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Quantum features of correlated optical modes define a major aspect of the nonclassicality in quantized radiation
fields. However, the phase-sensitive detection of a two-mode light field is restricted to interferometric setups
and local intensity measurements. Even the full reconstruction of the quantum state of a single radiation mode
relies on such detection layouts and the preparation of a well-defined reference light field. In this work, we
establish the notion of the essential quantum correlations of two-mode light fields. It refers to those quantum
correlations which are measurable by a given device, i.e., the accessible part of a nonclassical Glauber-Sudarshan
phase-space distribution, which does not depend on a global phase. Assuming a simple four-port interferometer
and photon-number-resolving detectors, we derive the reconstruction method and nonclassicality criteria based
on the Laplace-transformed moment-generating function of the essential quasiprobability. With this technique,
we demonstrate that the essential quantum correlations of a polarization tomography scheme are observable even
if the detectors are imperfect and cannot truly resolve the photon statistics.
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I. INTRODUCTION

Measuring quantum correlations in optical systems is a
key aspect of the vast field of quantum optics [1–3]. As
quantum effects may exhibit a variety of different observable
signatures, it is a fundamental, yet cumbersome task to identify
them. In particular in optical systems, quantum and classical
optical interferences may occur simultaneously. However,
modern applications of quantum light [4,5] require proper
techniques to discern the domain of classical optics from
the features of quantized radiation fields on a measurable
basis.

A well-established definition of nonclassical correlations is
based on the theory of classical coherence and its violation
in quantum systems; see Refs. [6,7] for early studies. For
instance, the prominent photon antibunching can be uncovered
in this way by measuring intensity correlation functions [8].
For a proper visualization of quantum effects and relating them
to a classical frame, quantum-optical phase-space distributions
have gained major importance. Among the various forms of
such quasiprobabilities, the Glauber-Sudarshan representation
is the most fundamental one [9,10]. This is due to the fact that
nonclassical light is defined as the inability of the interpretation
of this particular distribution in terms of classical probability
theory for the radiation field under study [11,12].

In order to access the quantum characteristics of a single or
multiple optical modes, one can follow two paths. On the one
hand, one can formulate observable nonclassicality criteria,
which may uncover certain quantum effects. However, they
do not allow for a full identification of nonclassicality or
they require an infinite number of tests [13–16]. Examples
of such nonclassicality probes are variance, covariance, or, in
general, higher-order moment-based criteria; see Refs. [17,18]
for overviews. On the other hand, a reconstruction of the full
quantum state of light is another approach. This renders it
possible to detect all quantum features in a system. However,
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it requires involved measurement schemes or costly data
analysis methods to reconstruct the experimentally realized
state [19,20]. Examples of such state representations are the
reconstruction of the Fock density matrix, quasiprobabilities
in phase space, or the characteristic function. The latter is the
Fourier transform of a phase-space function, it is measurable
with balanced homodyne detection, and it can probe the
nonclassicality [21–25].

Another flaw, which has to be considered, is that these
techniques typically require the generation of a proper refer-
ence signal or the desired measurements are not available. For
example, even in classical optics the phase of a signal cannot
be directly measured. It has to be inferred from an interference
with a properly generated reference signal. Thus, one can state
that not all aspects of the definition of nonclassicality are
accessible. For this reason, the question of which quantum
correlations are truly measurable and not just a mathematical
definition is an urgent problem which has to be resolved. An
operational approach to address this task is the main topic of
this contribution.

In this work, we study the nonclassicality of a bipartite radi-
ation field which is accessible within four-port interferometers,
i.e., two input and two output ports, and using local intensity
measurements only. The family of quantum correlations that
are detectable in this manner will define the notion of essential
quantum correlations. Using the Schwinger representation
of a bipartite system of harmonic oscillators, we derive
the corresponding phase-space distribution. In a next step,
we formulate a method for reconstructing this phase-space
function, which is based on the direct measurement of a
generalization of the moment-generating function. In addition,
a hierarchy of nonclassicality criteria is deduced which is
formulated in terms of this moment-generating function and
the practicability of this technique is studied. Finally, we
outline an implementation of our approach which is based on
state-of-the-art measurement layouts and imperfect detectors
that consists of an array of on-off diodes only.

The article is structured as follows. In Sec. II, we derive the
operational notion of essential quantum correlations. Based on
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the Laplace transform, a reconstruction technique is elaborated
in Sec. III. Nonclassicality tests, given by a matrix of the
moment-generating function, are formulated in Sec. IV. A
first application is given in Sec. V. In Sec. VI, the theory of an
experimental implementation is studied. We give a summary
and conclude with an outlook in Sec. VII.

