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We analyze the radiation-pressure-induced interaction of mirror motion and light fields in Michelson-type
interferometers used for the detection of gravitational waves and for fundamental research in tabletop quantum
optomechanical experiments, focusing on the asymmetric regime with a (slightly) unbalanced beam splitter and
a (small) offset from the dark port. This regime, as it was shown recently, provides new interesting features, in
particular a stable optical spring and optical cooling on cavity resonance. We show that, generally, the nature of
optomechanical coupling in Michelson-type interferometers does not fit into the standard dispersive-dissipative
dichotomy. In particular, a symmetric Michelson interferometer with signal-recycling but without power-recycling
cavity is characterized by a purely dissipative optomechanical coupling; only in the presence of asymmetry,
additional dispersive coupling arises. In gravitational waves detectors possessing signal- and power-recycling
cavities, yet another coherent type of optomechanical coupling takes place. We develop here a generalized
framework for the analysis of asymmetric Michelson-type interferometers, which also covers the possibility
of the injection of carrier light into both ports of the interferometer. Using this framework, we analyze in
depth the anomalous features of the Michelson-Sagnac interferometer, which have been discussed and observed
experimentally previously [A. Xuereb et al., Phys. Rev. Lett. 107, 213604 (2011); S. P. Tarabrin et al., Phys. Rev.
A 88, 023809 (2013); A. Sawadsky et al., Phys. Rev. Lett. 114, 043601 (2015)].
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I. INTRODUCTION

The Michelson interferometer was first used in 1887 in the
famous experiment by Michelson and Morley [1]. Since then,
it has become a standard tool routinely employed in high-
precision optical measurements. Currently, the most conspic-
uous devices based on the Michelson interferometer topology
are gravitational-wave (GW) detectors, such as LIGO [2,3],
VIRGO [4,5], and GEO-600 [6,7], which have arm lengths
varying from several hundreds of meters to several kilometers.

The typical optical layout of GW detectors is shown in
Fig. 1. In addition to the end mirrors (the end test masses,
ETMs), it could include up to four additional ones. Two
of them (the input test masses, ITMs), form, together with
the ETMs, two Fabry-Perot arm cavities, which increase the
light’s storage time for improving the interferometer’s signal
response. Two so-called recycling mirrors, the power- and
the signal-recycling mirror (PRM and SRM) allow us to
independently tune the bandwidths and the detunings of its
two optical modes, the common and the differential ones [8,9].
Detuning of the SR mirror can also result in a sensitivity
improvement via the so-called optical spring [10]. Since it
is dynamically unstable, also schemes exploiting two bright
light fields were researched in order to provide a stable optical
spring [11,12].

*Corresponding author: khalili@phys.msu.ru

Several years ago, the Michelson interferometer topology
was adopted also for tabletop quantum optomechanical ex-
periments, with partly translucent silicon-nitride membranes
playing the role of the test mass [13]. The motivations
of these experiments are manifold, starting from increasing
of sensitivity of small forces and displacement sensors to
fundamental tests of applicability of quantum physics to
macroscopic mechanical objects [14–17].

These membranes have very small masses (m � 100 ng)
and low optical and mechanical losses and provide a suitable
platform for quantum optomechanical experiments [18]. They
have, however, a relatively low reflectivity, which does not
allow us to use them as end mirrors in high-finesse optical
resonators. Instead, the Michelson-Sagnac topology was pro-
posed in Ref. [13], see Fig. 2.1 It can be viewed as a derivative
of the dual-recycled (signal- and power-recycled) Michelson

1We do not include ITM mirrors in Fig. 2 for the following
reasons. First, the configuration with ITM mirrors but without
the recycling ones is highly impractical in the Michelson-Sagnac
interferometers because in this case the membrane transmissivity
creates a large (much larger than the membrane mechanical eigenfre-
quency) splitting between the eigenfrequencies of the common and
the differential optical modes, effectively preventing the membrane-
mediated interaction between them. At the same time, due to the
modest optical power requirements of tabletop interferometers (in
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FIG. 1. The dual-recycled Michelson–Fabry-Perot topology of
the modern laser GW detectors. PRM: the power recycling mirror;
SRM: the signal recycling mirror; ITM: the input test mass; ETM:
the end test masses. The optional mirrors are shown by dashed lines
(in the real GW detectors, either ITMs, or PRM and/or SRM can be
absent).

topology of laser GW detectors. By folding the Michelson
arms towards each other, light that is transmitted through
the membrane does not leave the interferometer, and the
membrane takes the role of the end mirror of both Michelson
arms. In turn, the Michelson interferometer can be treated as
a special case of the Michelson-Sagnac interferometer, when
setting the membrane transmissivity equal to zero. The general
theory of the dual-recycled Michelson-Sagnac interferometer
presented in this article can be applied to all Michelson-type
interferometers—the Michelson-Sagnac, the pure Michelson,
and the Michelson-Fabry-Perot interferometer.

