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Nonreciprocal optical properties in resonant hybrid photonic crystals
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The present work is devoted to the theoretical study of the nonreciprocal optical properties in hybrid (isotropic
and anisotropic) periodic multilayers for photon energy values chosen close to the electronic energy gaps of
semiconductors (excitons). The optical properties of these resonant nonmagnetic photonic crystals, where linear
and quadratic spatial dispersion effects are both present, will be studied in the framework of exciton-polariton
self-consistent solutions of the Maxwell and Schrödinger equations in the effective-mass approximation. The
main interesting optical properties, namely, giant transmission, absorption suppression, and optical unidirectional
propagation, will be computed by implementing a two-layer “minimum model.”
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I. INTRODUCTION

In the recent literature [1–6] many new optical effects
in hybrid (isotropic-anisotropic) photonic crystals have been
discussed. Among these, negative refraction, oblique frozen
modes [2], giant transmission [3], absorption suppression [5],
and optical unidirectional propagation [6] are among the most
interesting ones. All these properties are studied from the
theoretical analysis of the dispersion curves in these hybrid
periodic multilayers, and the symmetry conditions, necessary
to observe the former optical effects, are fully discussed
[2–6].

Recently, the exciton-polariton, a composite particle com-
ing from strong radiation-matter coupling, in photonic crystal
resonators has demonstrated a wide range of spectacular new
phenomena, such as optical spin-hole effects [7], magnetic
dipole enhancement [8], Bose-Einstein condensation at room
temperature [9,10], and radiative topological states [11].

Two different photonic resonators are usually used for
confining exciton-polaritons in an optical cavity, namely, a
microcavity with distributed Bragg reflectors [12] and the
resonant quantum well Bragg reflectors [13]. While the former
resonator is based on a photonic impurity of a dielectric
periodic crystal in resonance with an exciton energy transition,
the latter one is a periodic resonant exciton-polariton crystal
[13]. Recently, we extended the optical response of the latter
system to the resonant hybrid photonic crystals [14] where
the exciton-polariton is in resonance with the lowest band-gap
energy of a hybrid one-dimensional (1D) periodic multilayer
for studying the possibility of stopping, storing, and releasing
a light impulse [15] in periodic stacks of semiconductors.

In the present work, starting from a simple 1D symmetric
hybrid resonant photonic crystal, by a continuum variation of
the optical axis orientation of uniaxial layers, we will show as
building up a nonreciprocal metamaterial where unidirectional
propagation [2] can be observed.

It is widely accepted that in a two-dimensional (2D)
photonic band of metamaterials with broken spatial inversion
and time-reversal symmetries (nonreciprocal media), in the
correspondence of a pair of Dirac points, the two bands split
apart, and a nontrivial topology could be present [16]. In
the present work a situation similar to the former one but
based on an axial asymmetric dispersion relation [2] will
be discussed, but the problem of under which conditions a

nontrivial topology can be obtained is outside the scope of the
present work.

Let us recall that, in a 1D periodic multilayer, the inter-
ference between different linear polarizations allows us to
observe an absolute gap inside the Brillouin zone (BZ) [1,14].
In fact, while the forward and backward waves, with the same
polarization, interfere constructively at the high-symmetry
points of the BZ (� and k = ±π/d), the interference between
different polarized components can drop inside the BZ, giving
a strong deformation of the photon density of states, and large
rearrangements of the band gaps can be observed. In this
case the density of state is proportional to k4, where k is the
Bloch wave vector [2], and for oblique incidence and energies
close to the exciton-photon interaction, the former behavior
is complemented by the center-of-mass density of states of
the 2D Wannier exciton [13]. Finally, let us underline that the
negative refraction propagation in uniaxial 1D multilayers is
essentially due to the former behavior of the dispersion curves,
as previously discussed in Refs. [1,14].