II. ESSENTIAL QUANTUM CORRELATIONS

For establishing the essential quantum correlations, let us
formulate an operational definition via a typical measurement
scheme. A two-mode quantum state of light ρ̂ can be expanded
in a coherent state basis by applying the Glauber-Sudarshan P

representation [9,10],

ρ̂ =
∫
C2

d2αd2βP (α,β)|α,β〉〈α,β|. (1)

For instance, one could think of a signal field in the first mode
and a coherent reference field in the second mode. However,
this is not required for our approach. The two radiation modes
may be mixed on a beam splitter, which is described by the
input-output relation(

âe

b̂e

)
=

(
T R

−R∗ T ∗

)(
â

b̂

)
, (2)

with â and b̂ (âe and b̂e) being the annihilation operators of the
input (output) modes and |T |2 + |R|2 = 1. Thus, the output of
this four-port interferometer is the transformed state

ρ̂e =
∫
C2

d2αd2βP (α,β)|T α + Rβ,T ∗β − R∗α〉

× 〈T α + Rβ,T ∗β − R∗α|. (3)

Further, the intensity of each output mode is detected. The
result of this measurement can always be written in terms
of normally ordered expectation values of operators F̂ =
F̂ (â†

e âe,b̂
†
eb̂e), which have the general form

〈:F̂ :〉 =
∫
C2

d2αd2βP (α,β)F (|T α+Rβ|2,|T ∗β−R∗α|2) (4)

and, naturally, only depend on the output intensities.
The output mean photon numbers of the initial coherent

amplitudes α and β can be put in the form

‖S‖ ± e · S
2

=
{|T α + Rβ|2 for “+”,

|T ∗β − R∗α|2 for “−”,
(5)

where we introduce the real-valued, three-dimensional vectors

e =

⎛
⎜⎝

2Re(T R∗)

2Im(T R∗)

|T |2 − |R|2

⎞
⎟⎠ and S =

⎛
⎜⎝

2Re(α∗β)

2Im(α∗β)

|α|2 − |β|2

⎞
⎟⎠, (6)

with e · S = exSx + eySy + ezSz being the standard scalar
product and its corresponding norm

‖S‖ =
√

S · S. (7)

It is worth mentioning that the defined vector e also justifies
the index of the output operators, e.g., in Eq. (2), and
that e is normalized, ‖e‖ = 1, as we have |T |2 + |R|2 = 1.

The initial coherent amplitudes are retrieved via the inverse
transformation,

(
α

β

)
=

⎛
⎝

√
‖S‖+Sz

2 exp
[
i

σ−arg(Sx+iSy )
2

]
√

‖S‖−Sz

2 exp
[
i

σ+arg(Sx+iSy )
2

]
⎞
⎠, (8)

where σ denotes a nonspecified, global phase, the relative
phase is arg(Sx + iSy) = arg(α∗β), and we have ‖S‖ =
|α|2 + |β|2.

Now, the expectation value of the four-port interferometer
in Eq. (4) takes the following form:

〈:F̂ :〉 =
∫
R3

d3 SPess(S)F

(‖S‖ + e · S
2

,
‖S‖ − e · S

2

)
, (9)

with the essential Glauber-Sudarshan distribution Pess,

Pess(S) = 1

8‖S‖
∫ 2π

0
dσP (α,β). (10)

It has been obtained via the above-introduced coordinate
transformation (S,σ ) �→ (α,β) in Eq. (8).

In the here-presented operational sense, the notation essen-
tial shall indicate that Pess includes the full information that
is accessible with the detection scenario under consideration.
The distribution Pess depends on three real-valued parameters,
Sx, Sy , and Sz, rather than the two complex parameters
α and β, which is the result of the averaging over the
nonaccessible global phase σ . Moreover, in this operational
meaning, the state is essentially classical if Pess is a positive
semidefinite distribution. Otherwise, we have an essentially
quantum-correlated light field.

In case one restricts to polarization measurements, the phys-
ical meaning of the vector S is related to the Stokes parameters
which characterize the various forms of the polarization of a
light beam [26,27]. Here, S applies to any two degrees of
freedom, which relates to the Schwinger representation of two
harmonic oscillators; see Ref. [28] for a review. We have

S = 〈α,β|Ŝ|α,β〉, with Ŝ =

⎛
⎜⎝

â†b̂ + b̂†â

−iâ†b̂ + ib̂†â

â†â − b̂†b̂

⎞
⎟⎠, (11)

cf. Eq. (6). In addition, the norm of S is obtained through the
total photon number,

‖S‖ = 〈α,β|N̂ |α,β〉 for N̂ = â†â + b̂†b̂, (12)

which is also referred to as the zeroth component of the Stokes
vector in polarization measurements; S0 = ‖S‖, likewise
Ŝ0 = N̂ . Also note that the total photon number is invariant
under beam splitter transformations, i.e., N̂ = â†â + b̂†b̂ =
â
†
e âe + b̂

†
eb̂e. The operator representations of relations (5) are

N̂ + e · Ŝ
2

= â†
e âe and

N̂ − e · Ŝ
2

= b̂†eb̂e. (13)

Let us also mention that the Stokes operators have the
properties of a spin angular momentum algebra [26–28], with
Ĵ = Ŝ/2 and Ĵ 2 = Ĵ · Ĵ = (N̂/2)(N̂/2 + 1̂).

As we restrict ourselves to linear scenarios, let us also
briefly comment on other types of interference schemes. Our
approach could be also formulated by using nonlinear inter-
ferometers. For instance, they could be based on parametric
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processes [29–31]. These SU(1,1) interferometers have been
applied, for example, in quantum metrology [32,33].