The standard and well-explored regime of these inter-
ferometers assumes a balanced beam splitter, interferometer

comparison with the GW detectors), the power buildup provided by
the recycling mirror alone is more than sufficient for these devices.

West port

South port
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FIG. 2. The Michelson-Sagnac interferometer. PRM: the power
recycling mirror; SRM: the signal recycling mirror. The optional
mirrors are shown by dashed lines.

arms of identical length, and optical loss as well as an
operation at (or very close to) a dark fringe. This is what
we call the symmetric regime. A detailed analysis of the
dual-recycled Michelson-Fabry-Perot interferometer in the
symmetric regime was presented in Ref. [19]. It was shown
that the complete interferometer can be mapped to a single
Fabry-Perot cavity with effective parameters (the so-called
scaling law theorem). Later the analysis was extended to the
symmetric Michelson-Sagnac interferometer [15].

An early analysis in the asymmetric regime of the
Michelson-Sagnac interferometer was performed in Ref. [20].
Here, it was in particularly shown that optical ground-state
cooling is possible even outside good cavity regime [14],
which is due to a Fano resonance shape of the radiation
pressure noise spectral density [21,22]. In Refs. [23,24], the
dynamic backaction (that is, the optical spring features [10])
of the asymmetric Michelson-Sagnac was analyzed and it was
shown, that in contrast to the symmetric case, both the optical
damping and the optical rigidity in an asymmetric Michelson-
Sagnac interferometer could acquire a nonzero value on
the optical resonance, and additional stability and instability
regions exist on either side of the resonance. Later, this
noncanonical behavior was demonstrated experimentally [26].

Here we present the generalized framework for the analysis
of asymmetric cavity-enhanced Michelson-type interferome-
ters that includes not only dynamical optomechanical back-
action but also the light’s quantum noise. In particular, we
assume that both input and output ports of the interferometer
can be pumped; this assumption simplifies the analysis of
the interferometer and provides insights into the internal
structure of the equations obtained in Ref. [23]. In Sec. II
we show that the character of the optomechanical coupling
in Michelson-type interferometers depends on whether one
or two recycling mirrors are present. In Sec. III, we analyze
in detail the case of just one (signal-) recycling cavity, using
the developed framework to explain the anomalous features
of Refs. [23,26]. In Sec. IV we provide the optimization of
optical cooling in Michelson-type interferometers.

II. OPTOMECHANICAL COUPLING IN
MICHELSON-TYPE INTERFEROMETERS

In order to provide the starting point for our consideration
below, let us start with the well-explored case of a single
optical mode whose eigenfrequency depends on the position
of the mechanical object. This type of the optomechanical
coupling is known as the dispersive one. The Hamiltonian of
this system can be presented in the standard form

Ĥ = �(ωo − gx̂)
(
ê†ê + 1

2

) + Ĥm + Ĥrest, (1)

where � is the reduced Plank constant, ê and ê† are the
annihilation and creation operators of the intracavity field (we
reserve the notation â for the incident field), x̂ is the mechanical
coordinate, ωo and g are the optical eigenfrequency and
the optomechanical coupling factor, Hm is a mechanical
Hamiltonian and Hrest is the Hamiltonian describing all other
optical degrees of freedom, including the optical pump(s) and
the optical losses. Note that the Fabry-Perot cavity treatment
can be reduced to this lumped mode model, provided that one
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of its optical modes is selected by the strong classical pump
with the frequency ωp close to this mode eigenfrequency.

Following Sec. III of the review paper [14], we rewrite the
Hamiltonian (1) in the frame rotating with the frequency ωp:

Ĥ = −�(δ + gx̂)
(
ê†ê + 1

2

) + Ĥm + Ĥrest, (2)

where δ = ωp − ωo is the detuning of the pump frequency ωp

from cavity resonance ωo. Then we extract explicitly from the
field ê the classical mean part E created by the optical pump,
ê → E + ê:

Ĥ = −�(δ + gx̂)
(|E|2 + E∗ê + Eê† + ê†ê + 1

2

)
+ Ĥm + Ĥrest. (3)

The term −�(δ + gx̂)|E|2 here just creates a static radiation
pressure on the mechanical object, which can be compensated
by some means; the term −�δ(E∗ê + Eê†) does not depend
on x̂ and we absorb it into Hrest; and the term −�gx̂(ê†ê + 1

2 )
is of the second order of smallness and can be neglected.
The remaining terms form the following canonical linearized
optomechanical Hamiltonian:

Ĥ = −�δ
(
ê†ê + 1

2

) − �g(E∗ê + H.c.)x̂ + Ĥm + Ĥrest, (4)

where H.c. stands for the Hermitian conjugate.
As the next step, consider the Michelson–Fabry-Perot

interferometer shown in Fig. 1, assuming the symmetry
condition (the consideration below actually reproduces in a
simplified form the scaling law theorem of Ref. [19]). Suppose
here for simplicity that both recycling mirrors are absent.
This scheme can be described by the sum of two single-mode
Hamiltonians (1) of the arm Fabry-Perot cavities:

Ĥ = �
[
(ωo − gx̂N )

(
ê
†
N êN + 1

2

) + (ωo − gx̂E)
(
ê
†
EêE + 1

2

)]
+ Ĥm + Ĥrest, (5)

where the subscripts N and E stand for the north and the
east (as shown in Fig. 1) arms, respectively. This Hamiltonian,
similar to (1), describes dispersive coupling.

