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Resonance fluorescence spectrum of a �-type quantum emitter close to a metallic nanoparticle
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We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a
spherical metallic nanoparticle. We consider the case in which the quantum emitter is driven by a single laser
field along one of the optical transitions. We show that the development of the spectrum depends on the relative
orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we
demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon
coupling and the laser detuning, allowing one to achieve a controlled strongly subnatural spectral line. A strong
antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used
for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field
of quantum information processing.
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I. INTRODUCTION

The optical properties of quantum emitters have been shown
to be dramatically modified when they are located in close
proximity to a metallic nanoparticle (MNP). The ultracompact
optical mode volume achieved in plasmon nanostructures leads
to a large resonant enhancement of the local field near the
MNP [1–4], as well as the modification of spontaneous-
emission rates of the emitter’s optical transitions [5–10].
The exciton-plasmon coupling has received a great deal of
attention, leading to interesting phenomena such as changes
in photoluminescence lifetimes [11], photon statistics [12],
resonance fluorescence [13–18], plasmon-induced quantum
interference effects [19–21], control over population dynam-
ics [22–25], and over nonlinear optical processes [26–33].

In this paper, we theoretically investigate the resonance
fluorescence spectrum (RFS) of a hybrid system consisting of
a three-level �-type quantum emitter coupled to a MNP, which
is taken as a gold nanosphere. This work is related to previous
works carried out by us [16] and other authors [13–15,17,18]
on the spectral properties of the spontaneous photons produced
in externally driven quantum systems coupled to a metallic
nanostructure. These studies revealed the possibility of chang-
ing the linewidth and location of the different sidebands of the
spectra of the spontaneous photons arising from the backaction
of the electric field generated by the metallic nanostructure on
the quantum system (exciton-plasmon coupling). Our work
presents an addition in this area and different effects are
identified.

We focus on two situations to analyze the RFS of the
hybrid system. In the first one, we consider the system to
be singly driven on exact resonance along one of the optical
transitions. We show that the development of the spectrum
depends on the relative orientation of the dipole moments
of the optical transitions in relation to the nanoparticle. In
addition, we demonstrate how the location of the sidebands
is strongly modified by the exciton-plasmon coupling. We
also show that in the low driving regime, it is possible to
obtain an ultranarrow spectral line. In the second situation, we
consider the system to be, again, singly driven but this time

out of resonance, in which case we show the tunability of the
center and the width of the spectral line along the nondriven
transition. In addition, we show that the photons produced
along the undriven transition show strong antibunching. We
present a physical description using the dressed-states picture
showing that both the width and spectral location of the Raman
photons are fully captured in the secular approximation. These
results may be used for creating tunable source of photons that
can be used for a probabilistic entanglement scheme, which is
of interest in the field of quantum information processing.

The paper is organized as follows: Section II establishes
the model, i.e., the Hamiltonian of the system and the
main dissipation processes which are needed to derive the
time-evolution equations of the quantum system’s operators,
assuming the rotating-wave approximation. We also present
the basics for determining the spectral properties of the
fluorescent photons through the analysis of the RFS in the
steady-state regime. Section III presents numerical results
along with a relevant discussion. Finally, Sec. IV summarizes
the main findings of the paper and also presents a discussion
on the experimental implementation of our scheme.

II. THEORETICAL MODEL

Let us consider a three-level quantum system of the � type
located in close proximity to a MNP. The states of the system
are labeled as |1〉, |2〉, and |3〉 (see Fig. 1).

The Hamiltonian that governs the dynamics of the quantum
system can be expressed as

H = HA + HF + HInt + Hext. (1)

The Hamiltonian HA of the system reads

HA =
3∑

j=1

Ejσjj , (2)

where Ej = �ωj is the energy of the j th state and σij are the
Pauli operators.
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FIG. 1. Three-level scheme illustrating the ground and excited
states. Transition |2〉 ↔ |3〉 is driven by a laser field polarized along
the X axis with angular frequency ωL and Rabi frequency �3. (b)
The quantum system is located at a distance D from the boundary of
a nanosphere whose radius is a. The dipole moments �μ23 and �μ13 are
oriented along the X and Y axis, respectively. θ is the angle with the
X axis of the line joining the MNP’s center and the QD’s center.

HF is the Hamiltonian of the medium-assisted electromag-
netic field,

HF =
∫

d�r
∫ ∞

0
dω�ω �f †

λ (�r,ω) �fλ(�r,ω), (3)

and it is expressed in terms of a set of bosonic fields
�fλ(�r,ω), where �f †

λ (�r,ω) plays the role of the variable of the
electromagnetic field and the medium, including a reservoir
associated with the losses in the medium. The field operators
obey the usual commutation rules,

[ �fλ(�r,ω), �f ′†
λ (�r,ω)] = δλλ′δ(ω − ω′)δ(�r − �r ′). (4)

The interaction Hamiltonian is HInt,

HInt = −
∫ ∞

0
dω[ �d · �E(�r,ω) + H.c.], (5)

with �d being the electric dipole moment operator, which is
given by

�d = �μ13σ13 + �μ23σ23, (6)

and �E(�r,ω) is the field operator (excluding the external driving
field), which is defined through [34]

�E(�r,ω) = i

√
�

πε0

ω2

c2

∫
d �r ′

√
εI (�r ′,ω)

