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Localization transition in the presence of cavity backaction
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We study the localization transition of an atom confined by an external optical lattice in a high-finesse cavity.
The atom-cavity coupling yields an effective secondary lattice potential, whose wavelength is incommensurate
with the periodicity of the optical lattice. The cavity lattice can induce localization of the atomic wave function
analogously to the Aubry-André localization transition. Starting from the master equation for the cavity and
the atom we perform a mapping of the system dynamics to a Hubbard Hamiltonian, which can be reduced to
the Harper’s Hamiltonian in appropriate limits. We evaluate the phase diagram for the atom’s ground state and
show that the transition between extended and localized wave function is controlled by the strength of the cavity
nonlinearity, which determines the size of the localized region and the behavior of the Lyapunov exponent. The
Lyapunov exponent, in particular, exhibits resonancelike behavior in correspondence with the optomechanical
resonances. Finally we discuss the experimental feasibility of these predictions.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) with cold atoms
provides a rich framework to study the wave-particle duality of
light and matter [1–3]. In this environment, the interaction of
a single photon with a single atom has been brought to a level
of control that is sensitive to the finite spatial localization of
the atom within the cavity mode [4–9]. This property is at the
basis of several protocols which exploit the optomechanical
coupling between atoms and photons in CQED in order to
cool the atomic motion [3,10–13], to perform high precision
measurements [14,15], and to create novel sources of quantum
light [16–19], for example.

Cavity backaction, moreover, modifies the dynamics to the
extent that photons and atoms become strongly correlated:
Since the photon field depends on the atomic position
within the resonator, the mechanical forces that the atom (or
molecule) experiences depend on the center-of-mass wave
function within the cavity mode [20,21]. This nonlinearity
is at the basis of several collective phenomena, such as the
formation of spatial patterns [22–24], synchronization [25,26],
and exotic phases of ultracold matter [27–30]. Even at the level
of a single particle it can give rise to peculiar behaviors, which
shed light on the interplay between nonlinear dynamics and
quantum fluctuations.

In this work, we theoretically investigate the regime in
which cavity backaction can induce the transition to localiza-
tion of the atomic center-of-mass wave function. The system
we consider is illustrated in Fig. 1(a): A single atom is tightly
confined by an external optical lattice within a high-finesse
cavity; its dipole strongly couples with a standing-wave mode
of the resonator. In the regime in which this coupling is
dispersive, the mechanical effects of the cavity field are
described by a second periodic potential. We choose the two
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lattice wavelengths with periods which are incommensurate
with each other. The combination of these two characteristic
lengths gives rise to an aperiodic, pseudorandom potential.

In the limit where the cavity nonlinearity can be neglected,
the system is described by the Aubry-André model [31] or
the Harper model [32], which predicts a transition from an
extended to a localized phase when the ratio between the
depths of the two potentials exceeds a critical value. This
localization transition has been observed experimentally with
ultracold atoms confined by bichromatic optical lattices by
tuning the amplitude of the secondary lattice potential [33–35].
The effect of interactions on the Aubry-André model has
been investigated theoretically both in the mean-field weakly
interacting regime [36] and for arbitrary interactions at low
lattice filling [37,38]. Quasiperiodic potentials have also been
realized with exciton polaritons in semiconductor microcavi-
ties [39].

Differing from these realizations, the strong coupling with
the cavity introduces a novel feature: The depth of the
cavity potential, in fact, is proportional to the number of
intracavity photons, which is a dynamical variable coupling
optomechanically with the atomic motion. In this setting
we analyze the localization transition and discuss possible
experimental regimes where it could be observed.

This article is organized as follows. In Sec. II we introduce
the theoretical model, which encompasses the effect of
the cavity nonlinearity, and show how it results from the
optomechanical coupling of a single atom with the single mode
of a lossy cavity. In Sec. III we analyze the phase diagram for
the ground state as a function of the cavity parameters and then
discuss experimental realizations in CQED setups. In Sec. IV
we draw the conclusions and present outlooks to this work.

