
These equations hold in the limit ka � 1 and describe

how P (n) grows for red detunings and diminishes for blue
detunings. This can be seen by rewriting the second term in
Eq. (15) in terms of its real and imaginary parts. The real
part of the second term, which is the dominant contributor to
P (n), adds to the probability amplitude for red detunings and
subtracts from the probability amplitude for blue detunings.
Physically, this means that in the steady-state limit the singly
scattered photons add in phase with red detuned lasers and
out of phase with blue detuned lasers. As seen in Fig. 4, for
smaller spacings the simple model used to derive Eq. (14)
becomes only qualitative. This is because in this regime,
higher-order 1/(ka) terms matter. As a becomes smaller than
λ, individual dipole-dipole interactions grow, and despite the
fact that they add incoherently, the contributions of a couple
of large interactions in the −k̂ direction begin to become
significant, causing Eq. (13) to break down.

IV. a < λ/2 BEHAVIOR

As can be seen in Fig. 5, the excitation distribution
described above breaks down for values of a < λ/2. This may
be understood by considering the distribution of eigenvalues,
i(δμ + �) − �μ/2, of M. Here, �μ is the μth eigenmode’s
decay rate, while (δμ + �) gives the laser’s detuning from the
collective Lamb shift of the eigenmode. When a < λ/2, there
exists a collection of nonradiating (�μ ∼ 0) eigenmodes of
M within a relatively small energy range (see Fig. 6). This
effect has been studied in systems such as arrays of metallic
nanospheres [40–42], where it has been shown that these
eigenmodes may be used for their optical transport properties.
The same physics strongly affects the excitation distribution of
an array driven by a laser. In Fig. 5, the excitation distribution
for an array of 100 atoms, where a = 0.4λ, is shown for
various values of �. In Fig. 5(a), it may be seen that the
values of � that lie within the energy range of the collection of
subradiant states (� = −0.4� − 0.9�) produce very different
excitation distributions than the logarithmic ones described in
the previous sections. However, Fig. 5(b) shows that once the
laser is off resonance with the collection of subradiant states,
the distribution becomes logarithmic again.

Figure 6 shows the decay rates (�μ) and collective Lamb
shifts (δμ) for the eigenmodes of an array where a = 0.4λ,
� = 0, and N = 100. Here it can be seen that despite the fact
that the overall size of the system is 40λ, there is a collection
of eigenmodes such that �μ ∼ 0 within a very narrow range
of energies. Even though populating an individual subradiant
state can be difficult due to the narrowness in energy of its

FIG. 5. The probability of excitation of atom n [P (n)] divided
by the probability of excitation of atom 1 [P (1)]. (a) Excitation
distribution for a laser resonant with the collection of subradiant states
(�μ ∼ 0) for an array of 100 atoms separated by a distance of 0.4λ.
Over the range of laser detunings � = −0.4� − 0.9�, the behavior is
drastically altered due to the almost complete lack of decay by photon
emission. (b) The same array of atoms for laser detunings that do not
lie within (� ∼ −0.4� − 0.9�) show qualitatively similar results to
those described previously.

photon scattering cross section, the fact that they all occur in
a very small energy range causes them to be the dominant
feature of the steady-state solution for values of � within their
energy band. The presence of �μ ∼ 0 decay modes will be
explained in Sec. V.

V. BAND STRUCTURE

In order to understand the eigenmodes and eigenvalues of
this system, we examine its band structure [see Eq. (8)] in the
N → ∞ limit. Since in Eq. (1) there is only one oscillator per
atom, there is only one band of eigenvalues. Setting � = 0, for
a given eigenvalue (iδq − �q/2), the real part (�q) corresponds
to the decay rate of eigenmode q, while the imaginary part (iδq )
corresponds to its collective Lamb shift. Here the q represents
the quasimomentum of the eigenmode, giving the change in
the phase of the probability amplitude going from atom to
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FIG. 6. The decay rate (�μ) and the collective Lamb shift (δμ)
of the eigenmodes of an array divided by the single-atom decay rate
(�), where a = 0.4λ, � = 0, and N = 100. Note the collection of
eigenvalues near the �μ = 0 axis, despite the fact that the length of
the array is 40λ.

atom. Note that values of δq that are positive correspond to
redshifts in the resonance line of that eigenmode.

In Fig. 7, the values of �q and δq are plotted for the
positive half of the Brillouin zone (0 � q < π/a). Note that
q is the quasimomentum of eigenmode vq shown in Eq. (8).
The negative values of q may be omitted since the calculation
is symmetric and yields the same results. As will be discussed
in Sec. VI, the value of q for an array may be changed by
adjusting the direction of laser propagation with respect to
the array. In Fig. 7(a), a discontinuity is seen at ka = qa,
when the value of �q drops to 0, changing the eigenmode
from superradiant to nonradiant. At the same time in Fig. 7(b),
when ka + (qa) = 2π the value of �q shows a discontinuity
from a subradiant mode to a superradiant mode. The same
pattern occurs for larger array spacings. In Fig. 7(c), when
(ka) − 2π = qa the eigenmodes shift from superradiant to
subradiant, while in Fig. 7(d), when ka + (qa) = 4π the
eigenmodes jump from subradiant to superradiant. While
the magnitude of each discontinuous jump of �q decreases
with a, approaching �q = � when a → ∞, the described
band-structure pattern repeats for every integer increase in
a/λ. This can be understood in terms of the appearance and
disappearance of Bragg diffraction peaks. This phenomena
was somewhat addressed in [27], but the effect of different
phase correlations (values of q) on the decay rate was not.