Then introduce the common and the differential optical
modes as follows:

ê± = êN ± êE√
2

, ê =
(

ê+
ê−

)
. (6)

In these notations,

Ĥ = �[(ωo − gŷ)(ê†ê + 1) − gx̂ê†Xê] + Ĥm + Ĥrest, (7)

where

y = xN + xE

2
, x = xN − xE

2
(8)

are coordinates of the common (symmetric) and the differential
(antisymmetric) mechanical modes, andX is the Pauli x matrix
[see Eq. (A1)]. For the common mode y, this Hamiltonian still
retains the dispersive coupling structure. But the optomechan-
ical coupling with the differential mode x is of a different
nature: in this case, the coupling of the two modes ê+ and
ê− is proportional to the mechanical displacement x. We will
refer to this term as coherent optomechanical coupling. Note
that opposite to (5), the Hamiltonian (7) is valid in the case
of the general dual-recycled interferometer as well [9,19] and,
in particular, in the case of the pure Michelson interferometer

(without the ITM mirrors). In the particular case of a very
broadband common optical mode, that is, with the bandwidth
much broader than all other characteristic frequencies of the
system (with the evident exception of ωo, ωp), the common
optical mode degenerates to an (almost) free-space optical
field. In this case, the bandwidth of the differential optical
mode becomes dependent of x. This is the so-called dissipative
optomechanical coupling [21,22]. This simple example shows,
that in multimode systems the type of the optomechanical
coupling can not be categorized in a simple and unique way;
it depends on a nonunique choice of the optical modes.

Now, following the above treatment of the Fabry-Perot
cavity, we introduce explicitly the classical pumping fields
by replacing ê± → E± + ê± and retrace the Eqs. (2)–(4). This
gives the following linearized Hamiltonian

Ĥ = −�δ(ê†ê + 1) − �gŷ(E†ê + H.c.)

− �gx̂(E†Xê + H.c.) + Ĥm + Ĥrest, (9)

where

E =
(

E+
E−

)
. (10)

Note the similarity between this Hamiltonian and the one for
the Fabry-Perot interferometer (4).

Moreover, if the differential optical mode is not excited,
E− = 0 (which corresponds to the canonical regime of both
the GW detectors and membrane interferometers), then the
common optical mode is coupled only with the common
mechanical one and the differential optical mode only with
the differential mechanical one

Ĥ = −�δ(ê†ê + 1) − �gŷ(E†
+ê+ + H.c.)

− �gx̂(E†
+ê− + H.c.) + Ĥm + Ĥrest. (11)

Of these two mechanical modes, only the differential one is of
interest in both the laser GW detectors and in the small-scale
membrane interferometers. In the former case, it is this mode
that is coupled with the gravitational waves. In the latter case,
the mechanical common mode corresponds to the membrane
thickness oscillations, which are characterized by very high
(hundreds of gigahertz) eigenfrequency and low Q factor and
hardly can be used in optomechanical experiments. Therefore,
the part of the Hamiltonian (11) referring to common modes
can be omitted, which gives the following Hamiltonian

Ĥ = −�δ
(
ê
†
−ê− + 1

2

) − �gx̂(E†
+ê− + H.c.) + Ĥm + Ĥrest.

(12)
Up to the notations, it is identical to the Hamiltonian (4),
despite the completely different types of the optomechanical
coupling—the dispersive one in (4) and the coherent or the
dissipative one in (12).

III. ANALYSIS OF THE ASYMMETRIC
INTERFEROMETER

Now, having discussed the various types of optomechanical
coupling in Michelson-type interferometers, we are in position
to consider in depth the asymmetric case. In the rest of this
paper, we focus on the above-mentioned case of a very broad-
band common optical mode, which is characterized by the
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dissipative (in contrast to coherent) optomechanical coupling.
This case is typical for tabletop interferometers researching
fundamental optomechanics, because in this case much lower
optical powers than in the large-scale gravitational-wave
detectors is required. Due to this reason, we do not consider
here the common mechanical mode. At the same time, both
common and differential optical modes will be taken into
account.