II. AUBRY-ANDRÉ’S MODEL IN THE PRESENCE OF
CAVITY BACKACTION

In this section we discuss the theoretical model at the basis
of our analysis, which is a Hubbard model with the on-site
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energy resulting from a second, incommensurate potential. We
then identify the parameters for which one recovers the Aubry-
André model [31] or the Harper model [32]. We further discuss
the conditions under which the Hubbard model describes a
cold atom which optomechanically interacts with the mode of
a high-finesse optical cavity.

A. Hubbard model for cavity QED with cold atoms

The model at the basis of our analysis results from the
one-dimensional dynamics of a particle of mass m in two
periodic potentials, of which one, denoted by Ŵext(x̂), tightly
traps the particle at its minima, while the second, V̂eff(x̂), is a
perturbation to the first potential, Ĥeff = p̂2/(2m) + Ŵext(x̂) +
V̂eff(x̂), with p̂ and x̂ being the canonically conjugate mo-
mentum and position. The cavity and external potentials are
periodic with wave numbers k and k0, respectively, where
k = βk0 and β is an irrational number. Therefore, the Hamil-
tonian is aperiodic. Specifically Ŵext(x̂) = Ŵext(x̂ + π/k0),
while V̂eff(x̂) = V̂eff(x̂ + π/k). For later convenience we write
V̂eff(x̂) = v0f (x̂), where v0 has the dimensions of an energy
and f (x̂) = f (x̂ + π/k) is a dimensionless function. In the
limit in which the dynamics can be restricted to the lowest
band of the deep lattice Ŵext(x̂) [40], we can describe it by
means of the Hubbard Hamiltonian

ĤBH = −t

L−1∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|)

+
L∑

n=1

δεn|n〉〈n|, (1)

where |n〉 denotes the state of the particle at site n of the
external lattice potential Ŵext, with n = 1, . . . ,L and L being
the total number of sites. The Hubbard Hamiltonian is com-
posed of the hopping term, scaled by the tunneling coefficient
t = 〈n|p̂2/(2m) + Ŵext(x̂)|n + 1〉 and by the diagonal term
in the basis {|n〉}, whose coefficients are the on-site energy
δεn = 〈n|Ĥeff|n〉 and which are site dependent since the
Hamiltonian is aperiodic. After subtracting an arbitrary energy
constant, we can rewrite these coefficients as

δεn = 〈n|V̂eff(x̂)|n〉 = v0

∫
dx wn(x)f (x)wn(x), (2)

where wn(x) = 〈x|n〉 are the Wannier functions, which are real
valued [41].

In the Aubry-André model the site-dependent on-site
potential δεn has the form

δεn = v0 cos(2πβn). (3)

The self-duality of the model [31] allows one to show
that a continuous transition occurs for the ground state
when the value of the energy v0 reaches a critical potential
strength, vAA

c = 2t [32,42]. If v0 < vAA
c the ground-state

wave function is spatially extended, while for v0 > vAA
c the

wave function decays exponentially indicating Anderson-like
localization [31,42,43].

In this work, we analyze the localization transition when
the incommensurate potential is given by the function

f (x) = arctan
[−δ′

c + C cos2(βk0x)
]
. (4)

The functional form f (x) as given in Eq. (4) is reminiscent
of the one considered in Ref. [44] and is typically encoun-
tered in optomechanical problems in CQED [27,45–47]. The
parameters δ′

c and C are real valued and can take both positive
and negative values. The parameter δ′

c is responsible for the
appearance of nontrivial poles which can depend on the form
of the ground-state wave function and on C. The parameter
C controls the functional form of the second potential f (x),
as illustrated in Fig. 1(b). The expansion of this potential for
small |C| yields the Aubry-André potential (3) to first order
in |C|: For |C| � 1 the on-site energy essentially reduces to
Eq. (3), with the new amplitude v′