Figure 7 can be understood by examining Eq. (12), which
gives the photon emission rate per unit solid angle for a line
of two-level atoms polarized in the x̂ direction:

dγ

d	
= 3�

8π
{1 − sin2 θ cos2 φ}|b0|2

∑
n,m

ei(m−n)a(k cos θ−q), (16)

where b0 is a magnitude determined by the detuning and
the Rabi frequency, while q is the quasimomentum of the
eigenmode. All of the phases in Eq. (16) will add coherently,
resulting in a Bragg diffraction peak when

a(k cos θ − q) = 0, ± 2π, ± 4π,..., (17)

FIG. 7. The values of �q and of δq (the collective Lamb shift) are
plotted versus values of 0 � qa/2π < 0.5. (a) Shows this for array
spacings of a = 0.3λ, (b) a = 0.7λ, (c) a = 1.3λ, and (d) a = 1.7λ.
Note that for all four graphs the collective Lamb shift diverges at
qa/2π = 0.3, while �q gives a discontinuous jump caused by the
appearance or disappearance of a Bragg diffraction peak.

which means there will be a peak at the angle

θ = arccos
{
λ
(m

a
+ q

2π

)}
; m = 0, ± 1, ± 2... (18)

If every atom has the same phase (q = 0), then for values of
nλ < a < (n + 1)λ there will be 2n + 1 values of θ where
Eq. (18) can be satisfied and photons may be scattered. Thus
when q = 0, the photon scattering of the array produces the
well-known behavior of a diffraction grating. However, this is
not the case when q �= 0. For example, when 0 < a < λ/2 and
qa > ka, there are no solutions to Eq. (18). The result of this
is that for infinite arrays, states with values of qa > ka and
a < λ/2 do not decay. This is seen in Fig. 7(a), when �q jumps
discontinuously to 0. The opposite effect happens when λ/2 <

a < λ. Here for small values of q, there is only one angle
where the array can emit radiation coherently. However, when
the value of q is increased to the point where a(k + |q|) >

2π there is suddenly another value of θ corresponding to a
diffraction peak, resulting in a discontinuous increase in the
value of �q (see Fig. 7). This pattern continues for larger values
of a as well. If a = mλ + η (m = 0,1,2...), where η < λ/2,
then when q is increased to the point where qa > kη there
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is one less diffraction peak where photons may escape. This
makes the eigenmode’s decay rate smaller. However, if λ/2 <

η < λ, when |qa| + kη > 2π there is one more allowed peak,
making the decay rate of the eigenmode larger. For spatially
disordered systems such as cold atom gases, this discontinuity
does not occur. However, when the atoms in a gas are excited
to a timed-Dicke state, a similar peak still occurs in the forward
direction [26], which also results in an increase in the decay
rate [6,16,20].

Another surprising feature of Fig. 7 is the divergence of
the collective Lamb shift at the same values of q where the
discontinuities of �q occur. This happens because the phase
in the sum given by Eq. (8) becomes a multiple of 2π at this
point, making the value of the imaginary part of εq dependent
on a logarithmically diverging infinite sum over 1

na
. The decay

rate does not diverge, however. This is because when the phase
in Eq. (8) becomes a multiple of 2π the real part of the ∝ 1/r

term disappears, leaving only the convergent 1/r2 sum for the
value of the decay rate.

VI. CONTROLLING THE COLLECTIVE LAMB SHIFT
AND PROBING SUBRADIANT EIGENMODES

The band structure of an array has a strong effect on the
scattered radiation versus the angle of the driving laser. This is
because if one changes the angle of the laser, to first order they
are also changing the quasimomentum of the eigenmode being
driven. For an array aligned along ẑ, the phase of the laser at
the nth atom is ikna cos θ . As a result, when θ is changed, the
laser’s projection onto the qth eigenmode [αq from Eq. (5)]
is also changed. For example, if the laser is perpendicular to
the atomic array, the eigenmode corresponding to qa = 0 is
being driven. If the laser is situated at some arbitrary angle
θ , the value of qa of the eigenmode being driven is equal
to ka cos θ . Figure 8(a) shows how the photon scattering rate
changes with respect to θ . Here large changes in the scattering
rate occur when the laser changes from driving a subradiant
(superradiant) quasimomentum to a superradiant (subradiant)
quasimomentum. Figure 8(a) also shows that the scattering rate
dramatically drops at the point where this change happens due
to the large collective Lamb shift for this value of qa. It should
be noted that increases in qa of 2π correspond to the same
phase correlations. For example, Fig. 8(b) shows that for an
array with spacings a = 1.3λ, θ = 0 and θ = arccos (1.0/1.3)
give the exact same line shape.