↔
G(�r ,�r ′ ,ω) �f (�r ′ ,ω),

(7)

where
↔
G(�r ,�r ′ ,ω) is the dyadic Green’s tensor. Here, ε(�r ′,ω) =

εR(�r ′,ω) + εI (�r ′,ω) stands for the complex permittivity.
Finally, Hext is the part of the Hamiltonian which accounts

for the external coherent coupling and is defined through

Hext = ��3σ23e
−iωLt + H.c., (8)

with the effective Rabi field �3 = �μ23 · �Epump(�rA)/2� . Here,
�rA denotes the position of the quantum emitter in relation to the
MNP (R = |�rA|). The pump field contains the direct pumping
field term plus the scattered field from the MNP,

�Epump(�rA,ωL) = �E0(�rA,ωL) +
∫

VMNP

d �r ′[εm(ωL) − 1]

×
↔
G(�rA,�r ′,ωL) �E0(�r ′,ωL), (9)

where �E0(�rA,ωL) = 1
2 ûxE0e

−iωLt + c.c. is the incident field
operator and ûx is the unitary vector along the X axis, and
εm(ωL)/VMNP stands for the dielectric constant or volume of
the MNP at the frequency ωL. Therefore, the driving field only
couples transition |2〉 ↔ |3〉. Note that for an intense incident
driving field [ �E0(�r,ωL)], it can be treated as a c number, so
that the effective Rabi field can be expressed as

�3 = �0
3

{
1 +

∫
VMNP

d �r ′[εm(ωL) − 1]ûx

↔
G(�rA,�r ′,ωL)ûx

}

≡ �0
3F

x
e , (10)

with Fx
e being the field enhancement factor. In the above

equation, �3 is the renormalized Rabi frequency associated
with the driving field and the field produced by the MNP which
acts back upon the quantum emitter, and �0

3 ≡ μ23E0

2�
stands for

the free-space Rabi frequency, i.e., the Rabi frequency which
would drive the quantum emitter in the absence of the MNP.
Note that the value of Fx

e will depend on θ , i.e., the relative
orientation of the incident field with regard to the axis of the
hybrid system.

The bath operators can be traced out in order to obtain
a master equation for the reduced quantum system, which
enables the derivation of the time evolution of an arbitrary
quantum system operator Q(t), which reads

∂〈Q(t)〉
∂t

= i

�
[HA + Hext,Q]

− �
p

31

2
(σ31[σ13,Q] − [σ31,Q]σ13)

− �
p

32

2
(σ32[σ23,Q] − [σ32,Q]σ23)

− �12

2
(σ21[σ12,Q] − [σ21,Q]σ12)

− �21

2
(σ12[σ21,Q] − [σ12,Q]σ21)

− γ22

2
(σ22[σ22,Q] − [σ22,Q]σ22). (11)

Here, �p

3j stands for the spontaneous emission of the quantum
emitter modified by the presence of the MNP [19], and they
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are explicitly given by

�
p

32 = μ2
23ω

2
32

c2�ε0
ûxIm[

↔
G(�rA,�rA,ω31)]ûx, ≡ �p

x , (12)

�
p

31 = μ2
13ω

2
31

c2�ε0
ûyIm[

↔
G(�rA,�rA,ω32)]ûy , ≡ �p

y , (13)

where
↔
G(�rA,�rA,ω3j ) is the electromagnetic Green’s tensor

evaluated at the frequency ω3j .
The dissipative process described by the terms with the

prefactors �21, �12, and γ22 accounts for the lower levels’
repumping and dephasing and we assume that they are
uncoupled with the localized surface plasmons due to the low
values of the energy splitting (ω21) considered. It is worth
noting that depending on the orientation of the dipole moments
of the emitter’s transitions, the decay rates could become very
different from one another, i.e., the value of �

p

31 can strongly
differ from that of �

p

32.
The quantum system’s and the coherent parts of the

Hamiltonian in an appropriate rotating frame read

Hqe,coh = �ω21σ22 + �(δ + ω21)σ33 + �(�3σ23 + �∗
3σ32),

(14)

where δ = ω32 − ωL denotes the optical detuning, and thus
the density matrix equations of motion of the system read

∂ρ22

∂t
= −�21ρ22 − �12(1 − ρ22 − ρ33) + �

p

32ρ33

− i�3ρ32 + i�∗
3ρ23,

∂ρ33

∂t
= −(

�
p

31 + �
p

32

)
ρ33 + i�3ρ32 − i�∗

3ρ23,

∂ρ21

∂t
= −F12ρ21 − i�3ρ31,

∂ρ23

∂t
= −F32ρ23 − i�3(ρ33 − ρ22),

∂ρ31

∂t
= −F13ρ31 − i�∗

3ρ21. (15)

In writing the above, we made use of the following abbrevi-
ations: F12 = 1/2(�21 + �12 + γ22) + iω21, F32 = 1/2(�p

31 +
�

p

32 + �21 + γ22) − iδ, and F13 = 1/2(�p

31 + �
p

32 + �12) +
i(δ + ω21).

We define the following vector: U (t) = [ρ22(t),ρ33(t),
ρ21(t),ρ12(t),ρ23(t),ρ32(t),ρ31(t),ρ13(t)]T , where T stands for
transpose. Then, we can write Eq. (15) in matrix form as

d

d t
U (t) = MU (t) + B, (16)

with M being an (8 × 8) matrix and B a column vector whose
coefficients can be determined from Eq. (15). Steady-state
values for populations and coherences are derived through
U (∞) = M−1(−B).