0 = |C|v0/[2(δ′2
c + 1)]. In

this limit, we have demonstrated [48] that the critical value at
which localization occurs is found at v′

c = 2t/α, giving

vcav
c = 4t

α

δ′2
c + 1

|C| , (5)

where the correcting factor α reads α = √
A2 + B2,

with A = − ∫
dxw2

0(x) sin(2βk0x) and B = ∫
dxw2

0(x)
cos(2βk0x) [48]. For |C| � 1, the higher harmonics cos2n kx

of the Taylor expansion in C of Eq. (4) becomes relevant and
change the functional form of f (x), as illustrated in Fig. 1(b).
Differing from the Aubry-André model, this is the regime
where the model is not self-dual. In Sec. II B we derive the
potential (4) from a microscopic model describing an atom
in a high-finesse cavity, subjected to an optical lattice, as in

(a)

(b)

FIG. 1. (a) A single atom is confined by an optical lattice,
sketched as blue (light gray) line, with wave number k0 = 2π/λ0

and frequency ω0 within a standing-wave resonator. Its motion
optomechanically interacts with a high-finesse mode, shown in red
(dark gray), at frequency ωc and wave number k = 2π/λ, whose
wavelength λ is incommensurate with the optical lattice periodicity
λ0/2. The depth of the cavity lattice is determined by the balance
between a pump, with strength η and frequency ωp , and the losses
at rate κ . We study the localization transition in this setup, where
the nonlinearity due to strong coupling with the cavity (given by the
cooperativity C) modifies the effective incommensurate potential.
The optomechanical potential is illustrated in panel (b) as a function
of x for three different values of the cooperativity C and when the
laser is resonant with the cavity. The limit |C| � 1 corresponds to
the Aubry-André model.
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Fig. 1(a). By means of this model one can identify C with the
cooperativity of CQED, which measures the strength of the
cavity backaction on the atom’s scattering properties [49].

In this paper we study the transition to spatial localization.
We determine numerically the ground state |�0〉 of Hamilto-
nian (1) with potential (4) as a function of C, δ′

c, and the ratio
v0/t . We characterize the transition by means of the inverse
participation ratio Px [50]:

Px =
L∑

n=1

|〈n|�0〉|4. (6)

The inverse participation ratio (IPR) is of the order 1/L if
the atom’s spatial wave function is uniform over the lattice,
whereas it approaches unity when the atom is localized on one
single lattice site.

We also monitor the degree of localization by the Lyapunov
exponent, defined as [31]

γ = − lim
n→∞

ln(|〈n|�0〉|2)

2n
. (7)

According to Thouless’ formula [51], in the localized regime
of the Aubry-André model it reads

γ = ln

(
v0

vc

)
, (8)

with vc = vAA
c in the case of the original Aubry-André model;

i.e., δεn is given by Eq. (3) and vc = vcav
c by Eq. (5). In our

calculation we obtain the Lyapunov exponent γ by fitting the
spatial decay of the wave function by means of an exponential
function.

B. Self-induced localization in CQED

In this section we derive the Hubbard Hamiltonian of Eq. (1)
starting from the master equation for the density matrix ρ̂ of a
linearly polarizable particle and of a lossy cavity field, which
strongly couple to one another by means of an optomechanical
interaction [52]. In the case of an atom, its dipolar transition
is assumed to be driven far-off-resonance by the fields, so that
spontaneous decay can be neglected within the typical time
scales we consider.

1. Master equation

The relevant degrees of freedom for the atom are the
momentum p̂ along x and the canonically conjugated position
x̂. The cavity mode degrees of freedom are the photon
annihilation and creation operators â and â†, respectively,
with the commutation relation [â,â†] = 1̂. We denote by m

the atomic mass and by ωc the cavity mode frequency, with
wavelength λ = 2πc/ωc, wave number k = βk0, and spatial
mode function cos(βk0x).