In the calculations below, we use the Heisenberg picture
(that is, the input-output relations approach), which is more
convenient for analysis of sophisticated optomechanical sys-
tems, see, e.g., [19,27,28]. In this picture, the linearized dy-
namics of a two-port optomechanical system can be described
by two matrix equations. The first one is the optical input-
output relation:

b̂(ω) = Rifo(ω)[â(ω) + ikpG(�)Ex̂(�)], (13)

where Rifo and G are 2 × 2 matrices,

â =
(

â+
â−

)
, b̂ =

(
b̂+
b̂−

)
(14)

are two-component vectors for the input and output optical
fields in the west and the south (as shown in Fig. 2) ports of
the interferometer, � is a sideband frequency, see. Eq. (A6),

kp = ωp/c, (15)

and c is the speed of light. The second equation describes the
radiation pressure force acting on the mechanical object:

F̂ (�) = F̂fl(�) − K(�)x̂(�), (16)

where

F̂fl(�) = �kpE†F(�)â(ω) + c.c. (17)

is the stochastic part of the radiation pressure force, c.c. stands
for the Caves-Schumaker conjugate [25] of the previous term,
see Eq. (C2),

K(�) = �k2
pE†K(�)E (18)

is the optical rigidity, and F, K are 2 × 2 matrices. The
explicit equations for the matrices Rifo, G, F, and K are
quite cumbersome; they are derived in the Appendix, see
Eqs. (B22), (B23), (C7), (C10), respectively. The nonsym-
metrized spectral density S̃F of the force F̂fl can be obtained
from Eq. (17) using directly the definition (A7). In particular,
if the incident quantum fields are in vacuum, then the spectral
density is equal to

S̃F (�) = �
2k2

pE†F(�)F†(�)E. (19)

An interesting feature of Eqs. (13) and (16) is the following
symmetry condition [see Eqs. (B23), (C7)]:

G(�) = F†(�). (20)

It is the two-port analog of the well-known relation between
the measurement noise and the radiation pressure noise in
ordinary (single-port) interferometers [19,27,29], which gives
rise to the uncertainty relation between the radiation pressure
noise and the measurement noise spectral densities of these
devices [19,27,28] (which, in turn, is a particular case of the
general uncertainty relation for the continuous linear quantum
measurement [30]).

As we have mentioned, in this paper we focus on the case
without power recycling,

RW = 0, (21)

where RW is the power-recycling mirror reflectivity. In
addition, we assume the lumped mode approximation (that
is, the high-finesse limit), which is a good approximation
in common setups and significantly simplifies the equations.
Namely, we suppose that: (i) the transmissivity TS of the signal
recycling mirror is small:

T 2
S = 4γSτS � 1, (22a)

where τS = LS/c and LS is the optical distance between the
SRM and the symmetry position of the membrane; (ii) the
signal recycling cavity is tuned close to the resonance:

eiωτS = ei(δS+�)τS+iθ , |δS + �|τS � 1, (22b)

where

θ = arctan
Tm

Rm

,

Rm, Tm are the membrane amplitude reflectivity and transmis-
sivity, and δS is the detuning of the south arm; and (iii) the
asymmetry of the interferometer is small:

p2 = ε2 + 	2 � 1, (22c)

where 	, ε are, respectively, are asymmetries of the
membrane placement and of the beam splitter, see
Eqs. (B2), (B11). We assume the following relations between
these small values:

γSτS ∼ |δS + �|τS ∼ p2. (23)

Then, keeping in each component of the matrices F and K
[see Eqs. (C7), (C10)] only the leading nonvanishing terms,
we obtain that

G†(�)=F(�)= 2Rm

τS
(�)

×
(

ip sin(α − θ )
√

γSτSe
−iθ

[τS
S(�)+ip2 sin 2α/2]eiθ −√
γSτSpei(θ−α)

)
,

(24)

K(�) = − 2iRm

τS
(�)

(
Rm −Rmpe−iα

−Rmpe2i(θ−α) [τS
S(�) + ε2]eiθ

)

+ c.c., (25)

where


(�) = γ − i(δ + �), (26a)


S(�) = γS − i(δS + �), (26b)

γ = γS + γm, (27a)

δ = δS + δm (27b)

013844-4



GENERALIZED ANALYSIS OF QUANTUM NOISE AND . . . PHYSICAL REVIEW A 94, 013844 (2016)

are the total bandwidth and the detuning of the interferometer,

γm = p2 sin2(θ − α)

τS

, (28a)

δm = p2Rm sin(θ − 2α)

τS

(28b)

are the components of γ , δ due to the asymmetry of the
interferometer, and the angle α is defined as follows:

ε = p cos α, 	 = p sin α. (29)

The dispersive and dissipative coupling factors can be readily
derived from Eqs. (28):

gdisp = −kp

∂δm

∂	
= 2kpRmp

τS

cos(θ − α), (30a)

gdiss√
2γm

= kp

∂
√

2γm

∂	
= 2kpRm√

τS

sign(θ − α) (30b)

(note that it is the combination (30b), but not just gdiss appears
in the dissipative coupling Hamiltonian, see, e.g., Eq. (1) of
Ref. [20]).