III. RECONSTRUCTION OF Pess AND THE
MOMENT-GENERATING FUNCTION

In order to reconstruct the essential phase-space distribu-
tion, we make use of the moment-generating function (MGF).
In contrast to the typically considered approach [2,3], which
applies the characteristic function (the Fourier transform of
the P distribution), we apply the MGF (the Laplace transform
of P ). Therefore, let us briefly recall some properties of the
MGF in a one-dimensional setting.

The MGF of a distribution P (x) is defined as the expectation
value of exp(tx),

M(t) =
∫
R

dxP (x)etx . (14)

In this form, M(−t) corresponds to the two-sided Laplace
transform of P (x) [34]. The derivatives of M(t) yield the
moments of P (x). In addition, M(ik) = �(k) is the char-
acteristic function of P (x). That is, the MGF for purely
imaginary arguments yields the Fourier transform of P (x).
From this relation, the well-known, inverse two-sided Laplace
transformed was introduced,

P (x) =
∫

iR

dt

2πi
e−txM(t), (15)

which serves as our reconstruction approach.
Let us now consider the three-dimensional MGF in the

context of our phase-space distribution Pess(S). Namely, we
have the identities

Mess(t; τ ) =
∫
R3

d3 SPess(S)et·S−τ‖S‖

and Pess(S) = eτ‖S‖

(2πi)3

∫
iR3

d3 tMess(t; τ )e−t·S, (16)

where we additionally introduce the converging factor τ > 0.
It guarantees the existence of Mess(t; τ ) which is assured for
any ‖Re(t)‖ � τ , since the integral kernel in Eq. (16) is upper
bounded by 1 in this case [34], | exp(t · S − τ‖S‖)| � 1. From
this definition of the essential MGF, Mess(t; τ ), we can see
that it fulfills the normalization relation, Mess(0; 0) = 1, and
the symmetry relation, Mess(t∗; τ ) = Mess(t; τ )∗.

Applying definitions (11) and (12), as well as the coordinate
transformation (8), we obtain

Mess(t; τ ) =
∫
C2

d2αd2βP (α,β)〈α,β| :

× exp[te · Ŝ − τN̂ ] : |α,β〉
= 〈: exp[te · Ŝ − τN̂ ] :〉, (17)

where we decompose t = te. Thus, certain values of T and R,
which describe the beam splitter in Eq. (2) and the vector e in
Eq. (6), define different directions in the Laplace-transformed,
essential phase space which is represented by Mess(te; τ ).
Employing Eq. (13), we can further write

Mess(te; τ ) = 〈: exp[(t − τ )â†
e âe + (−t − τ )b̂†eb̂e] :〉

= 〈(1 + t − τ )â
†
e âe (1 − t − τ )b̂

†
e b̂e〉, (18)

where : exp[xn̂]: = (1 − x)n̂ is used for the corresponding
photon-number operator n̂ [35]. Hence, the MGF can be
directly obtained by measuring the joint photon-number
distribution p(na,nb; e) of the two modes,

Mess(te; τ ) =
∞∑

na,nb=0

(1 + t − τ )na (1 − t − τ )nbp(na,nb; e).

(19)

Therefore, we have shown that the essential MGF Mess is
directly measurable. Let us emphasize that Mess(te; τ ) will
exist unless the geometric series in Eq. (19) diverges which is
unlikely to happen for most physical scenarios. Additionally,
we generalize this approach to include imperfect detection
scenarios in Sec. VI.

It is also worth mentioning that for most applications, the
number of photons is finite (na + nb � N ) and, thus, the sum
in Eq. (19) is a finite one as well. In this case, Mess(te; τ )
represents a polynomial of the two variables t and τ of the
maximal degree N for any e. For a fixed τ value and a real-
valued t , the MGF can have a root. Conversely, any classical
mixture of coherent states is described by strictly positive MGF
in that case, Mess(te; τ ) > 0 [see Eq. (17)]. The nonclassical
feature,

Mess(te; τ ) = 0, (20)

is also discussed in Sec. V for an example.
Let us also discuss the MGF in relation to the characteristic

function. As pointed out earlier, for imaginary arguments
ik = t with k ∈ R3, we have the essential characteristic
function

�ess(k) = Mess(ik; 0) = 〈: exp[ik · Ŝ] :〉, (21)

for τ = 0. For comparison, the two-mode characteristic func-
tion of the Glauber-Sudarshan representation is �(α′,β ′) =
〈: exp[α′â† − α′∗â + β ′b̂† − β ′∗b̂] :〉. The characteristic func-
tion �ess(k) in Eq. (21) depends on the photon-number
operators, as we have e · Ŝ = â

†
e âe − b̂

†
eb̂e. By contrast, the

typical characteristic function �(α′,β ′) is defined in terms of
the, in our scenario, not directly measurable field operators
â and b̂.