The system is driven by a laser, which is described by
a classical field. The laser frequency ωp is the reference
frequency: The atom transition frequency ω0 is given by the
detuning �a = ωp − ω0 and the cavity mode frequency by
the detuning δc = ωp − ωc. In the limit in which |�a| is
the largest frequency characterizing the dynamics, the atom’s
internal degrees of freedom are eliminated in second-order
perturbation theory: In this regime the atomic dipole behaves

as a classical dipole, and its response to the field is described
by its polarizability. The dynamics of the density matrix ρ̂(t)
describing the state of the atomic center-of-mass position and
of the cavity field is governed by the master equation

∂t ρ̂ = 1

i�
[Ĥ ,ρ̂] + Lρ̂, (9)

where Hamiltonian Ĥ describes the coherent optomechanical
dynamics coupling between the atom’s motion and the cavity
mode, and the dissipator L describes cavity losses at rate κ:

Lρ̂ = κ(2âρ̂â† − â†âρ̂ − ρ̂â†â). (10)

The losses are assumed to be due to the mirror finite
transmittivity, while spontaneous decay is neglected assuming
that the atomic detuning exceeds the transition linewidth by
several orders of magnitude. The Hamiltonian Ĥ is given by

Ĥ = p̂2

2m
+ Ŵext(x̂) + Ĥopto, (11)

where the first term on the right-hand side (RHS) is the kinetic
energy and the potential Ŵext(x̂) is periodic with period π/k0

and tightly binds the atom at its minima,

Ŵext(x̂) = W0 cos2(k0x̂) ,

with W0 being the potential depth with the dimensions of
an energy. Hamiltonian Ĥopto includes the cavity degrees of
freedom and their optomechanical coupling with the atomic
motion and reads [20,21]

Ĥopto = −�δcâ
†â + �U0 cos2(βk0x̂)â†â + �ζ (x̂)(â† + â),

(12)

where frequency U0 scales the dynamical Stark shift due to
the coupling between the atom and the cavity mode, U0 =
g2/�a , with the vacuum Rabi frequency g, which determines
the strength of the coupling between the dipole and the one-
cavity photon. The frequency U0 can be either positive or
negative depending on the sign of �a . The last term on the RHS
in Eq. (12) corresponds to the effect induced by an external
pump on the cavity mode. The pump, in particular, can couple
either directly to the cavity, by impinging on a mirror, or via
the atoms, which coherently scatter photons into the cavity
mode. When the pump is set directly on the cavity mirror, the
strength of this coupling is given by the constant value

ζ (x̂) = η. (13)

When instead the atom is transversally driven by the laser, then
ζ (x̂) takes the form

ζ (x̂) = cos(βk0x̂)�g/�a (14)

and is thus weighted by the cavity’s spatial mode function at the
atomic position. Moreover, it is proportional to the laser Rabi
frequency �, which determines the strength of the coupling
between the dipole and the laser.

2. Time-scale separation and effective dynamics

We consider the limit in which there is a time-scale
separation between cavity and atomic motion dynamics and
require that the inequality |κ + iδc| 
 k�p/m is fulfilled,
where �p =

√
〈p̂2〉 is the variance of the atomic momentum,
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assuming that the cavity linewidth is much larger than the atom
Doppler broadening [21]. We then identify the coarse-grained
time scale δt , which is sufficiently short with respect to the
time scale of the atomic external degrees of freedom and yet
sufficiently long that during δt the cavity field reaches a local
steady state.