II. HYBRID RESONANT PHOTONIC CRYSTAL:
THE MODEL

In the present work, a theoretical study of nonreciprocal
optical properties in a periodic hybrid (isotropic-anisotropic)
stack, where the anisotropic bilayer is composed of two
uniaxial layers with different orientations of the optical Ĉ

axis, is computed in the exciton-polariton framework [17]
by self-consistent solutions of the Maxwell and Schrödinger
equations in the effective-mass approximation for photon
energies close to the electronic valence-conduction energy
gap of the semiconductors (excitons). The cluster embodies
N elementary cells and two surface quantum wells. Moreover,
in order to avoid the Fabry-Pérot oscillations, due to the rather
large number of layers of the cluster, antireflection is added on
both surfaces of the stack.

Let us underline that the elementary cell of our “minimum
model” (see Fig. 1) is composed of λ/4 uniaxial bilayers,
with misalignment of the optical axes, and an isotropic λ/4
layer that embodies the optically active zone (quantum well)
where a direct electron valence-conduction band transition is
modeled by a Wannier exciton confined between two rather
high isotropic barriers [14]. Since the optical properties of
the system come from the structural properties of the sample
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FIG. 1. One-dimensional hybrid (isotropic-anisotropic) multi-
layer. Brown layers are the quantum wells, yellow layers are the
barriers of the quantum wells, and sky blue layers are the uniaxial
layers.

and from the optical character of the incident light, in the
present calculation we have embodied the maximum of optical
information on the sample structure [14]. Moreover, in order
to make clear the optical tailoring of the sample, in our
minimum model each layer must control only a single optical
parameter; therefore, we have adopted two uniaxial layers in
the elementary cell, with the two optical axes making an angle
αL with respect to the x axis on the plane (x,y) on the left
and an angle αR with respect to the same x axis but this time
lying on the plane (x,z), instead of a single uniaxial layer with
a general optical axis orientation [2]. Therefore, the dielectric
tensors of the left and right uniaxial layers are

εL =

⎛
⎜⎝

ε⊥ + cos2 αL�ε cos αL sin αL�ε 0

cos αL sin αL�ε ε⊥ + sin2 αL�ε 0

0 0 ε⊥

⎞
⎟⎠, (1a)

εR =

⎛
⎜⎝

ε⊥ + cos2 αR�ε 0 cos αR sin αR�ε

0 ε⊥ 0

cos αR sin αR�ε 0 ε⊥ + sin2 αR�ε

⎞
⎟⎠, (1b)

where �ε = ε‖ − ε⊥ is the birefringence. The parameter
values of the model are chosen along the lines of Ref. [14];
namely, let us take the background dielectric constant value of
the semiconductors (well) as εb = 10.24 and, for a symmetric
choice of parallel and orthogonal dielectric constants, ε̄ =
(ε‖ + ε⊥)/2 = εb. For not very large birefringence values
(�ε = ε‖ − ε⊥ = 4), the two conditions give parallel and
orthogonal dielectric constant values: ε‖ = 12.24 and ε⊥ =
8.24, respectively. The exciton transition energy for a direct
valence-conduction parabolic band model is given by

Eex(K‖) = Eex(K‖ = 0) + �
2

2M
K2

‖ , (2)

where K‖ is the in-plane wave vector of the exciton center
of mass (the total mass is M = 0.524mo), and the valence-
conduction Kane’s energy of the transition [17,18] is EK =
23 eV, in sound agreement with AlGaAs/GaAs(001) systems.
The exciton transition energy value Eex(K‖ = 0) and its corre-
sponding envelope function are obtained with a variational

solution of the Schrödinger equation in the effective-mass
approximation [17,18].

For a so-called high-quality quantum well of thickness
Lw = 10 nm a reasonable nonradiative broadening value
[18] is �NR = 0.25 meV, and exciton energy is Eex(0) =
1.418 eV; therefore, the resonant thickness is given by
λ/2 = π c/Eex(0)

√
εb. Finally, in order to preserve strong

radiation-matter interaction and an unperturbed Wannier exci-
ton envelope function, in the otherwise asymmetric elementary
cells, some added conditions are adopted, as fully discussed in
Ref. [14].