The upper row terms in the matrix (24) have the order of
magnitude of O(p−1), while the lower row ones have the order
of O(1). Correspondingly, the matrix FF†, which appears in
Eq. (19), has the following structure:

F(�)F†(�) ∼
(

O(p−2) O(p−1)
O(p−1) O(1)

)
. (31)

Suppose now that either the classical field amplitudes E± are
of the same order of magnitude, or E+ dominates:

E+ � E−. (32)

In this case, the spectral density (19) is dominated by the term
proportional to |E+|2, with the other terms being small correc-
tions, which have to be neglected for the sake of consistency
with the already made approximations. This consideration
gives the following equations for the nonsymmetrized and
symmetrized [see Eq. (A8)] radiation pressure noise spectral
densities:

S̃F (�) = 4�
2k2

pR2
m|E+|2γ

τS |
(�)|2 , (33a)

SF (�) = 4�
2k2

pR2
m|E+|2γ
τS

γ 2 + δ2 + �2

|
(�)|2|
(−�)|2 . (33b)

The matrix (25) also has the structure (31). Therefore, the
above consideration is valid for the optical rigidity as well,
giving:

K(�) = 4�
2k2

pR2
m|E+|2δ

τS
(�)
∗(−�)
. (34)

Equations (33),(34) do not depend on the interferometer asym-
metry and differ from the well-known canonical ones [19,28]
only by the expected factor R2

m.
It follows from this consideration, that the noncanonical

features, predicted in Refs. [20,23] and observed in Ref. [26],
evidently, originates from a violation of the assumption (32).
In fact, it follows from Eq. (B24), with account of the

assumption (21) and approximations (22), that the classical
amplitudes of the intracavity fields are equal to

E = 1

τS
(0)

(
τS
S(0) + ip2 sin 2α/2 −√

γSτSpe−iα

ipeiθ sin(α − θ )
√

γSτS

)

×
(

A+eiωpτW

A−eiωpτS

)
∼

(
O(1) O(1)

O(p−1) O(p−1)

)(
A+eiωpτW

A−eiωpτS

)
,

(35)

where A+, A− are the classical amplitudes of the input optical
fields in the west and the south (as shown in Fig. 2) ports of
the interferometer. This means that typically, instead of (32),

E− ∼ E+
p

� E+. (36)

This resonance-enhanced value of E− emphasizes the smaller
terms in the matrices (24),(25), making their contribution
comparable with one of the canonical terms.

In particular, in the case of A+ = 0, which was considered
in Refs. [20,23],

S̃F (�) = 4�
2k2

pR2
m|A−|2

τS |
(0)|2|
(�)|2 {γm(2δS − 2ε	/τS + �)2

+ γS[γ 2 + (δS − δm − 2ε	/τS)2 ]}. (37)

Note the noncanonical Fano-resonance term, discussed in
Refs. [20,21], which provides a minimum of S̃F (�) at � =
−2δS + 2ε	/τS . It is evident, however, that by fine tuning of
the values of A±, any ratio of E+/E− can be obtained. In
particular, as we show in the next section, the most effective
optical cooling can be achieved by the ideally symmetric field,
E− = 0.

IV. OPTIMAL OPTICAL COOLING IN MICHELSON-TYPE
INTERFEROMETERS

The optomechanical cooling aimed at preparation of a me-
chanical resonator in its ground state attracted great attention
during the last decade, see the review papers [14,15]. These
experiments pave the road to future more advanced ones. In
particular, the ground-state preparation can be considered as
the first step to preparation of macroscopic mechanical objects
in more sophisticated quantum states.

The silicon-nitride membranes are well suited for these
experiments. As we have mentioned in Sec. I, their only weak
point is the relatively low reflectivity, which, however, can be
compensated by using the Mischelson-Sagnac topology. As it
follows from our consideration in Refs. [20,23] and here, in
the symmetric regime, it is, up to the scaling of the required
optical power by R2

m, isomorphic to the ordinary single-cavity
setup with the ideally reflective movable mirror, and in the
asymmetric one, it could provide new interesting features.