The inverse transformation in Eq. (16) allows one, in
principle, to reconstruct the Pess from the directly measurable
MGF Mess. However, the inverse transform might not be
possible in real experiments, due to a singular behavior of the
Glauber-Sudarshan distribution. Thus, let us formulate general
nonclassicality criteria directly in terms of the MGF.

IV. NONCLASSICALITY TESTS VIA Mess

The formulation of nonclassicality probes has always
been a major subject of research in quantum optics; cf.
Refs. [2,3]. If the Glauber-Sudarshan distribution is a regular
one, one can reconstruct P with negative contributions. In case
this is impossible, the characteristic function can also yield
the nonclassicality, because a number of directly accessible
nonclassicality conditions have been formulated on the basis
of Bochner’s theorem [21,23]. Let us apply a similar technique
to infer the essential nonclassicality employing the MGF.

013833-3



J. SPERLING, W. VOGEL, AND G. S. AGARWAL PHYSICAL REVIEW A 94, 013833 (2016)

The fundamental benchmark for nonclassicality is the
existence of an operator f̂ such that

0 > 〈:f̂ †f̂ :〉. (22)

For the aim of a characterization based on the MGF, it is
favorable to expand f̂ = ∑

p fp exp[−τpN̂ + tp · Ŝ], which
gives

〈:f̂ †f̂ :〉=
∑
p,q

f ∗
p fq〈: exp[−(τp + τq)N̂+(t∗

p + tq) · Ŝ]:〉.

(23)

In combination with inequality (22), this means that if the
matrix Mess is not a positive semidefinite one, we have
nonclassical light,

0 � Mess = [Mess(t∗
p + tq ; τp + τq)]p,q∈I , (24)

for an arbitrary choice of τr and tr in an index set I
(r ∈ I). Using Silvester’s criterion, we get the following:
If the determinant of Mess is negative, 0 > det Mess, for a
given I with an arbitrary cardinality, we have verified the
nonclassicality.

Moreover, let us mention that the choices τr = 0 and
tr ∈ iR3 yield nonclassicality criteria similar to those of the
characteristic function in terms of the field operators â and b̂.
In this case, our family of nonclassicality conditions is directly
related to the hierarchy of corresponding criteria in Ref. [23].
Therefore, our MGF nonclassicality criteria are also necessary
and sufficient ones to infer the essential quantum correlations.

Due to its physical relevance (see, e.g., Ref. [18]), let us
study in more detail the second-order nonclassicality criterion,
which reads

0 > det

(
Mess(2Re[t]; 2τ ) Mess(t∗ + t ′; τ + τ ′)

Mess(t∗ + t ′; τ + τ ′)∗ Mess(2Re[t ′]; 2τ ′)

)
.

(25)

First, if we set τ = τ ′ = 0 and t,t ′ ∈ iR3, we retrieve the non-
classicality criteria in terms of the characteristic function [21],

|�ess(k)| > 1, (26)

with �ess(k) = Mess(ik,0) and k = i(t − t ′). Second, the
choices τ ′ = 0 and t ′ = 0 yield a nonclassicality condition
in terms of a negative, normally ordered variance,

0 > 〈:	Â†	Â:〉, (27)

with 	Â = Â − 〈:Â:〉 and Â = exp[−τN̂ + t · Ŝ]. If we
further take B̂ = exp[−τ ′N̂ + t ′ · Ŝ] (for τ ′ �= 0 or t ′ �= 0), we
find that condition (25) can be also understood as the violation
of a Cauchy-Schwarz inequality [36]. That is,

|〈:A†B̂:〉|2 > 〈:Â†Â:〉〈:B̂†B̂:〉 (28)

verifies essential nonclassical correlations.
Moreover, low-intensity light fields are studied in many

experiments. Therefore, we may also consider this limit that
allows one to perform a second-order Taylor expansion of the
exponential functions in inequality (25). In this limit, we have
the following for t = te and t ′ = t ′e:

0 > 〈:[	([τ ′ − τ ]N̂ − [t ′ − t]e · Ŝ)]2:〉, (29)

with t,t ′ ∈ R and e ∈ R3. Now, we can also select different
parameters for τ ′ − τ and t ′ − t . For instance, we can take
τ = τ ′ or t = t ′ to obtain a condition in terms of the normally
ordered variance of e · Ŝ or N̂ ,

〈:(	[e · Ŝ])2:〉 < 0 or 〈:(	N̂)2:〉 < 0, (30)

respectively. It is worth pointing out that the Mandel Q

parameter [37] for the total photon number N̂ is negative
if 〈:(	N̂ )2:〉 < 0. If the conditions (30) fail to identify the
nonclassicality, one can also chose the parameters such that
we get—up to a positive scaling factor—a cross-correlation
condition between the total photon number and the phase-
space variable S,

0 > 〈:(	N̂ )2:〉〈:(	[e · Ŝ])2:〉 − 〈:(	N̂)(	[e · Ŝ]):〉2, (31)

based on the choice (t ′ − t)(τ ′ − τ ) ∝ 〈:	N̂ )(	[e · Ŝ]):〉 and
adjusting (t ′ − t)/(τ ′ − τ ) correspondingly. In the same fash-
ion, we can use relation (13) to get nonclassical correlations
between the photon numbers of the individual detectors,

0 >〈:(	[â†
e âe])2:〉〈:(	[b̂†eb̂e])2:〉

− 〈:(	[â†
e âe])(	[b̂†eb̂e]):〉2.