III. SPATIALLY ASYMMETRIC ELEMENTARY CELL

Now, let us briefly summarize the main results, discussed in
Ref. [14], for a reciprocal asymmetric elementary cell, where
the Ĉ axis of the right uniaxial layer is parallel to the x axis
(αR = 0), while the in-plane (x,y) Ĉ axis of the left layer
is misaligned with an angle variation: 0 � αL � π/2. Notice
that the parameter values of our multilayer model were tailored
[14] in order to accomplish the resonance condition between
the photonic multilayer energy �ωr and the Wannier exciton
transition energy [Eex(0) = 1.418 eV] when the misalignment
between the two optical axes is �α = αL − αR = π/2. First
of all, let us consider a system with a spatially symmetrical
elementary cell obtained for parallel orientation (�α = 0) of
the two optical axes. In this case the two linearly polarized
waves (TE and TM) feel two different periodic dielectric
values not in resonance with the chosen exciton energy [14].
Therefore, absolute gaps in the dispersion curves are highly
unlikely, and many cross points between different polarization
waves are present in the dispersion curves (see also Fig. 3 of
Ref. [1]).

In Fig. 2(a) the dispersion curves are shown in a range of
energy close to the unperturbed exciton energy. It is interesting
to underline that the former behavior is not removed by the so-
called exciton-polariton strong coupling; in fact, no polariton
splitting is observed in the dispersion curves. This is due to the
bulk symmetry of the system, which is a robust property; there-
fore, it can overcome the exciton-photon resonant interaction.

Now, for �α �= 0, due to the collapse of the spatial symme-
try, absolute gaps open, as fully discussed in Ref. [1]. In this
case, for the whole range of the misalignment (0 < �α < π/2)
the x (TM polarization) and y (TE polarization) components of
the electric field will be mixed by the out-of-diagonal elements
of the in-plane dielectric tensor εL of Eq. (1a), and the optical
response, computed for �α �= nπ , will be characterized by the
simultaneous presence of the x and y amplitude components
for both the TE and TM polarizations of the incident wave.
In Fig. 2(b) the case of �α = 10◦ is shown, and two absolute
gaps are present.

Two TE and TM linear polarized waves that propagate
in an N cluster with misalignment have the same in-plane
dielectric tensor sequence but with a different order. However,
this difference does not affect the optical response [1,14]. This
clearly appears in Figs. 3(a) and 3(b), where the transmission
and reflection, computed for the two polarizations and for
�α = π/2, in a cluster of N = 32 elementary cells are
reported. The line shapes of the forward TM and TE incident-
wave polarizations are exactly superimposed on one another
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π π

(a) (b)

FIG. 2. Photon dispersion curves at normal incidence in the range of exciton-polariton energies. The x-polarized eigenvalues are represented
by mauve dots, and the y-polarized ones are shown by blue dots. The x and y polarizations are used to indicate the majority contribution of the
x or y component to the electric field intensity. (a) �α = 0◦ (no absolute gap is present). (b) �α = 10◦ (two absolute gaps are present).

in the whole photon energy range. But for energies rather close
to the exciton-polariton resonance, where the intensity of the
absorbance shows strong dependence on the polarization, the
reflection and transmission shapes appear strongly deformed,
and moreover, two giant transmission peaks are present at the
optical band edges [14].

The above behavior can be highlighted, in a more general
way, by the data in Fig. 4(a), where the computed absorbance
intensities are reported as a function of the detuning between
the exciton energy Eex(0) and the resonance energy of the
photonic crystals (�ωr = 1.414 ev). Notice that, even for
different energy values, we see the same trend for the TM
and TE polarizations, but the intensity values strongly differ
for energies close to the resonance.

Finally, Fig. 4(b) shows the FWHM of the absorbance
computed as a function of the quantum well number N .