We are interested in the spectral properties of the fluo-
rescent photons, in particular the RFS of the hybrid system.
In the steady-state regime, this spectrum is proportional
to the Fourier transformation of the correlation function
limt→∞〈 �E−(�r,t ′ + t) · �E+(�r,t)〉, where �E−(�r,t)/ �E+(�r,t) is
the negative and positive frequency part of the radiation field

in the far zone. The radiation field consists of a free-field
operator and a source-field operator that is proportional to the
polarization operator [35]. Therefore, the steady-state RFS can
be expressed in terms of the correlation function,

S(ω) = Re

[
lim
t→∞

∫ ∞

0
〈 �E−(�r,t ′ + t

) · �E+(�r,t)〉e−iωt ′dt ′
]
,

(17)

where Re[·] denotes the real part of the magnitude enclosed in
square brackets. In the far-field zone (|�r| � c/ω3j , j = 1,2),

�E−(�r,t) = ω2
31

c2|�r| �μ13σ31(t − |�r|/c) + ω2
32

c2|�r| �μ23σ32(t − |�r|/c),

(18)

and �E+(�r,t) = [ �E−(�r,t)]†. We will assume that ω31 ≈ ω32.
In what follows, we consider that the following condition
holds: �μ13 = μûy and �μ23 = μûx , whereas the direction of
detection of the fluorescent field is perpendicular to the plane
XY which contains the electric dipole moments �μ13 and �μ23.
Substituting Eq. (18) into Eq. (17) results in an expression
which contains two-time correlation functions. The calculation
of S(ω) can be performed by means of the quantum regression
theorem [35,36] (see Appendix A for details). The RFS given
in Eq. (17) has two contributions: one of them accounts for
the photons produced along the |1〉 ↔ |3〉 transition [the term
involving Û13(τ ) as defined in Appendix A], while the other is
related to the photons produced along the |2〉 ↔ |3〉 transition
[the term involving Û23(τ )]. In writing Eq. (17) and in the
rest of this work, we abbreviate ω − ωL by ω, but we should
interpret ω as a frequency measured relative to the laser
frequency ωL since we will assume that the hybrid system
is singly driven by �3.

The statistical properties of the fluorescent photons can be
determined through the normalized second-order correlation
function (intensity-intensity correlation) of the fluorescent
signal emitted by the hybrid system, which is given by

g(2)(�r,t,�r,t + τ ) = G(2)(�r,t,�r,t + τ )

G(1)(�r,t)G(1)(�r,t + τ )
. (19)

The first- and second-order correlation functions appearing
in Eq. (19) can be expressed in terms of the positive- and
negative-frequency parts of the electric field operators as

G(1)(�r,t) = 〈 �E−(�r,t) �E+(�r,t)〉,
(20)

G(2)(�r,t) = 〈 �E−(�r,t) �E−(�r,t + τ ) �E+(�r,t + τ ) �E+(�r,t)〉.
We will assume that first- and second-order correlation func-
tions leading to Eq. (19) will be determined under stationary
conditions by invoking again the quantum regression theorem.

III. NUMERICAL RESULTS

We start by analyzing how the presence of the MNP mod-
ifies the spontaneous-emission rates of the quantum emitter.
The MNP is a gold nanosphere with radius a, as depicted
in Fig. 1(b). The radius of the nanosphere is a = 50 nm.
Both the quantum emitter and the MNP are embedded in
a lossy free dielectric background with dielectric constant
2.25. The dielectric function of the gold MNP was extracted

013834-3
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FIG. 2. (a) Plasmon modified radiative decay rates of the quantum emitter �p
x (dash-dotted curve) and �p

y (solid curve) in units of �0 vs the
distance D in nm. (b) Field enhancement factor (|Fe,x |) vs distance D when the angle is θ = 0◦ (dash-dotted curve), and θ = 90◦ (solid curve).

from optical data [37]. We calculate the spontaneous-decay
rates and the field enhancement factor via a Green’s tensor
formalism of the electromagnetic field for a single spherical
scatterer for wavelength λ = 947 nm. Namely, the calculation
of the electromagnetic field around a spherical scatterer is
based on the classical Mie theory [38]. The corresponding
electromagnetic (EM) Green’s tensor is calculated within
the same framework, i.e., Mie theory, and the corresponding
formalism can be found elsewhere [39].

Figure 2(a) show the radiative decay rates �
p
x and �

p
y

modified by the presence of the MNP as a function of the
distance D between the surface of the nanosphere to the
quantum emitter. The external driving field was selected to
be parallel to the X axis. A close inspection of Fig. 2(a)
shows a highly distinctive behavior for the two decay rates:
The �

p
x decay rate shows a nonmonotonous variation versus

the distance D around the free-space value (�0), whereas the
�

p
y decay rate exhibits a large variation taking values up to

one order of magnitude greater than the free-space value.
This asymmetric behavior results in privileging the decay
from the upper state |3〉 to the lower state |1〉 in comparison
with the decay from |3〉 to the lower state |2〉, and originates
from the difference between the longitudinal surface plasmon
resonance along the Y axis and the transverse surface plasmon
resonance along the X axis. This indicates that the MNP acts as
a nanoscale cavity which enhances the strength of the vacuum
fluctuations depending on the distance D and the orientation
of the dipoles of the system.

In Fig. 2(b), we present the results for the field enhancement
factor Fx

e in the case where the hybrid system is singly driven,
for two different values of the angle θ . For θ = 0 (dash-dotted
curve), we observe that the effective field felt by the quantum
dot (QD) is reduced with regard to the free-space value and
exhibits a minimum at a very short distance. On the other
hand, for θ = 90◦ (solid curve), the effective field is enhanced
and exhibits a monotonous decrease for increasing values of
D. Based on this, we can selectively suppress or enhance a
given spontaneous-emission channel of the quantum emitter
by varying the distance D and/or the orientation of the dipole

moment. Besides spontaneous emission, one can also modify
the corresponding Rabi frequency of the emitter by varying
the same parameters of the hybrid system. This anisotropic
resonant phenomenon is the key idea that will allow one
to modify the spectral properties of the fluorescent photons
produced by the hybrid system.