(32)

Other second-order inequalities that may be obtained for other
choices of parameters t , t ′, τ , and τ ′ relate to uncertainty
relations for angular momentum [38,39] or in atomic sys-
tems [3,40].

Even more directly, the nonclassicality criteria in terms of
moments of the field operators and the characteristic function
was unified in Ref. [41] together with an experimental imple-
mentation. The idea is that the derivatives of the characteristic
function yield the moments, which can be sampled from the
experimental data. This approach can be adapted for the MGF,
as derivatives similarly yield the moments. Thus, moments
of the form 〈:N̂k[e · Ŝ]l :〉 are also accessible beyond the
above-discussed low-intensity approximation.

As one can see, a number of known and unknown nonclas-
sicality criteria are obtained already from the second order of
our approach. For instance, we have shown that correlations
between the components of Ŝ and the total photon number N̂

are accessible; see Eq. (31) and Refs. [42,43] for the related
theory of field-intensity correlations and Refs. [44,45] for
corresponding experiments. Including higher-order matrices
of MGF Mess, this can be even extended to cover more
complex physical scenarios and to capture all forms of
the essential nonclassicality. In the following, we start with
the verification of the essential quantum correlations for one
example. Eventually, in Sec. VI, we describe a technique that
renders it possible to access the function Mess(t; τ ), at least in
parts, in realistic measurement scenarios.

V. THE HUSIMI FUNCTION AND THE
HONG-OU-MANDEL EFFECT

The practicability of the previously introduced nonclassi-
cality criteria is shown for a typical, nonclassical effect. To
do so and as the P (α,β) function can be highly singular [the
same holds for Pess(S)], we relate Eq. (17) or (18) to another
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phase-space representation. For this reason, let us define

λa = τ − t and λb = τ + t, (33)

which trivially yields

Mess(te; τ ) = 〈: exp[−λaâ
†
e âe − λbb̂

†
eb̂e]:〉. (34)

Using the relation

: exp[−λn̂]: =
∫
C

d2γ
exp

[− λ|γ |2
1−λ

]
π (1 − λ)

|γ 〉〈γ |, (35)

cf. Ref. [35], we can further write

Mess(te; τ ) =
∫
C2

d2αed
2βe

exp
[− λa |αe|2

1−λa
− λb|βe|2

1−λb

]
(1 − λa)(1 − λb)

× 〈αe,βe|ρ̂|αe,βe〉
π2

. (36)

The latter term defines the Husimi Q function [46], which
is always non-negative and well behaved. Keeping in mind
that the unitary input-output relation (2) can be equivalently
written for the coherent states, we can perform an integral
transformation and we obtain

Mess(te; τ )

=
∫
C2

d2αd2β
exp

[− λa |T α+Rβ|2
1−λa

− λb|T ∗β−R∗α|2
1−λb

]
(1 − λa)(1 − λb)

Q(α,β),

(37)

with the two-mode Husimi Q function:

Q(α,β) = 〈α,β|ρ̂|α,β〉
π2

. (38)

This approach is applied for the following examples. More-
over, it uncovers a relation between the MGF Mess and another
phase-space distribution.

Besides other phenomena, the Hong-Ou-Mandel interfer-
ence experiment is one of the most prominent examples of a
nonclassical effect [47], which is still a cornerstone for modern
quantum optics; see, e.g., Refs. [48,49] for recent realizations.
The basic idea behind this signature of quantumness is the
mixture of photons at a beam splitter, one at each input. This
results in finding both photons at one output only, for certain
T and R values.

Let us analyze the nonclassicality with our approach. The
input and the output states in the Fock basis are

|ψ〉 = |1,1〉 and

|ψe〉 =
√

2T R|2,0〉 + (|T |2−|R|2)|1,1〉 −
√

2T ∗R∗|0,2〉,
(39)

respectively. Thus, for a balanced beam splitter, |T | = |R|,
we observe the above-described phenomena. The Husimi
function (38) and the integral (37) can be straightforwardly
computed. We find

Mess(te; τ ) = 2|T |2|R|2[(1 − λa)2 + (1 − λb)2]

+ [|T |2 − |R|2]2(1 − λa)(1 − λb). (40)

Using Eq. (33) together with the components of the normalized
vector in Eq. (6), e = (ex,ey,ez)T and e2

x + e2
y + e2

z = 1, we

can also write the previous equation in the form

Mess(te; τ ) = (1 − τ )2 + (
1 − 2e2

z

)
t2. (41)

It is worth mentioning that the P function for this state includes
second-order derivatives of the Dirac delta distribution and it
is therefore not directly measurable.