For values of a > λ/2, the photon scattering line shapes
versus laser detuning fit a Lorentzian profile almost perfectly,
with decay rates and collective Lamb shifts corresponding
to their band-structure values. As seen in Fig. 8(b) for an
array of 1000 atoms and a = 1.3λ, when θ = 0 or θ =
arccos (0.3/1.3), �q � 0.94� and δq � −0.54�. The large
shift in resonant energy occurs because of the logarithmically
diverging collective Lamb shift discussed above, while �q �
0.94� because the value of qa occurring at the discontinuous
jump between subradiant and superradiant modes is driven,
which produces a decay rate equal to the average of the two.
When θ = π/2 or θ = arccos (1.0/1.3), the superradiant band
is driven, resulting in a broadened line shape with �q � 1.2 and
δq � 0.1�, while when θ = arccos (0.5/1.3) the subradiant
band is driven, giving �q � 0.66� and δq = 0.01�. This

FIG. 8. The dependance of the scattered photon emission on the
laser angle θ , which is the angle between an array of 1000 atoms and
the driving laser. (a) The scattered radiation versus a cos θ/λ for a
laser with � = 0 and arrays with spacings of 1.7λ and 2.3λ. Note
that the large shifts in scattered radiation occur when the eigenmode
that the laser drives crosses a band-structure discontinuity. (b) The
photon scattering rate versus detuning of an array where a = 1.3λ for
three different laser angles (θ ): {0, arccos (0.3/1.3)}, {π/2, 1.0/1.3},
and arccos (0.5/1.3). The scattering rates for all three angles fit to
a Lorentzian line shape well, with decay rates and line shifts that
correspond to those given by their N → ∞ limit band-structure
calculations seen in Fig. 7.

indicates several interesting points. First, that it is possible to
create subradiant eigenmodes with decay rates smaller than the
single-atom decay rate, even when the atoms are separated by
distances larger than λ. Second, unlike in the Dicke limit where
the decay rate of an eigenmode is determined by its symmetry,
for extended and periodic systems whether a given eigenmode
is subradiant or superradiant depends on its quasimomentum.
Lastly, this shows how one may easily access either subradiant
or superradiant eigenmodes by correctly choosing the angle of
the driving laser.
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VII. CONCLUSION

The effects in a coherently radiating atomic array being
driven by a laser have been studied. It was shown numerically
that the excitation distribution for a given array is highly
dependent on whether the driving laser is red or blue detuned.
It was then shown analytically that the probability of excitation
grows along k̂ for red detunings and diminishes along k̂ for
blue detunings even for extremely large values of a. This is
because the singly scattered photons along k̂ add in phase with
red detuned lasers and out of phase with blue detuned lasers.
It was also shown that the probability distribution and photon
scattering become symmetric about the center of the array for
spacings of jλ/2. These results break down when a < λ/2
due to the presence of a collection of extremely subradiant
states (�q ∼ 0).

In order to interpret the eigenmodes of the system, a
band-structure calculation for an infinitely long array of atoms
was conducted. These calculations showed the eigenmodes
have both a collective Lamb shift that diverges logarithmi-
cally, as well as a discontinuous decay rate when plotted
versus quasimomentum. The sudden jump from subradiant to
superradiant eigenmodes can be understood by the appearance
and disappearance of Bragg diffraction peaks of the scattered
radiation. Because of this, it was shown that there exists a
collection of eigenmodes that have no diffraction peaks at all
when a < λ/2 and therefore do not radiate. Finally, it was
shown that these divergences and discontinuities in the band
structure of an array may be exploited in order to control the
photon scattering rate by changing the angle of the driving
laser, allowing one to manipulate the collective Lamb shift as
well as access subradiant eigenmodes even when the size of
the sample is much larger than λ.

It has been suggested that coherently radiating systems
should be thought of in terms of Bragg scattering [12,27,43],

where the radiators have certain spatially dependent phase
correlations. Here, this picture is necessary. This is because the
symmetries in an atomic array cause the number of diffraction
peaks to change. Since photons are mainly emitted into these
diffraction peaks [27], the photon scattering rate changes dras-
tically with their appearance and disappearance. In systems
such as cold atom gases, where the spatial distribution of atoms
is highly disordered, the spatially dependent phases caused by
the driving laser still cause a diffraction peak in the forward
direction. This phenomenon is, of course, the well-known
coherent forward scattering [20,25]. A large part of under-
standing the nature of radiators in the low excitation regime
essentially consists of determining the spatially dependent
phase relationship between atoms followed by determining
their resulting scattered emission. Recently, interesting new
physics has resulted from approximating this relationship as
the one caused by the initial driving laser, i.e., the timed Dicke
state [6,7,16,20]. Understanding the nature of how these phase
relationships develop and how they may be manipulated in
order to explore new physical systems will surely provide
novel insights into the relationship between light and matter
in the future.

Note added. The authors have recently become aware of
work by Jen et al. [44] that studies the appearance of subradiant
states in finite arrays of atoms. This contains some similar ideas
to those of Sec. IV.
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