The treatment is best illustrated in the Heisenberg picture
and is detailed in Refs. [27,53]. We report here some relevant
steps. The equations of motion of the atom and of the cavity
field operator read

˙̂p = 2�kU0 cos(kx̂) sin(kx̂)â†â + 2k0W0 cos(k0x̂) sin(k0x̂),

(15)

˙̂a = −κâ + i[δc − U0 cos2(kx̂)]â − iη + √
2κâin , (16)

if the cavity is pumped by the laser. When the atom is pumped
instead, they read

˙̂p = 2�kU0 cos(kx̂) sin(kx̂)â†â + 2k0W0 cos(k0x̂) sin(k0x̂)

+ �k
�g

�a

sin(kx̂)
(
â† + â

)
, (17)

˙̂a = − κâ + i[δc − U0 cos2(kx̂)]â − i
�g

�a

cos(kx̂) +
√

2κâin,

(18)

where âin(t) is the input noise operator, with 〈âin(t)〉 = 0 and
〈âin(t)â†

in(t ′)〉 = δ(t − t ′) [54]. Within the time step δt , with
δt 
 1/|δc + iκ| but yet shorter than the atom’s characteristic
time scale, we identify the coarse-grained field operator âst,
which is defined by the equation

∫ t+δt

t

â(τ )dτ/δt ≈ âst,

such that
∫ t+δt

t
˙̂ast(τ )dτ = 0, with ˙̂a given in Eq. (16). The

“stationary” cavity field is a function of the atomic operators
at the same (coarse-grained) time, and in the limit where the
quantum noise âin averaged over δt can be neglected it takes
the form

âst ≈ ζ (x̂)

[δc − U0 cos2(kx̂)] + iκ
. (19)

Notice that this expression corresponds both to the case where
the cavity is pumped and to the case where the atom is pumped,
by using, respectively, Eq. (13) or Eq. (14) for ζ (x). A sufficient
condition, for which this expression is correct, is that the mean
intracavity photon number is larger than unity. A necessary
condition, which originates from the statistical averaging at
the basis of this treatment, is that κ/δt � ζ 2. In this limit, the
field at the cavity output reads

âout =
√

2κâst − ¯̂ain (20)

and allows one to monitor the state of the atoms [53–55]. Using
Eq. (19) for the field â in Eq. (15) leads to an equation of motion
for the atomic variables which depends solely on the atomic
variables [27]. The corresponding effective Hamiltonian

reads

Ĥeff = p̂2

2m
+ W0 cos2(k0x̂) + V̂eff(x̂), (21)

where

V̂eff(x̂) = v0f (x̂).

Function f (x) is given in Eq. (4), now with δ′
c = δc/κ and

C = U0/κ , thereby linking the parameters of our model to
the microscopic theory. The energy v0 takes a different form
depending on whether the atom or the cavity is driven. When
the cavity is pumped, then

v0 = �

κ
η2, (22)

while when the atom is transversally pumped it takes the form

v0 = �
�2

�a

δ′
c. (23)

The Hamiltonian (21) is aperiodic and contains the nonlinear
coupling due to the cavity field in the functional form f (x).
It can be cast in a Hubbard form using the single-particle
Wannier basis {wn} of the external potential. Using this change
of basis, in the tight-binding and single-band approximation,

(a)

(b)

FIG. 2. (a) IPR, Eq. (6), as a function of v0 (in units of t) for
δ′
c = 0 and C = −0.5, −2, and −4 (see legend). (b) Contour plot

of the IPR as a function of v0 (in units of t) and of C, for δ′
c = 0.

The red (gray) solid lines correspond to Eq. (5). For calculating δεn

in Eq. (4) we used the Wannier function for a confining potential of
depth W0 = −29Er , with Er = �

2k2
0/(2m) being the recoil energy.
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FIG. 3. Lyapunov exponent as a function of v0, in units of the critical depth vc, which we extract from the numerical behavior of the IPR in
Fig. 2, for δ′

c = 0 and for (a) C = −0.5, −2, and −4 and (b) C = 0.5, 2, and 4. The black dashed line corresponds to the functional behavior of
the Lyapunov exponent in Aubry-André’s model, Eq. (8). The insets display the probability densities as a function of x for the corresponding
values of C of the curves in the onset and for v0/vc = 2. Panels (c) and (d) display the Lyapunov exponent as a function of C for the fixed ratio
v0/vc = 1.2; the horizontal line indicates the value predicted by Eq. (8) [vc depends on C, for each value of C it is extracted from the curves
of the IPR as in Fig. 2(a)]. For calculating δεn in Eq. (4) we used the Wannier function for a confining potential of depth W0 = −29Er , with
Er = �

2k2
0/(2m) being the recoil energy.

one obtains Eq. (1) from Eq. (21), where the on-site energy
δεn is given by Eq. (2), with f (x) as defined in Eq. (4). The
tunneling t has the form

t =
∫

dxwn(x)

(−�
2

2m

d2

dx2
+ W0 cos2(k0x)

)
wn+1(x). (24)

We have verified that the site-dependent tunneling terms due
to the cavity potential,

tn =
∫

dxwn(x)Veff(x)wn+1(x), (25)

are negligible for the parameters we choose and that we specify
in the next subsection. We remark that, while the resulting
dynamics is coherent, its validity relies on a separation between
the typical time scales of the cavity, which is intrinsically lossy,
and the ones of the atomic motion.

III. RESULTS

In this section we determine the phase diagram for the
ground state of Hamiltonian (1), analyze in detail the properties
of the localization transition in the framework of CQED, and
then discuss possible realizations with existing experimental
setups of CQED with cold atoms.

A. Phase diagrams

We determine the IPR, Eq. (6), taking a lattice with open
boundaries (hard walls) and choosing β =

√
5−1
2 . The plots

we show are evaluated for L = 233. We checked that the IPR
and the phase diagrams remain substantially unvaried when
scaling up the lattice size L. For this system size, moreover,
the behavior of the Lyapunov exponent in the localized phase
qualitatively reproduces the thermodynamic limit. We note
here that, since the confining lattice has a minimum at x = 0,
after adding the perturbing potential of Eq. (4) for C < 0
the total potential exhibits a minimum at the center, while
for C > 0 the center is a local maximum [see Fig. 1(b)]. The
symmetry by mirror reflection about the center, thus, gives that
for C < 0 the localized state is in the center, while for C > 0
it is a coherent superposition of two sites equally distant from
x = 0. In order to get a unique localized state for all values
of C, for C > 0 we take f (x) = arctan [−δ′

c + C sin2(βk0x)].
This choice allows us to directly compare the localization
transition for positive and negative values of C and thus to
analyze the sole effect of the potential minimum, which for
C > 0 is a narrow well and for C < 0 is shallow, about x = 0.

For all considered values of C and δ′
c the functional behavior

of the IPR as a function of v0 exhibits a sharp transition, as
visible in Fig. 2(a) for various values of C. The critical value
at which the transition occurs is given in good approximation
by the one in Eq. (5) for |C| � 1, while it differs from this

013839-5



KATHARINA ROJAN et al. PHYSICAL REVIEW A 94, 013839 (2016)

value the larger |C| becomes. This is clearly visible in Fig. 2(b),
which displays the contour plot of the IPR as a function of v0/t

and C for δ′
c = 0. Here, the solid lines correspond to Eq. (5),

which predicts the transition value for the corresponding dual
model and is visibly shifted with respect to the transition
we identify between the extended state (dark region) and the
localized state (light region).

We analyze the properties at the transition by plotting
the probability density as a function of x and observe that
in the localized phase it always exhibits an exponential
decay, although for |C| > 1 we also find that for the same
parameter regimes at large distances the density profile shows
an extended component [see insets of Figs. 3(b) and 5]. We
have checked that this uniform background is not a numerical
artifact. Typical probability densities are shown in the insets
of Figs. 3(a) and 3(b). We remark that deviations from a
purely exponential profile have been observed in the localized
phase of a Bose-Einstein condensate of weakly interacting
atoms, where the ground state was the superposition of several
localized states [56] due to the effect of interactions. In our
case, the observed density profile can be viewed as the overlap
between a localized state and an extended state. This behavior
is due to the higher harmonics of the cavity potential, Eq. (4):
Indeed, we checked that the background appears already by
truncating the Taylor expansion of Eq. (4) in |C| to second
order (to third order if δ′