In addition and for comparison, the essential MGF for a
coherent state |α,β〉 is

Mess(te; τ ) = e−λa |T α+Rβ|2−λb |T ∗β−R∗α|2

= e−τ‖S‖+t·S = e[−τ+t cos(ϑ)]‖S‖, (42)

with S and e as given in Eq. (6) and ϑ is the angle between e and
S. Thus, we have Mess(te; τ ) = e−(τ±t)‖S‖ for cos(ϑ) = ∓1
and Mess(te; τ ) = e−τ‖S‖ for cos(ϑ) = 0. For a proper visual-
ization of the MGF as a function of the normalized vector e,
let us consider the following map:

e �→ Mess(te; τ )e. (43)

This map transforms the unit sphere, given by the normalized
arguments ‖e‖ = 1, into a deformed surface. For coherent
states and real t values, the map (43) yields an ellipsoid
with one major principle axis along S with the length
e−τ‖S‖ cosh(t‖S‖) and two minor principle axes perpendicular
to S with the length e−τ‖S‖. Yet, this function can also have
a very different shape if the considered state is a nonclassical
one, as we discuss now.

In Fig. 1, we show this surface plot for the essential
MGF Mess(t; τ ) in Eq. (40) for ‖t‖ = t = 1 and τ = 0 in
the direction e = t/t . The particular nonclassical feature of
this pure, two single-photon state (39) is highlighted by the
node in the z direction. In contrast, the MGF for a pure,
classical coherent state in Eq. (42) describes the shape of
an ellipsoid, not a torus. The node relates to the truncated

FIG. 1. The plot shows Mess(e; 0)e [cf. the map in Eq. (43) for
t = 1 and τ = 0], that is, the essential MGF evaluated on a unit sphere,
e, and plotted in the direction of e. For the z direction, e = (0,0, ± 1)T,
we have Mess(e; 0) = 0.
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FIG. 2. The determinant in Eq. (25) is plotted for τ = τ ′ = 0 = t ′

as a function of |T |2. The other vector is t = te, with e as given in
Eq. (6). A negative value of the determinant in the plot certifies
essential nonclassical correlations. Note there is no dependency on
the phases of T or R; cf. Eq. (40). The parameter t is chosen as
t = √

2 (dotted line), t = √
3 (solid line), and t = √

4 (dashed line).
For |T |2 = |R|2 = 1/2, we have a balanced beam splitter. The values
|T |2 = 1 or |R|2 = 1 describe a perfect transmission or reflection,
respectively.

photon distribution of this state which is a signature of its
nonclassicality and which has been discussed in the context of
Eq. (20).

More generally, we get from Eq. (19) that Mess(e; 0) = 0 if
p(na,0; e) = 0 for all na . This means that a node will occur,
Mess(e; 0)e = (0,0,0)T, if the probability to have no photons
in the second mode vanishes—as

∑∞
na=0 p(na,0; e) = 0 in that

scenario. This is true for the considered state |ψe〉 in Eq. (39)
in the case T = 0 or R = 0, i.e., e = (0,0,±1)T, as shown
in Fig. 1.

In Fig. 2, the verification of essential quantum correlations
via the criterion (25) is shown for the state under study.
It can be seen that the nonclassicality of the Hong-Ou-
Mandel experiment can be clearly verified (|T | ≈ |R| yields a
negative value) for amplitudes ‖t‖ >

√
2. Surprisingly, even

the nonclassicality of the individual photons is demonstrated
(|T | ≈ 1 or |R| ≈ 1 also yields a negativity) by the same
criterion, even for a broader rage of amplitudes; see the dotted
line for the case ‖t‖ = √

2.

VI. ESSENTIAL QUANTUM CORRELATIONS,
POLARIZATION TOMOGRAPHY, AND IMPERFECT

CLICK-COUNTING DETECTORS

Let us now consider a realistic detection scenario, which
allows one to apply our proposed method and which is outlined
in Fig. 3. The basic underlying scheme is a polarization
tomography experiment, which has been intensively studied
in theory and experiments in the single- and multiphoton
domain [55–62]. As it is advantageous for measuring Mess,
we basically replace the standard photon counters with click-
counting detectors in such layouts, which is described in the
continuation of this section.

We assume that the source in Fig. 3 emits a signal field
of polarized light, where â and b̂ describe the horizontal
and vertical polarization modes, respectively. A combina-
tion of half- and quarter-wave plates allows one to imple-
ment arbitrary [SU(2)] transformations, T = cos(ϑ/2) and

FIG. 3. Schematics of the setup for measuring the polarization of
the signal (SI). The SU(2) transformation can be realized with half-
wave and quarter-wave plates. PBS is a polarizing beam splitter, ND
is a neutral density filter, and CC denotes a click-counting detector.
Bottom pattern: Two possible implementations of a click-counter;
see Ref. [50] for a recent review. The upper version shows the time
bin [51,52] and the lower version the spatial [53,54] multiplexing
configuration. In each step, the signal is split on a 50:50 beam splitter.
Avalanche photodiodes in the Geiger mode (APDs) serve as on-off
detectors.