Clearly, for N values greater than 30, the forward TM
polarization saturates to its maximum value, while the TE
polarization saturates to its minimum value. These behaviors
allow us to underline how the optical response of a cluster
of 32 cells is rather close to that of a N → ∞ bulk
[19].

Notice that in a uniaxial multilayer, we can mix TE and
TM components not only with the incident wave with mixed
polarization but also with the misalignment with �α �= nπ

(n = 0,1,2, . . . ) of the two in-plane optical axes. While the
TE and TM contributions to the incident wave give a linear
combination of the pure polarized spectra, the out-of-diagonal
matrix elements of the dielectric tensor εL strongly influence
the optical line shapes, and a rearrangement of the optical
gaps as a function of the cluster dimension can be observed,
as already discussed in Ref. [14].

(a) (b)

FIG. 3. Optical response at normal incidence. �α = 90◦. Reflectivity: dashed red line; transmission: dotted blue line; and absorbance: solid
green line. (a) Forward incident waves are TM polarized, while backward ones are TE polarized. (b) Forward incident waves are TE polarized,
while backward ones are TM polarized.
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FIG. 4. (a) Absorbance intensity computed as a function of the energy for normal incident TM (crosses) and TE (open circles) polarizations.
N = 32. (b) FWHM of the absorbance peak, computed for the TM (crosses) and TE (open circles) polarizations as a function of the quantum
well number.

Let us consider a cell (see Fig. 1) with an optical in-plane
misalignment of �α = π/4, for which equal contributions
of TE and TM polarizations are expected. We use now
an asymmetric choice of the dielectric constants (ε̄ �= εb),
namely, ε‖ = 12.24 and ε⊥ = 2.24, and an exciton energy
[Eex(0) = 1.4762 eV] in resonance with the lowest-energy
gap.

In Ref. [14] it was underlined that under the former
conditions the lowest-energy photonic gap shows a nondirect
transition at the border of the BZ, and this interesting behavior
is shown in Fig. 5(a), while Fig. 5(b) shows the exciton-
polariton behavior in an enlarged energy scale and very close
to the unperturbed exciton energy. Notice that the behavior of
the exciton-polariton splitting [see Fig. 5(b)] of the otherwise
twofold-degenerate exciton-polariton dispersion curves can be
fully explained along the lines of Ref. [14], and therefore, it

will be not repeated here. Moreover, since the dispersion curves
in Fig. 5(a) show a clear pattern of three stationary points in
the bottom band at the boundary of the BZ, this system should
be well suited to obtain giant transmission peaks at the optical
band edges, as underlined in Refs. [3,4].

In Figs. 6(a) and 6(b) the forward optical response of a
cluster with N = 32 elementary cells and optical misalignment
�α = π/4 is reported for forward TM and TE incident-wave
polarizations, respectively. In the present case the two trans-
mission peaks at optical band edges are both present, but only
that on the low-energy side of the spectrum shows rather high
intensity (<80%). These results underline that the dispersion
curve analysis is a necessary but not sufficient condition to
obtain giant transmission peaks in a finite cluster. Finally, for
a nonsymmetric choice of the dielectric constants but with
ε̄ = 13.24 > εb (for instance, ε‖ = 18.24 and ε⊥ = 8.24),

π π
(a) (b)

FIG. 5. The x-polarized eigenvalues are represented by mauve dots, and the y-polarized ones are shown by blue dots. The x and y

polarizations are used to indicate the majority contribution of the x and y components to the electric field intensity, respectively. (a) Normal
incidence dispersion curves of a reciprocal asymmetric elementary cell in the energy range of the first absolute gap. (b) Dispersion curves in
an enlarged energy scale and close to the unperturbed exciton energy.
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(a) (b)

FIG. 6. Forward normal optical response of the reciprocal multilayer of Fig. 5(a). Reflectivity: dashed red line; transmission: dotted blue
line; and absorbance: solid green line. (a) TM polarization. (b) TE polarization.

the optical upper and lower band behaviors are reversed, and
the pattern of three stationary points appears in the upper
optical band. In this case two high-intensity transmission peaks
(not reported here) appear at both edges of the stop band, as
discussed in Refs. [3,4].