In the recent experimental work [26] optical cooling in the
regime of interfering dispersive and dissipative coupling in an
asymmetric Michelson-Sagnac interferometer was observed.
Here we use our general framework to calculate the optimal
cooling regime in the asymmetric Michelson-type interferom-
eters for a given, fixed value of the optical power circulating
in the interferometer.
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We start with the two well-known fundamental interre-
lations between any source of dissipation and the thermal
noise F̂T associated with it. The first one is the fluctuation-
dissipation theorem (FDT) [31]:

ST (�) = �|�H |(2nT + 1), (38)

where

ST (�) = S̃T (�) + S̃T (−�)

2
(39)

is the symmetrized spectral density of this noise, S̃T (�)
is the corresponding nonsymmetrized spectral density, see
Eqs. (A7), (A8), H is the friction factor, nT is the effective
number of thermal quanta defined by

2nT + 1 = coth
�|�|
2κBT

, (40)

κB is Boltzmann constant and T is the temperature. The second
one is the Kubo theorem [32]:

�H = S̃T (�) − S̃T (−�)

2�
. (41)

Assuming that H > 0 (stable system dynamics) and � > 0, it
is easy to get from Eqs. (38),(41), that

1

nT

+ 1 = S̃T (�)

S̃T (−�)
. (42)

In optical cooling experiments, the native mechanical heat
bath is supplemented by the low-temperature optomechanical
one. In this case, the steady-state mean number of phonons in
the mechanical oscillator is given by

2〈n〉 + 1 = ST (�m) + SF (�m)

��m(H + Hopt)
, (43)

where SF is the symmetrized spectral density of the radiation
pressure noise, Hopt is the optical damping:

�Hopt = − Im K, (44)

and we absorbed the shift of the mechanical resonance
frequency imposed by the optical spring into �m.

Rewriting the Kubo theorem for the optical damping:

�Hopt = S̃F (�) − S̃F (−�)

2�
, (45)

it is is easy to show that

1

〈n〉 + 1 = S̃T (�m) + S̃F (�m)

S̃T (−�m) + S̃F (−�m)
. (46)

In the Michelson-Sagnac interferometer, the explicit form
of S̃F is rather sophisticated, see Eqs. (19),(24), and the direct
analytical optimization of (46) is hardly possible. However,
under common experimental conditions the spectral densities
S̃F and S̃T satisfy strong inequalities, which significantly
simplify this task. Actually, starting values of the thermal
occupation number of the real mechanical resonators are big,
even in the cryogenic microwave experiments; correspond-
ingly, asymmetry of the thermal noise spectral density is small:

S̃T (�m) − S̃T (−�m) � S̃T (±�m). (47)

Therefore, in order to provide effective optical cooling,
asymmetry of the radiation pressure noise spectral density
has to be strong:

S̃F (�m) � S̃F (−�m). (48)

At the same time, due to technical constrains in contemporary
optical cooling experiments, while S̃F (�m) could be close or
even exceeds the thermal noise spectral density, its negative-
frequency counterpart is small:

S̃F (−�m) � S̃T (±�m). (49)

(this inequality was fulfilled with very good margin even in the
record-breaking works [33,34]). These assumptions simplify
Eq. (46) to

〈n〉 = S̃T (−�m)

S̃F (�m)
. (50)

In this case, minimization of 〈n〉 is simply equivalent to
maximization of S̃F (�).

Of the above-mentioned technical constrains, the most seri-
ous ones are limitations on the value of the optical power inside
the interferometer imposed by various undesirable effects,
such as heating, mechanical nonlinearities, instabilities, etc.
Therefore, consider maximization of S̃F (�), assuming a given
optical energy in the interferometer, which is proportional to

E ∝ |E+|2 + |E−|2. (51)

It follows form Eqs. (19),(31), that this spectral density has the
following structure:

S̃F ∝ O(p−2)|E+|2 + 2O(p−1) Re(E∗
+E−) + O(1)|E−|2,

(52)
that is, the symmetric field E+ provides the largest value of
S̃F and therefore the most effective cooling. Therefore, with
account of the optical energy constrain, the antisymmetric field
has to be canceled, E− = 0. In this case, the radiation pressure
noise spectral density reduces to the canonical Lorentzian
form (33).

V. SUMMARY

We have shown that the standard description of the
radiation-pressure-induced optomechanical coupling as either
dispersive or dissipative is univocal only in the simplest case
of a single lumped electromagnetic mode. In the general multi-
mode case, in particular in Michelson-type interferometers, the
coupling type depends on the nonunique choice of its optical
modes.

The most convenient choice, broadly used by the GW com-
munity, uses the common and differential optical modes of the
interferometer, where the differential optical mode couples to
the conventional signal output port. For these modes, the type
of the optomechanical coupling further depends on whether the
power-recycling technique (in addition to signal-recycling) is
used or not. In the latter case, the coupling is dissipative,
with a dispersive contribution if the interferometer is not
perfectly symmetric. In the former one, a more sophisticated
behavior emerges, where the coupling between two optical
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modes depends on the mechanical displacement, which we
refer to as the coherent optomechanical coupling.

We have developed a general framework to calculate the
optomechanical properties of the Michelson-type interferom-
eters in the asymmetric regime. It covers the possibility of the
injection of carrier light into both ports of the interferometer.
We used this framework for in-depth analysis of the radia-
tion pressure features (both dynamic and stochastic) of the
Michelson-type interferometers without the power recycling,
leaving the power-recycled configuration, with its different
modes and optomechanical coupling structure, for future
work.