Next, we examine the influence of the MNP on the steady-
state RFS. Numerical results for the RFS are obtained through
Eq. (17). The results are displayed in Fig. 3(a) for a Rabi
frequency of �0

3 = 2.5�0: this value is selected in the range
which shows the full development of the spectral features for
the isolated quantum emitter. The driving field is considered
to be on resonance (δ = 0). The solid curve corresponds to
the spectrum obtained for the isolated quantum emitter and
consists of a central peak, a red-detuned sideband, as well
as three blue-detuned sidebands. For the hybrid system, we
choose D = 20 nm between the quantum emitter and the MNP:
the dashed curve is obtained when θ = 0 and the dash-dotted
curve is for θ = 90◦. In the case with θ = 0, we observe that for
this geometrical configuration, the RFS collapses to a nearly
single central peak which is broader than that obtained in the
absence of the MNP, whereas the far-detuned blue sidebands
remain unresolved, i.e., the spectral separation of these two
sidebands is less than their HWHM. These results can be
explained in light of the effect of the MNP on the effective
field which drives the system: according to the dash-dotted
curve in Fig. 2(b), the value for |Fe,x | is less than unity for this
gap distance (|�3| < |�0

3|). The RFS changes dramatically
when considering the other configuration (θ = 90◦), where
the presence of the MNP results in |Fe,x | > 1, leading to the
progressive separation of the sidebands. At the same time, the
sidebands broaden as a consequence of the modification of
the decay rates by the plasmonic interaction. It is expected
that for this particular geometrical configuration, the closer
the MNP to the quantum emitter, the greater the separation of
the sidebands from the central peak.

The appearance of a quintuplet in the RFS arises from the
fact that there are two contributions to the RFS, as indicated
in Eq. (18). The first contribution arises from the photons
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FIG. 3. (a) Steady-state RFS [S(ω)] of the system driven on resonance δ = 0 when �0
3 = 2.5�0, in the absence of MNP (solid curve)

and with a distance D = 20 nm: dashed curve when θ = 0, and dash-dotted curve for the case with θ = 90◦. (b) Contributions to RFS of
correlations U13(τ ) (solid curve) and U24(τ ) (dashed curve) for the isolated quantum emitter. (c) Full RFS [S(ω), thin dashed curve] and
RFS computed in the DSP [SDSP(ω), thick dashed curve] for �0

3 = 2.5�0, D = 20 nm, and θ = 90◦. (d) Time evolution of intensity-intensity
correlation [g(2)(τ )] for the fluorescent photons produced along transition |1〉 ↔ |3〉 in the cases considered in (a). Thin solid curves are the
corresponding normalized second-order correlations computed in the DSP. τ = t�0 stands for normalized time. Other numerical values used
are ω21 = 30�0, �12 = �21 = 0.008�0, and γ22 = 0.0014�0.

produced along the transition |3〉 ↔ |2〉 [see dashed curve in
Fig. 3(b)]: this transition is responsible for the emergence of the
central peak and two sidebands symmetrically located around
ω = 0, and mimics the Mollow triplet of a two-level system.
The second contribution arises from the photons produced
along the undriven transition |3〉 ↔ |1〉 [see solid curve in
Fig. 3(b)]: here we observe the lack of a central peak for this
channel which should be expected to appear at ω = ωL + ω21

in the case that transition |3〉 ↔ |1〉 would have been driven
by an external laser field. Here we also observe the emergence
of two additional blue-detuned sidebands.

We carried out an analysis in the dressed-state picture (DSP)
of the RFS for the current situation (the details are provided
in Appendix B): we show that in the secular approximation,
which consists of obtaining equations of evolution for popula-
tions and coherences while neglecting the couplings between
them, the RFS spectrum can be decomposed as a sum of
Lorentzians whose peaks and effective widths are obtained in
terms of the physical decays [see Eqs. (B8) and (B9)] and the
coefficients of expansion of the dressed states in terms of the
bare states (c2 and c3). This analysis explains the location and

heights of the Lorentzians found in Fig. 3. As an example of
this statement, we compare in Fig. 3(c) the RFS computed
in the DSP using Eq. (B7) (thick dashed curve) with the
one obtained via the full solution (thin dashed curve) using
Eq. (17), which reveals the good agreement between them.
According to this analysis, the far-detuned blue sidebands are
located at λ+, and λ−, which originate from transitions from
dressed levels |+,N〉 ↔ |1,N − 1〉 and |−,N〉 ↔ |1,N − 1〉,
with �+1 and �−1 being the corresponding widths, respectively
(N stands for the number of photons in each manifold). The
sidebands symmetrically located around ω = 0 are produced
by transitions from dressed levels |+,N〉 ↔ |−,N − 1〉 and
|−,N〉 ↔ |−,N − 1〉, with �+− being the width for both of
them. Finally, the central peak is produced from transitions
between the same levels of adjacent manifolds: |+,N〉 ↔
|+,N − 1〉 and |−,N〉 ↔ |−,N − 1〉.