IV. NONRECIPROCAL ELEMENTARY CELL

It is well known that nonreciprocal optical properties in
a periodic multilayer can be obtained by removing spatial
inversion and time-reversal symmetry by using magnetic
materials or by imposing an external magnetic field. Therefore,
in this case the dispersion curves could be �ω(K) �= �ω(−K)
(bulk spectral asymmetry [2]), where K ≡ (k‖,k). k is the
z component of the Brillouin wave vector of the elementary
cell. In our case we will have to restrict to the so-called axial
spectral asymmetry [2], namely, �ω(k‖,k) �= �ω(k‖, − k),
with k‖ �= 0. In order to obtain the former result we will follow
the reasoning of Ref. [2] by removing from the system the
invariance with respect to the twofold rotation 2z, and this can
be easily obtained by two added conditions in our minimal
model in Fig. 1; namely, (i) the orientation of the optical axis
of the dielectric tensor of the uniaxial right layer [Eq. (1b)]
will have a nonzero component along the z axis, and (ii) the
dispersion curves have to be computed for non-normal incident
scattering (k‖ �= 0).

Now, let us rotate the Ĉ axis of the right uniaxial layer by
30◦ (αR = 30◦) on the (x,z) plane in order to obtain a nonzero
z component of the electric field together with a non-negligible
x component; moreover, the calculations are performed for an
angle of incidence θ = 20◦ with respect to the z axis. Notice
that in the present optical geometry the TE and TM polarized
wave interaction is obtained with the in-plane optical axis
misalignment, while the incident wave vector still remains on
the (x,z) plane [2,14].

The main effects induced by the non-normal incidence
condition on the exciton-polariton propagation are as follows:
(i) The photon components have a longer path in the system
that moves the Bragg photon energy towards higher-energy

values (for instance, in the former model for an incident
angle of θ = 20◦, with respect to the z axis, the resonant
photon energy increases from 1.414 to 1.525 eV). (ii) The
exciton energy increases by the kinetic contribution of the
center-of-mass motion [see Eq. (2)]. (iii) The Wannier exciton
strongly couples with a photon with an equal in-plane wave
vector in order to produce a polariton composite particle
(strong-coupling effect [17]).

Let us consider again the former symmetric dielectric
constant values (ε‖ = 12.24 and ε⊥ = 8.24); the dispersion

π

FIG. 7. Exciton-polariton dispersion curves of hybrid resonant
photonic crystals with axial spectral asymmetry and dielectric
functions: ε‖ = 12.24 and ε⊥ = 8.24. The exciton transition energy
is Eex(0) = 1.525 eV.
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curves for a nonreciprocal hybrid multilayer are shown in
Fig. 7. Notice that Wannier exciton energy is taken in
resonance with the lowest absolute optical gap of the system
[Eex(0) = 1.525 eV]. The asymmetry for ±k values with
respect to the � point is not evident in the scale of energy in
Fig. 7. In fact, the gap at the left edge of the BZ (k = −π/d)
is about �L ≈ 38 meV, while at the right edge (k = π/d) it is
�R ≈ 31 meV; therefore, the width of the first absolute band
gap is about 31 meV.

In order to study the degree of asymmetry of the dispersion
curves let us consider the difference in energy between
the left and right lowest-energy gaps, computed by the
following sequence of symmetric dielectric functions: �ε =
ε‖ − ε⊥ = 4 n, where n = 1,2,3,4. The energy differences
EgL − EgR are, respectively, 38 − 31 = 7 meV, 62 − 39 =
23 meV, 92 − 12 = 10 meV, and 205 − 145 = 40 meV;
therefore, the absolute gap coincides with the right gap in these
systems.