c = 0).
Figures 3(a) and 3(b) display the Lyapunov exponent γ as

a function of v0 for C < 0 and C > 0, respectively. The values
are extracted by performing a fit of the central localized region
of the density profiles (see insets). This procedure introduces
an uncertainty in the determination of the Lyapunov exponent,
which is not shown here since it is comparable with the size
of the markers. The dependence of γ on C for fixed v0/vc

is shown in Figs. 3(c) and 3(d), where now the error bars
give the uncertainty in the value we fitted. For C < 0 the
Lyapunov exponent (and thus localization) increases with |C|
and is larger than the value of Eq. (8), to which it tends for
C → 0−.The behavior is qualitatively different for C > 0, as
visible in Fig. 3(d): As C is increased from 0, the Lyapunov
exponent decreases monotonically from the value of Aubry’s
model. The curve seems to tend to a nonvanishing asymptotic

FIG. 4. Contour plot of the IPR as a function of v0 (in units of
t) and of C, for δ′

c = −2. The red (gray) solid lines correspond to
Eq. (5). The other parameters are the same as those in Fig. 3.

FIG. 5. Panels (a) and (b) display the Lyapunov exponent as a
function of C for v0/vc = 1.2. The black horizontal dashed line
indicates the value predicted by Eq. (8). The insets display probability
densities as a function of x for different values of C and for the fixed
ratio v0/vc = 2. The other parameters are the same as in those Fig. 3.

constant value for C → ∞, which is the limit of a sequence
of infinitely narrow wells as shown in Fig. 1(b).

We now explore the dependence of γ and of the IPR on the
detuning δ′

c. We have checked several values and take δ′
c = −2

in order to provide a representative example. For this value we
analyze the IPR (Fig. 4) and the corresponding dependence of
the Lyapunov exponents on C (Fig. 5). The contour plot shows
that for C < 0 the extended phase shrinks with respect to the
case δ′

c = 0 [Fig. 2(b)]; the smaller critical value vc is found
at about C ∼ −2. Correspondingly, the Lyapunov exponent as
a function of C possesses a minimum at the same value of
the cooperativity. This value is given by a root of the function
f (x), Eq. (4), for cos2(kx) ≈ 1, which is fulfilled when the
atom is localized at the minimum of the total potential. This
root is a resonance which maximizes the intracavity photon
number when the atom is in a localized state, as we show
below.

B. Experimental realization

Single atoms and ions have been trapped inside cavities and
cooled to very low temperatures [1,2]; the dispersive coupling
with the cavity field as in Eq. (21) has been realized [3].
These implementations rely on the existence of an external
trapping potential, which is typically harmonic. This breaks
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FIG. 6. (a) Inverse participation ratio, Eq. (6), and (b) mean intracavity photon number n̄, Eq. (26), as a function of the parameters η and
C = U0/κ in the setup where the resonator is driven and for detuning δc = −5.5κ . Here, η is the strength of the laser and U0 is the strength
of the optomechanical coupling. In panels (a) and (b) the potential depth is fixed to W0 = −15Er , where Er is the recoil energy associated
with the D line of 87Rb atoms. Panels (c) and (d) show the IPR and n̄ as a function of η and δc (in units of κ) for C = −1 and W0 = −14Er .
The other parameters are the number of sites L = 233 and β =

√
5−1
2 . For the parameters of Refs. [28,29], where κ ≈ Er/�, the time-scale

separation at the basis of our model is warranted when the detuning |δc| > Er/� and the atom’s temperature T < 1 μK.

the discrete translational invariance along the direction of
motion thus drastically changing the properties of the extended
state. However, a sufficiently shallow trap does not affect
the transition to localization as long as the size of the
localized state is much smaller than the harmonic oscillator
length [33]. Inclusion of the harmonic confinement would
be a straightforward extension of the present model. We do
not include the harmonic trapping in the present work since
under typical experimental conditions (see, e.g., Ref. [28]) the
harmonic oscillator length (∼0.6 for a trapping frequency of
ωho = 2π × 25 kHz of 87Rb atoms) is much larger than the
size of the localized wave function (∼2 μm for γ = 0.2 and
k0 = 2π/830 nm).