The statistical properties of the fluorescent photons can
be determined through the analysis of the time evolution
of the normalized second-order correlation function given
in Eq. (19). Here we assume that selective detection of the
fluorescent photons is performed; thus we only have to deal
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with photons produced along the undriven transition |1〉 ↔
|3〉. The results are depicted in Fig. 3(d) for the same cases
considered in Fig. 3(a). Here, we observe that such fluorescent
photons remain in the antibunching regime within the time
interval depicted for the isolated quantum emitter (solid curve),
whereas the reaching to the level of unity (the crossing being
the bunching regime) is accelerated in the presence of the MNP.
This speedup to reach the bunching regime is expected since
the presence of the MNP results in changing the decay rates
and the electric field acting upon the quantum emitter. The
thin solid curves appearing in Fig. 3(d) are the corresponding
normalized intensity-intensity correlations computed in the
DSP, and show a good agreement to predict the time evolution
under such driving condition.

It is well known that the development of the spectral features
in the RFS is field (�3) dependent. Now we assume that the
hybrid system is singly driven with a Rabi frequency below
saturation. In this case, the secular approximation used to
derive the RFS in the DSP does not hold; thus we resort
to numerical results for the RFS in the bare-state basis.
We consider a distance of D = 20 nm. We also assume a
polarization selective detection for the fluorescent photons
along the channel |3〉 ↔ |1〉; thus we only take into account
the signal associated to the correlation U13(τ ), i.e., S13(ω)
as defined in Appendix A. The spectra obtained for different
Rabi frequencies are depicted in Figs. 4(a) and 4(b). There we
observe that the spectra exhibit subnatural linewidths for such
low values of the driving field. The spontaneous-decay rates
for this situation are �

p
x = 0.51�0 and �

p
y = 5.67�0 for the

selected gap distance. Nevertheless, the HWHM of the spectral
feature in Fig. 4(a) is 0.06�0 for the isolated quantum emitter,
whereas it changes to 0.02�0 (0.09�0) in the case with θ = 0
(θ = 90◦). A similar trend is obtained for the case depicted in
Fig. 4(b) where the HWHM is 0.21�0 in the absence of MNP,
and it changes to 0.04�0 (0.31�0) in the case with θ = 0
(θ = 90◦). The emergence of this narrow spectral feature in
the spectrum arises from the collapse of the two spectral peaks
obtained in Fig. 3(b) (solid curve) into a single peak. Thus,
the case with θ = 0 is the most favorable to obtain a narrower
spectrum, whose ultimate origin relies in the lesser than unity
field enhancement factor obtained for θ = 0. The previous
results indicate that the filtered RF photons along the nondriven
transition are mostly liberated from the transitions properties
and are tailored by the field enhancement of the MNP.

The time evolution of the normalized second-order corre-
lation function is also depicted in Fig. 4(c) for one of the Rabi
frequencies in the low driving regime. There we can devise
that this correlation also remains in the antibunching regime
for a large period of time in the case with θ = 0, which is fully
attributable to the fact that the field enhancement factor is less
than unity, whereas it is accelerated when θ = 90◦ (where
|Fe,x | > 1) compared to the case of the isolated quantum
emitter. The slow down (speed up) of g(2)(τ ) reflects in the time
domain the narrowing (broadening) of this spectral feature
with regard to the case of the isolated emitter [solid curve in
Fig. 4(c)].

Up to now, we have assumed that the driving field is
on resonance with the transition |2〉 ↔ |3〉, i.e., δ = 0. We
now turn our attention to the question of how the RFS is
modified when the above transition is driven out of resonance.
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FIG. 4. Steady-state RFS [S13(ω)] of the singly driven quantum
emitter for different Rabi frequencies: (a) �0

3 = 0.1�0 and (b) �0
3 =

0.2�0. (c) Time evolution of normalized second-order correlation
function when �0

3 = 0.2�0. Isolated emitter (solid curve), θ = 0
(dashed curve), and θ = 90◦ (dash-dotted curve). The rest of the
parameters are as in Fig. 3.
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FIG. 5. (a) Steady-state RFS [S13(ω)] of the singly driven hybrid system with θ = 90◦ for several interparticle distances: D = 20 nm
(dashed curve), D = 40 nm (dotted curve), and D = ∞ (isolated quantum emitter, solid curve). (a) δ = −30�0 and �0

3 = 2�0; (b) δ = +10�0

and �0
3 = �0. The thin solid curves are the spectral feature associated to the Raman photons determined in the DSP. (c), (d) Transitions between

dressed states accounting for S13(ω) in the case considered in (a), (b): the solid vertical arrow indicates the transition responsible for the Raman
photons, whereas the dashed vertical arrow stands for the other sideband.

We will show that photons produced along the transition
|1〉 ↔ |3〉 exhibit subnatural linewidth, whose frequency is
tunable by changing the sign of δ, the gap distance (D), and
the Rabi frequency of the driving field (�0

3). To this end, we
consider θ = 90◦ and set δ = −30�0. We also assume that
a selective detection of the fluorescent photons is applied to
isolate the photons produced along the two transition channels.
In particular, we are only concerned with the detection of
photons produced along transition |1〉 ↔ |3〉, i.e., with S13(ω)
as defined in Eq. (A2). The results obtained when �0

3 = 2�0

are depicted in Fig. 5(a) for several interparticle distances:
D = 20 nm (dashed curve), D = 40 nm (dotted curve), and
D = ∞ (isolated quantum emitter, solid curve). Here we
show that the Raman photons are blue detuned with regard
to the central peak and that the peak frequency of the Raman
photons can be tuned by varying the gap distance between the
quantum emitter and the MNP. For the case of the isolated
quantum emitter (solid curve), the spectral location of the
Raman photons is found to be 30.13�0 apart from ωL. This
value changes to 30.67�0 when D = 20 nm, and to 30.36�0

when D = 40 nm. The linewidths (HWHM) of these spectral
features are 0.011�0, 0.042�0, and 0.019�0, respectively. We

observe that the lower the interparticle distance, the larger the
spectral shift, although at the expense of obtaining a small
increment of the linewidth.