Figure 8(a) shows the dispersion curves for the last couple
of dielectric constants (ε‖ = 18.24 and ε⊥ = 2.24) where the
exciton transition energy is in resonance with the first absolute
photonic gap [Eex(0) = �ωr = 1.735 eV]. Notice that for
this rather large birefringence value (�ε = 16) the dispersion
curves show large asymmetry starting from the second absolute
gap. Moreover, this new gap, which is very narrow in energy
(∼31 meV ), drops well inside the negative k values of the
BZ, while its shape is very close to the open gap due to a pair
of Dirac points [11,16] in 2D systems [see also Fig. 9(a)]. In
fact, Fig. 8(b) shows the dispersion curves of the non-normal
symmetric case (θ = 20◦ and αL = αR = 0◦), where two
cross points, at a photon energy of about �ω ≈ 3.5 eV and
symmetric with respect to the � point (kd = ±0.25), are
clearly reported.

Now, by rotating the optical axis on the (x,z) plane of αR =
30◦, the two cross points become asymmetric (kd = −0.25
and 0.0) with respect to the � point of the BZ (the picture is
not reported here). Finally, by rotating the in-plane optical axis
of αL = 45◦, the optical gaps open at the former cross-point
energies, as shown in Fig. 8(a).

In conclusion, while the synergic effect of non-normal
incidence (θ = 20◦) and the orientation (αR = 30◦) of the
optical axis on the (x,z) plane make the two cross points
(located at about �ω ≈ 3.5 eV photon energy) asymmetric,
the orientation (αL = 45◦) of the optical axis on the (x,y)
plane opens a new absolute gap close to the left cross point of
the bands [14]. Notice that the last consideration justifies the
adopted name “minimum model” and is the most interesting
result of the present work.

In Fig. 9(a) the former small absolute gap is reported on
an enlarged energy scale, and five stationary points, with zero
group velocity, are present in the top and bottom photonic
bands. Notice that a photon with energy in resonance with
the inflection point of the bottom band (�ω ≈ 3.5175 eV)
crosses the band in two different points, namely, (i) a point
close to the � point, where an inflection point with zero
group velocity is observed, and (ii) a cross at k < 0, where
the group velocity is negative; therefore, only the last wave
can transfer electromagnetic energy, and a unidirectional
propagation effect is obtained [2,16] in these nonmagnetic
crystals.

Analogous considerations can be performed for photon
energy in resonance with a minimum in the upper band
(�ω ≈ 3.7905 eV); in this case the former inflection point is
now substituted by a minimum, and two crosses are observed in
correspondence with negative values of k; therefore, the two
group velocities have different signs, and no unidirectional
propagation is present [6,16].

The former description is well suited for weak exciton-
photon interaction, while in the presence of strong radiation-
matter interaction a more complex behavior is present, as
shown in Fig. 9(b), which, on a further enlarged energy
scale, reports the polariton splitting for a Wannier exciton
in resonance with the inflection point of the bottom band.
Notice that the former inflection point in Fig. 9(a) now
becomes a bunch of negative k values with zero group
velocity, while the cross point at k < 0 is removed by polariton
splitting, and a rather flat dispersion polariton curve, due to
the strong radiation-matter interaction, is present very close

π
(a) (b)

π

FIG. 8. Exciton-polariton dispersion curves of hybrid resonant photonic crystals. Eex(0) = 1.735 eV, ε‖ = 18.24, ε⊥ = 2.24,θ = 20◦.
(a) Axial spectral asymmetry: αL = 45◦, αR = 30◦, k‖ �= 0, εxz �= 0. (b) Axial spectral symmetry: αL = 45◦, αR = 0◦, k‖ �= 0, εxz = 0.
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π π
(a) (b)