Our analysis has shown that the anomalous features origi-
nate from the small second-order terms in the Taylor expansion
of the (nonsymmetrized) radiation pressure noise spectral
density in the interferometer length and its asymmetry, see
Eqs. (22),(23). Usually, these terms are ignored in the lumped
modes approximation routinely used in the analysis in the
quantum optomechanical setups. In unbalanced Michelson-
type interferometers these corrections are strongly amplified
by the resonance-enhanced optical power in the differential
optical mode of the interferometer and therefore change
significantly the interferometer behavior.

Finally, we have shown that under common experimental
conditions, and for a given optical power inside a cavity-
enhanced Michelson interferometer, the lowest steady-state
mean phonons number 〈n〉 can be achieved by exciting the
common optical mode only, which gives the balanced light
power in both arms. with balanced light power in both arms. In
this case the operation regime of the interferometer is canonical
and fully corresponds to optical cooling in a Fabry-Perot cavity
with dispersive coupling. At the same time, both dispersive
and dissipative types of coupling could coexist in this case
(however, optimal cooling regimes for the two-mode dual
recycled interferometers and/or for a given injected light
power, could differ from this).
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APPENDIX A: NOTATIONS

I =
(

1 0
0 1

)
, Z =

(
1 0
0 −1

)
,

X =
(

0 1
1 0

)
, Y =

(
0 −1
1 0

)
(A1)

are the general-purposes 2 × 2 matrices.

−
−

−

â+

b̂+

ĉ+

d̂+

â−b̂−

ĉ−d̂−

ê
N

f̂N ê
E

f̂E

FIG. 3. Calculation of Optical fields in the Michelson-Sagnac
interferometer.

We describe the membrane by the symmetric reflectivity-
transmissivity matrix (

Rm iTm

iTm Rm

)
, (A2)

and the beam splitter and the recycling mirrors by the real ones(
R T

T −R

)
,

(
RW,S TW,S

TW,S −RW,S

)
, (A3)

with the negative reflectivities indicated by “−” in Fig. 3. The
subscripts W and S stand here for the west and the south ports,
that is for the power and the signal mirrors, respectively.

The quantum field sideband amplitudes are denoted by the
lowercase roman letters

â,b̂, . . . (A4)

and the classical amplitudes by the corresponding uppercase
roman ones

A,B, . . . . (A5)

We denote high (optical) frequencies by ω and low
(mechanical) ones by �. If they appear together in the same
equation, then

� = ω − ωp. (A6)

The nonsymmetrized spectral density S̃ of any noise process
F̂ is defined by

〈F̂ (�)F̂ (�′)〉 = 2πS̃(�)δ(� + �′), (A7)

and the corresponding symmetrized one S by

S(�) = S̃(�) + S̃(−�)

2
. (A8)

APPENDIX B: OPTICAL FIELDS

We assume that the dc displacement of the membrane
from its symmetry position X is small and neglect the term
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(k − kp)X = �X/c. In this case, the equations for the quan-
tum field sideband amplitudes are the following [28] [see the
notations in Fig. (3)]:

b̂+(ω) = −RW â+(ω) + TW ĉ+(ω), (B1a)

b̂−(ω) = −RSâ−(ω) + TSĉ−(ω), (B1b)

ĉ+(ω) = [Rf̂N (ω)ei	 + T f̂E(ω)e−i	]eiωτW , (B1c)

ĉ−(ω) = [T f̂N (ω)ei	 − Rf̂E(ω)e−i	]eiωτS , (B1d)

d̂+(ω) = TW â+(ω) + RW ĉ+(ω), (B1e)

d̂−(ω) = TSâ−(ω) + RSĉ−(ω), (B1f)

êN (ω) = [Rd̂+(ω)eiωτW + T d̂−(ω)eiωτS ]ei	, (B1g)

êE(ω) = [T d̂+(ω)eiωτW − Rd̂−(ω)eiωτS ]e−i	 , (B1h)

f̂N (ω) = RmêN (ω) + iTmêE(ω) + 2ikpRmENx̂(�),

(B1i)

f̂E(ω) = RmêE(ω) + iTmêN (ω) − 2ikpRmEEx̂(�).