In the case of driving the hybrid system out of resonance
but for a positive detuning, the Raman photons are also blue
detuned with regard to ωL. This is shown in Fig. 5(b) for
δ = +10�0 and �3 = �0, with the same interparticle distances
D previously considered.

The RFS in the DSP for the Raman photons is obtained by
picking the corresponding term in Eq. (B8) associated with
transition |1〉 ↔ |3〉 which is labeled as SDSP

a (ω). There we
observe that this term is the sum of two Lorentzians: one
located at λ+ whose width is �+1, and the other located at
λ− whose width is �−1 [see Eq. (B4)]. In the case of δ <

0, the Raman photons are obtained through transitions from
| + ,N〉 to |1,N − 1〉, as indicated by the solid vertical arrow
in Fig. 5(c) which connects two adjacent manifolds in the DSP.
On the other hand, in the case with δ > 0, the Raman photons
are produced along transitions from | − ,N〉 to |1,N − 1〉, as
indicated by the solid vertical arrow in Fig. 5(d). We have
checked that the linewidth of the Raman photons �+1 (�−1)
in the case of δ < 0 (δ > 0) coincides with the ones obtained
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FIG. 6. (a) Linewidth of the Raman photons (�+1) vs distance D

for different values of the optical detuning δ. (b) Spectral location of
the Raman photons (λ+) vs distance for different values of the optical
detuning δ. δ = −30�0 (solid curve), δ = −20�0 (dashed curve),
and δ = −10�0 (dash-dotted curve). (c) Time evolution of intensity-
intensity correlation for the Raman spectral line: isolated emitter
(solid curve), and D = 20 nm (dash-dotted curve) with θ = 90◦.

via numerical solution of S13(ω) in Eq. (A2). The Lorentzians
accounting for these transitions are also plotted as thin solid
curves in Figs. 5(a) and 5(b), showing that both the width and
spectral location of the Raman photons are fully captured by
the description in the dressed basis.

It is worth mentioning that the linewidth of the Raman
photons is nearly insensitive to the values of �

p
x and �

p
y ,

which in turn depend upon the distance R. In fact, the small
broadening of this narrow spectral feature originates mainly
from the field enhancement (Fe,x) at the position of the
quantum emitter. This point has been confirmed numerically
in the following way: we determined the linewidth of the
Raman photons while setting Fe,x = 1 (which is an unphysical
situation) for the same distances considered in Fig. 5(a). The
results obtained show changes in the third decimal place.
In other words, the tunability of the Raman photons can be
attributed to the field enhancement factor experienced by the
quantum emitter due to the presence of the nanoparticle.

Figures 5(a) and 5(b) indicate that the spectral location
of the Raman photons can be changed through varying δ3,
�0

3, and/or the gap distance. The narrowness and tunability
of this spectral line is further shown in Figs. 6(a) and 6(b).
By inspecting these two panels, one can identify a tradeoff
between the tunability and the linewidth of this spectral line.

The statistical properties of the Raman photons in the case
with δ < 0 can be determined through the analysis of the time
evolution of the normalized second-order correlation function,

g
(2)
R−P (τ ) = 〈σ+1(∞)σ+1(τ )σ1+(τ )σ1+(∞)〉

〈σ+1(∞)σ1+(∞)〉〈σ+1(∞)σ1+(∞)〉 , (21)

which implicitly assumes a selective spectral detection of
photons along channel |+〉 ↔ |1〉. The time evolution of mag-
nitude g

(2)
R−P (τ ) is depicted in Fig. 6(c). The main difference

between the intensity-intensity correlation depicted in Fig. 6(c)
and those previously considered [see Figs. 3(d) and 4(c)] relies
on the fact that here we are dealing with spectrally filtered
photons around the Raman line. All of these correlations
exhibit a strong antibunching.

IV. CONCLUSIONS

In this work, we present a theoretical study of the spectral
properties of the fluorescent photons produced by a hybrid
system consisting of a �-type three-level quantum emitter
in close proximity to a MNP. We show that the changes
in the effective field felt by the quantum emitter and the
corresponding modifications of the spontaneous decay rates
due to the presence of the MNP manifest themselves as
modifications of the width and location of the sidebands of
the spectrum. We predict a subnatural linewidth for the narrow
spectral line produced along the nondriven transition when
the system is singly driven on resonance by a very weak
field. In addition, we demonstrate the change in location and
width of the Raman peak along the nondriven transition when
the system is singly driven out of resonance by a moderate
laser field. This tunability can be achieved through varying the
Rabi frequency, the detuning, and/or the separation between
the quantum emitter and the MNP. We also have studied
the statistical properties of the photons along the undriven
transition either on resonance and at a very low driving
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field, or out of resonance. In all cases, it is shown that the
photons along that transition exhibit a strong antibunching and
that the intensity-intensity correlations lack from the typical
oscillatory behavior obtained in a singly driven two-level
system [40,41].

Before closing, we need to specify that the hybrid system
investigated in this work can be implemented in realistic
QD-MNP systems. The present state of the art of sample
growth and coherent-carrier control allows the implementation
of QDs with the optical characteristics similar to the three-level
system considered here. A �-type quantum system can, for
example, be established by applying an in-plane magnetic
field (in the growth plane) of a InGaAs dot in a GaAs matrix
provided that the Zeeman splitting of the exciton states is
larger than the linewidths of the optical transitions [42]. The
application of such magnetic field, in the so-called Voigt
geometry, allows one to link states |2〉 and |3〉 through a πx

linearly polarized optical field, whereas |1〉 and |3〉 can be
driven through a πy linearly polarized laser field. Furthermore,
a Mollow-like quintuplet spectrum has been experimentally
observed in InAs/GaAs quantum dots [43].