FIG. 9. Dispersion curves of Fig. 8(a) in enlarged energy scales: (a) close to the energy of the second absolute energy gap and (b) close to
the exciton energy [Eex(0) = 3.5175 eV] in resonance with the stationary inflection point.

to the unperturbed exciton energy [13,14] [calculated by
Eq. (2) using Eex(0) = 3.5175 eV]. Moreover, since in the
present case, in which many symmetry operations have been
removed, the coupling among upper and lower bands and the
two so-called exciton-polariton intermediate bands is between
the upper band and the lower intermediate band and the lower
band and the upper intermediate band [see also Fig. 4(b)],
the surprising presence in the dispersion curves of a rather
unperturbed intermediate band with zero group velocity can
be explained by the former interaction.

Finally, the nonreciprocal hybrid photonic crystal enlarges
the zone of k values with zero group velocity a great deal, and
this property is crucial for storing the light impulse on hybrid
superstructures, as discussed in Ref. [14].

FIG. 10. Forward optical response for an S-polarized non-normal
incident wave on a hybrid cluster of N = 32 + 2 quantum wells
for the bulk parameter values in Fig. 9(b). Reflectivity: dashed red
line; transmission: dotted blue line; and absorbance: solid green
line.

Notice that in the present calculation, in order to ac-
complish resonant conditions and to observe the effect of
strong radiation-matter interaction (polariton splitting), we
have shifted the exciton energy Eex(0) in a rather large
range of energies (from 1.418 to 3.6434 eV) while the other
parameter values of the model remain unchanged. Obviously,
the former exciton energy variation is outside the possibility of
the quantum confinement in the AlGaAs/GaAs(001) system;
therefore, our results should be considered a qualitative
suggestion because rather different materials (for instance,
gallium nitride [20] and semiconductor oxides [21]) with
stronger radiation-matter interaction should be considered for
observing unidirectional propagation in the strong-coupling
regime in the second absolute gap of these nonmagnetic
photonic crystals. Finally, the properties observed for uni-
axial dielectric constant values (ε‖ = 18.24, ε⊥ = 2.24) can
be obtained also for different uniaxial dielectric constant
values, for instance, 15.24, 2.74; 12.24, 2.94; and 10.24,
3.24.

For the sake of completeness, the forward optical response
for a TE polarized non-normal incident wave in a hybrid cluster
of N = 32 + 2 quantum wells, computed for the same bulk
parameter values as in Fig. 9(b), is reported in Fig. 10. It is
interesting to note that the small absolute gap is just present
in this cluster, while the exciton energy is in resonance with
the inflection point of the bottom band (�ω = 3.5175 eV).
Moreover, the five stationary points reported in Fig. 9(a) are
in one-to-one correspondence with the strong change in the
diffraction oscillations present in Fig. 10.

V. CONCLUSIONS

In conclusion, using selected numerical examples, we have
discussed the no-absorption effect under resonant conditions
and the presence of the transmission peaks at the optical band
edges in periodic hybrid crystals with a spatially asymmetric
elementary cell.

The optical nonreciprocity [�ω(k‖,k) �= �ω(k‖, − k)] is
obtained by removing axial rotation 2z and computing the
dispersion curves in a semi-infinite periodic lattice for oblique
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incidence (θ = 20◦). The unidirectional properties are com-
puted in such a structure for selected parameter values of the
model; in particular, we have discussed the optical properties
of a hybrid system with uniaxial dielectric constant values
(ε‖ = 18.24, ε⊥ = 2.24). We should underline at this point
that the above choice of parameter values is not restrictive in
order to obtain unidirectional propagation of light when the
cell possesses axial asymmetry.

The influence of strong radiation-matter coupling on the
exciton-polariton propagation at non-normal incidence was
studied in a high-quality sample [14] by computing non-
reciprocal dispersion curves in the zone of exciton-photon
resonance. Finally, the characteristic inflection points present
in nonreciprocal dispersion curves were studied with a linear
polarized optical response in a cluster of N = 32 asymmetric
elementary cells.
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