(B1j)

Here τW,S = LW,S/c, LW,S are the optical distances between
the symmetry position of the membrane and the PRM or SRM,
respectively, and

	 = X/kp. (B2)

We then introduce the common and differential optical
modes:

ê± = êN ± êE√
2

, f̂± = f̂N ± f̂E√
2

. (B3)

Using these modes:

b̂(ω) = −Râ(ω) + Tĉ(ω), (B4a)

ĉ(ω) = A(ω)QT f̂(ω), (B4b)

d̂(ω) = Tâ(ω) + Rĉ(ω), (B4c)

ê(ω) = QA(ω)d̂(ω), (B4d)

f̂(ω) = Mê(ω) + 2ikpRmXEx̂(�), (B4e)

where

â =
(

â+
â−

)
, b̂ =

(
b̂+
b̂−

)
, (B5a)

ĉ =
(

ĉ+
ĉ−

)
, d̂ =

(
d̂+
d̂−

)
, (B5b)

ê =
(

ê+
ê−

)
, f̂ =

(
f̂+
f̂−

)
, (B5c)

R =
(

RW 0
0 RS

)
, T =

(
TW 0
0 TS

)
, (B6)

A(ω) =
(

eiωτW 0
0 eiωτS

)
, (B7)

M =
(

eiθ 0
0 e−iθ

)
, (B8)

Q =
(

C −S∗
S C∗

)
, (B9)

C = cos ε cos 	 + i sin ε sin 	, (B10a)

S = sin ε cos 	 + i cos ε sin 	, (B10b)

and

ε = π

4
− arctan

T

R
. (B11)

Equations (B4) can be reduced to the following two:

De(ω)ê(ω) = T̃(ω)â(ω) + 2ikprR̃(ω)QTXEx(�),

(B12a)

De(ω)M† f̂(ω) = T̃(ω)â(ω) + 2ikprQ†M†XEx(�),

(B12b)

where

De(ω) = Q† − R̃(ω)QTM, (B13)

R̃(ω) = A(ω)RA(ω) =
(

R̃W (ω) 0
0 R̃S(ω)

)
, (B14)

T̃(ω) = A(ω)T =
(

T̃W (ω) 0
0 T̃S(ω)

)
, (B15)

R̃W,S(ω) = RW,Se
2iωτW,S , T̃W,S(ω) = TW,Se

iωτW,S . (B16)

The solution to Eqs. (B12) is

ê(ω) = D−1
e (ω)[T̃(ω)â(ω) + 2ikprR̃(ω)QTXEx(�)],

(B17a)

f̂(ω) = MD−1
e (ω)[T̃(ω)â(ω) + 2ikprQ†M†XEx(�)],

(B17b)

where

D−1
e (ω) = Q − M†Q∗R̆(ω)

D(ω)
, (B18)

R̆(ω) =
(

R̃S(ω) 0
0 R̃W (ω)

)
, (B19)

D(�) = detDe(ω). (B20)

Then, it follows from Eqs. (B4a), (B4b), (B17b), that:

b̂(ω) = −Râ(ω) + T̃(ω)QT f̂(ω), (B21)

which gives Eq. (13) with

Rifo(ω) = −R + T̃(ω)[QTMQ − R̆(ω)]T̃(ω)

D(ω)
, (B22)

G(�) = 2r

D∗(�)
T†(�)[Q†M† − R̆

†
(�)QT]X. (B23)

The classical amplitudes vector E can be obtained from
Eq. (B17a) by setting there ω = ωp and x = 0:

E = D−1
e (ωp)T̃(ωp)A. (B24)
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APPENDIX C: RADIATION PRESSURE FORCE

The ac optical force acting on the membrane is equal to

F̂ (�) = �kp[E∗
N êN (ωp + �) + F ∗

N f̂N (ωp + �)

−E∗
EêE(ωp + �) − F ∗

Ef̂E(ωp + �)] + c.c.

= �kp[E†Xê(ωp + �) + F†Xf̂(ωp + �)] + c.c.,

(C1)

where

∀f (ω) : f (�) + c.c. = f (�) + f †(−�) (C2)

and the dagger means the Hermitian conjugation both for
matrices and quantum operators.

It follows from Eq. (B4e), that

F̂ (�) = F̂1(�) − K2(�)x(�), (C3)

where

F̂1(�) = 2�kprE†XMê(�) (C4)

and

K2(�) = �k2
pE†K2(�)E, (C5a)

K2(�) = −2irM† + c.c. = −4rtZ (C5b)

is the part of the optical rigidity created by electrostatic
attraction of the membrane into the standing wave antinode.

Then, using Eq. (B17), we obtain, that:

F̂1(�) = F̂fl(�) − K1(�)x(�), (C6)

where F̂fl is the stochastic force described by Eq. (17), with

F(�) = 2r

D(�)
X[MQ − Q∗R̆(ω)]T̃(ω), (C7)

and

K1(�) = �k2
pE†K1(�)E, (C8a)

K1(�) = − 4ir2

D(�)
X[MQR̃(ω)QT − R̃W (ω)R̃S(ω)I]X + c.c.

(C8b)

is the part of the optical rigidity created by the modulation of
the intracavity optical field by the membrane motion, that is
the optical spring proper.

Correspondingly, the total optical rigidity

K(�) = K1(�) + K2(�) (C9)

is equal to (18), with

K(�) = K1(�) + K2(�). (C10)
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