The search for semiconductor-based single-photon sources
also triggered the study of resonance fluorescence photons in
the Heitler regime along with their second-order correlation
properties [44–46], showing the potential to generate single
photons with a bandwidth close to the natural linewidth
of the QD transition. Here, we have shown that a weakly
driven three-level quantum emitter coupled to a MNP leads
to subnatural spectral lines. One advantage of the current
hybrid system relies on the fact that the RF photons are
produced along the undriven transition, which lacks the
elastic component, while the RF photons produced along
the on-resonance driven transition can be removed by using
a polarization selective detection scheme. The creation of
Raman photons along a nondriven transition has also been
experimentally addressed in QDs, either in free space [47,48]
or coupled to a cavity [49,50]. This process has been proposed
as a tunable source for a probabilistic entanglement scheme,
a property of paramount interest to quantum information
processing [47]. Quantum interference between two cw Raman
photons as high as 0.98 has also been reported [48]. In addition,
hybrid complexes consisting of self-assembled QDs have been
grown and covered with metal nanocrystals [51]. We would
like to draw attention to recent work where the controlled
coupling of single QDs to a plasmonic nanoantenna has
been demonstrated [9,10,52–55]. Therefore, the hybrid system
considered here could be fabricated using available growth and
positioning technologies for the elements involved.
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APPENDIX A: RFS IN THE BARE-STATE BASIS

To determine the RFS in the bare-state basis, we make use
of vector U (t) defined previously in Eq. (16). The evaluation

of the two-time correlation functions appearing in Eq. (17) can
be recast into

S(ω) = f 2(r)|μ|2Re

[ ∫ ∞

0
(〈σ31(τ )σ13(∞)〉

+ 〈σ32(τ )σ23(∞)〉) e−iωτ dτ

]
. (A1)

Equation (A1) can be recast as S(ω) = S13(ω) + S23(ω) with

S13(ω) = f 2(r)|μ|2Re

[ ∫ ∞

0
〈σ31(τ )σ13(∞)〉e−iωτ dτ

]
,

(A2)

S23(ω) = f 2(r)|μ|2Re

[ ∫ ∞

0
〈σ32(τ )σ23(∞)〉e−iωτ dτ

]
,

where the term S13(ω) [S23(ω)] accounts for the fluorescent
photons produced along transition |3〉 ↔ |1〉 [|3〉 ↔ |2〉].

The two-time correlation functions which appear in
Eq. (A1) can be determined with the aid of the quantum
regression theorem [35,36] and the optical Bloch equations,
i.e., Eq. (16). To this end, we define the column vector,

Ûj3(τ ) = [〈σ22(τ )σj3(∞)〉, 〈σ33(τ )σj3(∞)〉,
〈σ12(τ )σj3(∞),〉 〈σ21(τ )σj3(∞)〉,
〈σ32(τ )σj3(∞),〉 〈σ23(τ )σj3(∞)〉,
〈σ13(τ )σj3(∞)〉, 〈σ31(τ )σj3(∞)〉]T (j = 1,2),

(A3)

where the superindex T stands for transpose. According to the
quantum regression theorem, for τ > 0 the vector Ûj3 satisfies

d Ûj3(τ )

dτ
= MÛj3(τ ) + B〈σj3(∞)〉, (A4)

with M being the 8 × 8 matrix of the coefficients of Eq. (16)
and B the corresponding column vector.

By working in the Laplace space, we obtain the steady-state
RFS. Specifically, we have

S(ω) ∝ �0Re

{
l=8∑
l=1

R8,l(iz1)

[
Û

(l)
13 (∞) + Bl

iz1
〈σ13(∞)〉

]

+
l=8∑
l=1

R5,l(iz1)

[
Û

(l)
23 (∞) + Bl

iz1
〈σ23(∞)〉

]}
, (A5)

where Û
(l)
j3 (∞) is the value of the lth component of the vector

Ûj3(τ ) evaluated at τ = ∞, i.e., in the steady state. Rjk(iz) is
the (j,k) element of the matrix R(iz) defined as

R(iz) = (izÎ − M)−1, (A6)

with Î being the identity matrix with size 8 × 8, z1 =
(ω − ωL)/�0, and Bl is the lth element of column vector B.

APPENDIX B: RESONANCE FLUORESCENCE
SPECTRUM IN THE DRESSED-STATE BASIS

Here we address the problem of computing the RFS in
the dressed-state picture for the general case of a driving field
(�3 �= 0) out of resonance (δ �= 0). This will allow us to obtain
an analytical expression for the spectrum. It can be shown that
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the eigenvalues of the quantum system plus the coherent part
of the Hamiltonian are provided by

λ+ = ω21 + δ

2
+

√(
δ

2

)2

+ |�3|2,
(B1)

λ− = ω21 + δ

2
−

√(
δ

2

)2

+ |�3|2,

while the corresponding eigenvectors read

|+〉 = c2|2〉 + c3|3〉,
|−〉 = −c3|2〉 + c2|3〉, (B2)

where c2 = sign(ω21 − λ+)�3
A

, c3 = ω21−λ+
A

, and A =√
|�3|2 + (ω21 − λ+)2.
The eigenstates in Eq. (B2) define a rotation matrix T that

diagonalizes the quantum system and coherent part of the
Hamiltonian of Eq. (14) via the matrix product T HT −1. Thus
the density operator in the dressed-state basis ρD will be given
by ρD = TρT −1, with ρ being the density matrix operator
in the bare-state basis. Projection of the master equation over
the dressed-state basis gives rise to complicated couplings
between the dressed-state populations and coherences. How-
ever, the situation can be simplified in the strong-field limit
where the effective Rabi frequency is much greater than all
relaxation rates. In this case, we can ignore the nonsecular
terms, i.e., coupling between population and coherences.