R = sin(ϑ/2)e−iϕ [63,64]. In this parametrization, the vector
e takes the form

e =
⎛
⎝sin(ϑ) cos(ϕ)

sin(ϑ) sin(ϕ)
cos(ϑ)

⎞
⎠. (44)

This renders it possible to scan all directions e of Mess(te; τ ).
After this manipulation, the two polarization components are
spatially separated by a polarizing beam splitter. The outputs
may be attenuated with neutral-density filters with intensity
transmission efficiencies of εa and εb, which serve later on
as an additional degree of freedom. Until this point, one can
see that a two-mode polarized, coherent input field, |α,β〉, will
result in the mean output photon numbers n̄a and n̄b, which
are

n̄a = εa| cos(ϑ/2)α + sin(ϑ/2)e−iϕβ|2
(45)

and n̄b = εb| cos(ϑ/2)β − sin(ϑ/2)eiϕα|2.
Likewise, this may be also expressed via the Stokes parameters
using Eq. (5), n̄a(b) = [εa(b)/2][‖S‖ ± e · S].

Finally, let us assume that we have two click-counting
detection systems in Fig. 3. Each of them consists of Da and Db

avalanche photodiodes (APDs) having quantum efficiencies ηa

and ηb and dark-count rates νa and νb, respectively. The joint
click statistics, i.e., the probability that we have i clicks from
the first APD array simultaneous with j clicks from the second
detector array, can be written in form of a quantum version of
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the binomial statistics [65,66]:

c(i,j ; e) =
〈
:

(
Da

i

)
m̂Da−i

a (1̂ − m̂a)i
(

Db

j

)
m̂

Db−j

b (1̂ − m̂b)j :

〉
,

(46)

where m̂a = exp(−εaηaâ
†
e âe/Da − νa) and correspondingly

for m̂b, which depends on the vector e in Eq. (44). This class
of detectors cannot truly resolve the number of photons, as,
first, it is limited by a finite quantum efficiency and dark-count
rate and, second, it can only deliver a finite number of clicks
albeit the photon statistics is an infinite one. However, based
on such detection systems, one can nevertheless infer quantum
properties of light, e.g., sub-binomial light [67–69].

From the click statistics, we can directly sample the (k,l)th
normally ordered moment [66,70],

μk,l = 〈
:m̂k

am̂
l
b:

〉 =
Da,Db∑
i,j=0

(
Da−i

k

)(
Db−j

l

)
(
Da

k

)(
Db

l

) c(i,j ; e)

= e−νak−νbl

〈
: exp

[
−ηaεa

Da

â†
e âe − ηbεb

Db

b̂†eb̂e

]
:

〉
, (47)

for 0 � k � Da and 0 � l � Db and defining
(
x

y

) = 0 for
y > x. The dark-count rates can be measured by blocking the
signal, as we have in this case: μ1,0 = e−νa and μ0,1 = e−νb .
They contribute to the moments μk,l as factors and, thus, one
can simply divide by e−kνa−lνb to delete these contributions.
This means, we can also directly assume that νa = νb = 0.

Now, let us insert Eq. (13), which yields

μk,l =
〈
: exp

[
−

(
kεaηa

2Da

+ lηbεb

2Db

)
N̂

+
(

lηbεb

2Db

− kηaεa

2Da

)
e · Ŝ

]
:

〉
. (48)

We can identify t and τ by comparing with Eq. (17):

τ = kεaηa

2Da

+ lηbεb

2Db

and t = lηbεb

2Db

− kηaεa

2Da

. (49)

The measurable parameter range of t and τ can be deduced as
follows.

From k = Da and l = Db, we can see that τ is bounded
as 0 � τ � (ηa + ηb)/2 � 1, where 0 � εa,εb � 1 was used.
Without the neutral-density filters (εa = εb = 1), only discrete
values for the different k and l combinations could be
measured. Additionally, we get for k = Da and l = 0 or k = 0
and l = Db that −1 � −ηa � t � ηb � 1. This means that
we can access Mess(te; τ ) in intervals that are included in
[−1,1] for t and [0,1] for τ . Moreover, the absolute value
of t is always less than or equal to τ, |t | � τ . Let us stress
that we have a restricted parameter range, but we can access
the MGF in this domain directly—by applying Eqs. (48)
and (49)—even though we have no photon-number resolution
and finite quantum efficiencies. This also means that the
nonclassicality criteria following from inequality (24) can be
easily applied.

We may study a type II parametric down-conversion pro-
cess, which is described by the Hamiltonian Ĥ ∝ â†b̂† + âb̂.
The generated photon pairs are produced in the two polariza-
tion modes and they can propagate colinearly [71–74]. The

resulting state is a two-mode squeezed-vacuum state,

|ξ 〉 = 1

cosh(ξ )
exp[− tanh(ξ )â†b̂†]|vac〉, (50)

which is parametrized by the squeezing parameter ξ � 0.
Properties of such polarization squeezed and entangled
states have been experimentally studied [75,76]. For ξ = 0
[tanh(ξ ) = 0], we have the classical vacuum state, i.e., a
coherent state with a vanishing coherent amplitude, which
exhibits no quantum correlations. Conversely, the case ξ → ∞
[tanh(ξ ) = 1] yields an Einstein-Podolsky-Rosen entangled
state. Again, the integral (37) with the Husimi function (38)
can be computed, which gives the desired result. It reads

Mess(te; τ ) = 〈ξ |: exp[−λaâ
†
e âe − λbb̂

†
eb̂e]:|ξ 〉

= {[cosh2(ξ ) − (1 − λa)(1 − λb) sinh2(ξ )]2

− sin2(ϑ) sinh2(ξ ) cosh2(ξ )(λa − λb)2}−1/2,

(51)

for 0 � λa, λb � 1, 0 � ϑ � π , and ξ � 0. Let us also point
out that τ = λa + λb and t = λb − λa [Eq. (33)].