The transition to localization with cold atoms can be
revealed by means of time-of-flight measurement, as realized
in Ref. [33], or in situ imaging [57,58]. Another possibility is
to analyze the spectrum of light emitted by the resonator, since
this contains the information about the system excitations and
allows one to monitor the dynamics [46,55].

The conditions for the time-scale separation we performed
in Sec. II B are fulfilled, provided the shot noise component
of the cavity field can be neglected over the time scale of the
motion, which leads to a condition on the number of intracavity
photons and on the atom’s kinetic energy. Figures 6(a) and 6(c)
display the phase diagram obtained from the IPR, here reported

as a function of the pump strength η, of the cooperativity C,
and of the detuning δc, for the parameters of the setup of
Refs. [28,29]. The transition to localization can be observed
for cooperativity |C| = |U0|/κ � 1 and thus require the strong
coupling at the single-atom level. We further determine the
corresponding mean intracavity photon number n̄, according
to the equation

n̄ = 〈�0|â†
stâst|�0〉

�
L∑

m=1

|〈m|�0〉|2
∫

dzwm(z)2 ζ 2

[δc − U0 cos2(kcz)]2 + κ2
.

(26)

Its form shows that the root of Eq. (4) is an optomechanical
resonance in the cavity field [59].

Figures 6(b) and 6(d) show the intracavity photon number
for the parameters of the phase diagrams in Figs. 6(a) and 6(c),
respectively.

The signal-to-noise ratio can be increased by confining
N bosonic atoms in the resonator since the total number of
photons scales linearly with the number of atoms N . The
dynamics we predict would scale up as long as the atoms
form an ideal Bose gas, under similar conditions as the
ones realized in the LENS experiment [33,60], such that the
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on-site interaction is much smaller than the average kinetic
energy at the localization transition. Since the strength of
the optomechanical coupling U0 scales linearly with N [27],
sufficiently large atomic samples can allow one to reach
the strong-coupling regime, even when for one atom this
is not warranted. Nevertheless, for N > 1 one shall add
to the Hamiltonian governing the dynamics the long-range
atom-atom interaction which is mediated by virtual absorption
and emission of a cavity photon [27]. We conjecture that in
the absence of other types of interactions (such as on-site
repulsion) in the ground state, the N atoms will be at
the minimum of the single-atom cavity potential, while the
excitation spectrum will be relevantly modified.

IV. CONCLUSIONS

We have analyzed the localization transition in a modified
Aubry-André model, where the secondary potential, whose
periodicity is incommensurate with the confining lattice, is
due to the coupling with a high-finesse resonator. Its effective
optomechanical potential consists of a transcendental function
of the atomic position, which results from the sum of all the
harmonics when the light scattered by the atom backacts on
the atomic position. In this limit, the localization we predict
is self-induced by the atom. We find that it preserves several

features of the Aubry-André model. Novel features are the shift
of the localization in the phase diagram and the behavior of the
Lyapunov exponent, which is a function of the cooperativity
and shows peculiar features close to the parameters where the
system exhibits optomechanical resonances.

The localization-delocalization transition we predict can be
measured with ideal bosonic gases confined in resonators for
existing setups [28,29]. Our study sheds light onto the effect
of nonlinearities in the quantum regime and complements the
studies on the glassiness of bosons [53] and fermions [61] and
on static friction [47] in interacting gases induced by cavity
backaction in frustrated geometries.
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