The Bloch equations in the secular approximation for the
coherences are given by

d〈σ+1(t)〉
dt

= −(�+1 − iλ+)〈σ+1(t)〉,
d〈σ−1(t)〉

dt
= −(�−1 − iλ−)〈σ−1(t)〉, (B3)

d〈σ+−(t)〉
dt

= −[�+− + i(λ+ − λ−)]〈σ+−(t)〉,
with

�+1 = 1
2 [(�31 + �32)|c3|2 + (γ22 + �21)|c2|2 + �12],

�−1 = 1
2 [(�31 + �32)|c2|2 + (γ22 + �21)|c3|2 + �12],

�+− = 1
2 (�31 + �32 + �21 + γ22) + (�32 − γ22)|c2|2|c3|2.

(B4)

In a similar way, we derive the equations of motion for
populations, which read

d〈σ++(t)〉
dt

= �++〈σ++(t)〉 + �+−〈σ−−(t)〉 + �0
++,

(B5)
d〈σ−−(t)〉

dt
= �−+〈σ++(t)〉 + �−−〈σ−−(t)〉 + �0

−−,

with

�++ = −[�31 + �32(1 − |c2|2)]|c3|2
− (�21 + �12 + γ22 − γ22|c2|2)|c2|2,

�+− = (�32|c2|2 − �12 + γ22|c3|2)|c2|2,
�0

++ = �12|c2|2,
�−+ = (�32|c3|2 − �12 + γ22|c2|2)|c3|2,

�−− = −[�31 + �32(1 − |c3|2)]|c2|2
− (�21 + �12 + γ22 − γ22|c3|2)|c3|2,

�0
−− = �12|c3|2. (B6)

The RFS is obtained in the dressed-state basis by applying
the quantum regression theorem to Eqs. (B3) and (B5). After
a lengthy but straightforward calculation, the RFS in this basis
is given by

SDSP(ω) = SDSP
a (ω) + SDSP

b (ω). (B7)

The first term in Eq. (B7) explicitly reads

SDSP
a (ω) ∝ Re

{
|c3|2 〈σ++(∞)〉

i(ω − λ+) + �+1

+ |c3|2 〈σ−−(∞)〉
i(ω − λ−) + �−1

}
, (B8)

and accounts for the photons arising from transition |1〉 ↔ |3〉,
while the remaining term is given by

SDSP
b (ω) ∝ Re

{
|c3|4 〈σ++(∞)〉

i(ω + λ+ − λ−) + �+−

+ |c2|4 〈σ−−(∞)〉
i(ω − λ+ + λ−) + �+−

+ S0(ω)

}
, (B9)

and accounts for the photons arising from transition |2〉 ↔ |3〉.
We have introduced the term S0(ω) for the central peak of the
spectrum: this central peak arises from the contributions of
the transitions |+,N〉 ↔ |+,N − 1〉 and |−,N〉 ↔ |−,N −
1〉, with N being the number of photons in the manifold.

The computation of S0(ω) requires the solution of the
coupled equations (B5) involving the populations. To this
end, we define the vector Û (t) = [〈σ++(t)〉,〈σ−−(t)〉]T , which
satisfies the equation of motion,

d Û (t)

dt
= M0Û (t) + B0, (B10)

where the coefficients of matrix M0 and vector B0 can be easily
obtained from Eqs. (B5).

It can be shown that term S0(ω) of the central peak is given
by

S0(ω) = |c3c2|2Re

{ ∫ ∞

0
dτe−iωτ [〈σ++(τ )σ++(∞)〉

+ 〈σ−−(τ )σ−−(∞)〉]
}
. (B11)

The two-time correlation functions from Eq. (B11) can
be computed by invoking the quantum regression theorem
together with Eq. (B10). We define the column vector,

Û j (τ ) = [〈σ++(τ )σjj (∞)〉,〈σ−−(τ )σjj (∞)〉]T , j = +, − .

(B12)

According to the quantum regression theorem, for τ > 0
the vector Û j (τ ) satisfies the equation

∂Û j (τ )

∂τ
= M0Û

j (τ ) + B0〈σjj (∞)〉 (j = +,−). (B13)

Working with Eq. (B13) in the Laplace space, we obtain
the values for the two-time correlation functions appearing in
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Eq. (B11), which now read∫ ∞

0
dτe−iωτ 〈σ++(τ )σ−−(∞)〉 =

2∑
m=1

R1m(iz)

[
Û+

m (τ = 0) + B0,m

iz
〈σ++(∞)〉

]
,

(B14)∫ ∞

0
dτe−iωτ 〈σ−−(τ )σ−−(∞)〉 =

2∑
m=1

R2m(iz)

[
Û−

m (τ = 0) + B0,m

iz
〈σ−−(∞)〉

]
,

where we have set z ≡ (ω − ωL)/�0, and Û
j
m(τ = 0) stands for the mth component of the vector Û j (τ ) evaluated in the steady

state. Here, Rnm(iz) is the (n,m) element of the matrix

R(iz) = (izÎ − M0)−1, (B15)

with Î being the 2 × 2 identity matrix, and B0,m being the mth element of the column vector B0.
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