Based on these formulas, we can now investigate the state of
light and the optical measurement scheme under study with our
techniques; see Fig. 4. The left plot in Fig. 4 shows Mess(te; τ )
for the parameter range τ and t which is accessible with this
kind of polarization tomography. The measurement direction
e is fixed. We observe a decaying behavior for the examples
of a two-mode squeezed-vacuum state (ξ > 0) in contrast
to the constant value for a vacuum state (transparent area,
ξ = 0).

In the center plot of Fig. 4, we fixed τ and the amplitude
of t and considered all measurement directions and depicted
the vector Mess(te; τ )e. A sphere represents the result for a
vacuum state. The properties of the pure squeezed-vacuum
state are visualized by the fact that the squeezed state yields
an ellipsoid with two major principle (x and y directions)
axes and only one minor principle axis (z direction) in this
representation, which is not possible for classical coherent
states; cf. the discussion below Eq. (42).

In the right plot of Fig. 4, we see the successful verification
of nonclassicality via the directly measured MGF as a function
of τ > 0 and ξ > 0, i.e., tanh(ξ ) ∈]0,1[. We consider the
simplest case of a full transmission, T = 1 [e = (0,0,1)T].
For all nontrivial parameters, the second-order determinant
in Eq. (25) identifies the nonclassicality of the generated
polarization state of light, as it is always negative. This
holds true even for arbitrarily small efficiencies (τ close
to zero) and small squeezing values. At first sight, the
values of the negativities seem to be small. However, it has
been experimentally demonstrated (e.g., in Ref. [70]) that
those negativities are still detectable with a high statistical
significance. Moreover, let us point out that the nonclassicality
goes to zero for ξ → ∞ due to the saturation of the detection
system. That is, the intensity is so high that all APDs click
all the time, which is also achievable with a classical coherent
signal with a large coherent amplitude.
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FIG. 4. Left: The measurable MGF, Mess(te; τ ), is shown depending on τ and −τ � t � τ , with e = (0,0,1)T and tanh(ξ ) = 1/2. The
transparent gray area shows the same for a vacuum state for comparison. Center: Mess(te; τ ) in the direction of e is depicted as a function of
e = [sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)]T, with τ = t = 1 and tanh(ξ ) = 3/4. The transparent surface shows the result for a vacuum state.
Right: The verification of nonclassicality (negative values) by the determinant in Eq. (25) is given as a function of tanh(ξ ) and τ (0 � 2τ � 1),
with e = e′ = (0,0,1)T and τ ′ = t ′ = τ = −t .

VII. CONCLUSIONS

In summary, we have formulated an operational approach
to uncover the accessible quantum correlations in optical
systems. To do so, we introduced the notion of the essential
quantum correlations and the corresponding phase-space dis-
tribution was derived. In particular, we focused on a four-port
interferometer and a subsequent measurement of the output
intensities for justifying our operational definition. In the
following step, a reconstruction technique was formulated in
terms of the photon-number distribution and a generalized
moment-generating function. Based on the latter function,
we also derived necessary and sufficient criteria for the
essential nonclassicality and, in particular, studied the relation
to other nonclassicality tests based on the second order of
our general set of inequalities. The essential nonclassicality
of the Hong-Ou-Mandel interference experiment was verified.
Finally, we considered a realistic measurement scheme and
showed that our approach is applicable even in the presence of
losses and without photon-number resolution. It was based
on click-counting measurements whose moments directly
describe the desired moment-generating function for a certain
parameter range.

Let us emphasize some further aspects of our treatment.
The main aim of this work was the operational definition
of nonclassicality which is truly experimentally available
with a certain setup. With such a practicable definition, we

demonstrated that it is feasible to uncover phase-sensitive
aspects of the nonclassicality of light fields without relying on
the generation of proper reference beams. We placed minimal
assumptions onto experimental implementations to ensure,
to some extend, the general validity of our findings. Along
with our rigorous theoretical handling, we also studied the
impact of imperfections which are unavoidable in any realistic
experiment.

The presented methods may also be the basis for fur-
ther considerations of the essential quantum correlations
in more general scenarios. In the here-presented first step,
our focus was on particular measurement layouts and on
the nonclassicality of two correlated optical modes. For
future studies and following the here-introduced steps, our
findings could be extended to other scenarios, e.g., to
capture temporal correlations in optical fields, to include
other notions of nonclassical multimode correlations, such
as entanglement, or to study other systems, e.g., atomic
ensembles.
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