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Long-path formation in a deformed microdisk laser
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An asymmetric resonant cavity can be used to form a path that is much longer than the cavity size. We
demonstrate this capability for a deformed microdisk equipped with two linear waveguides, by constructing a
multiply reflected periodic orbit that is confined by total internal reflection within the deformed microdisk and
outcoupled by the two linear waveguides. Resonant mode analysis reveals that the modes corresponding to the
periodic orbit are characterized by high-quality factors. From measured spectral and far-field data, we confirm
that the fabricated devices can form a path about 9.3 times longer than the average diameter of the deformed
microdisk.
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I. INTRODUCTION

In the past two decades, asymmetric resonant cavities
(ARCs) have attracted considerable attention, because the
introduction of asymmetry has proven useful in generating
directional emissions, while maintaining high-quality factors
to some extent [1,2]. From the viewpoint of dynamical billiard
theory, the introduction of asymmetry generally accompanies
the generation of ray-dynamical chaos [3]. Thorough theo-
retical and experimental investigations elucidated the relation
between directional emission and ray-dynamical chaos [4–6].

Although most of the previous work on ARCs has focused
on directional emission, ARCs have another noteworthy
capability, namely, that of forming long optical paths by using
multiple reflections at cavity interfaces. This capability was
first demonstrated for a macroscopic (i.e., cm sized) ARC
with the aim of using it for gas sensing [7–9], where long paths
are important for increasing sensitivity. In that work, a three-
dimensional ARC with a diameter of 5.24 cm was fabricated of
copper, and it was used to form a path of up to 6 m. The idea of
utilizing multiple reflections to form a long path can be found
in relation to traditional gas sensing cavities consisting of two
facing mirrors such as White cells and Herriott cells [10,11].

We brought a similar idea to the microscale, and achieved
a 2.79-mm path for a microcavity with an average diameter
of 300 μm [12], with the aim of using the path to realize a
compact laser chaos device. Recently, laser chaos has attracted
renewed interest, because of its usefulness as an entropy source
for physical random number generation [13]. Laser chaos with
a GHz bandwidth can be easily generated by a semiconductor
laser with an external cavity for delayed optical feedback [14].
The external cavity must be at least a few mm long in order
to obtain laser chaos suitable for random number generation.
This requirement imposes a bottleneck on the device size, if we
restrict ourselves to using a one-dimensional external cavity.
However, a two-dimensional external cavity with a sufficiently
long path makes it possible to realize an ultrasmall integrated
laser chaos device whose footprint can be less than 1 mm2 [15].

Reference [12] introduced a cavity consisting of a deformed
microdisk and two linear waveguides. This cavity enables the

formation of a path much longer than the cavity diameter [see
Fig. 1(a) for the cavity shape]. In contrast to a one-dimensional
waveguide, long-path formation in a two-dimensional slab
cavity is highly nontrivial, because there is no transverse
confinement, and only focusing at the cavity boundary prevents
light from diffusing. In Ref. [12], the path formation was
experimentally confirmed by injecting light from one of the
linear waveguides and measuring the output from the other
waveguide.

In this paper, we provide more detailed evidence for the
path formation by performing systematic wave calculations
for the cavity and carrying out experiments that allow direct
theory-experiment comparisons. We also fabricate a relatively
small device with an average diameter of 60 μm (note that
the average diameter of the device in Ref. [12] is 300 μm),
the experimental results of which can be directly compared
with those of a resonant mode analysis. First, we show that
the resonant modes corresponding to the long path constitute
a dominant group of high-quality factor modes, implying that
the formed path is well confined. By comparing results from
the resonant mode analysis and those from Gaussian optical
theory, we discuss the deviations from an ideal Gaussian
beam caused by the presence of ray chaos. Second, we show
that experimentally measured far-field patterns can be well
reproduced by that of a resonant mode corresponding to the
long path. Moreover, we reveal that measured modal spacings
in optical spectra show excellent agreement with the theoretical
estimates assuming the long path. All these experimental
results provide decisive evidence for the formation of a path
that is about 9.3 times longer than the average diameter of a
deformed microdisk. Additionally, we report that single-mode
lasing occurs for continuous wave pumping.

This paper is organized as follows: In Sec. II, we introduce
our cavity design and present a stability analysis for a long
periodic orbit. In Sec. III, we describe resonant mode analysis
with particular attention to modes corresponding to a long
periodic orbit. In Sec. IV, we provide experimental data for
far-field and spectral measurements that confirm the existence
of the designed long path. Section V consists of a summary
and discussion.
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FIG. 1. (a) Deformed microdisk with two linear waveguides
attached at V0 and V11 and a half-circular scatterer at V12. (b) The
stable periodic orbit that appears when the scatterer at V12 is absent.
(c) The contact area (gray region), where currents are injected.

II. CAVITY DESIGN

We consider a cavity consisting of a deformed disk and
two linear waveguides as shown in Fig. 1(a). The shape of the
deformed disk is defined by

r(φ) = r0[1 − ε sin(Qφ)], (1)

where (r,φ) are the polar coordinates and r0 and ε are the
size and deformation parameters, respectively. In this paper,
we fix Q = 13, but the idea described below can apply to
the other integer Q, provided that the corresponding cavity
has a star-polygonal periodic orbit. When we employ the
shape given by Eq. (1) as the boundary for a dynamical
billiard, we have a star-polygonal periodic orbit with 13
vertices labeled V0,V1, . . . ,V12, as shown in Fig. 1(a). These
vertices correspond to the minimum curvature points of
the boundary, and are defined by the polar angles φm =
π (17 − 4m)/26 (m = 0,1, . . . ,12). As the star-polygonal orbit
is traced until it closes, we have a P = 4 times rotation around
the origin O. In other words, the winding number of the
star-polygonal orbit is P/Q = 4/13. A linear stability analysis
reveals that the periodic orbit is stable for 0 � ε � 0.00588,
and it is confined by total internal reflection when the refractive
index of the cavity exceeds 1.76 (when we assume that the
refractive index outside the cavity is 1).

At the vertex V0 (respectively, V11), we attach a linear
waveguide parallel to a periodic orbit segment V0V1 (respec-
tively, V10V11). This eliminates the star-polygonal periodic or-
bit. Instead, we have a self-retracing periodic orbit connecting
both waveguide ends V ′

0 and V ′
11. This orbit includes the entire

star-polygonal orbit except for the two line segments V0V12

and V11V12. It is this open-star-polygonal periodic orbit that
we focus on in this paper. To prevent the other periodic orbits
from appearing, we place a half-circular scatterer at the vertex
V12, as shown in Fig. 1(a). Without this scatterer, there is a
stable periodic orbit as shown in Fig. 1(b). The (one-way) path
length L∗r0 of the open-star-polygonal periodic orbit is given
by

L∗r0 =
[

2N (1 − ε) sin

(
π

P

Q

)
+ d0 + dN

]
r0, (2)

where N is the index for the vertex with the waveguide (we
assume that the other waveguide is attached to the vertex V0).
For the open-star-polygonal orbit shown in Fig. 1(a), we have
L∗r0 = 18.596 × r0, that is, the path is about 9.3 times longer
than the average cavity diameter.

The linear stability of the open-star-polygonal periodic
orbit depends on three parameters, namely, the deformation
parameter ε and the lengths of the two linear waveguides.
For the waveguide attached to V0 (respectively, V11), we use
d0 (respectively, d11) to denote the length scaled by r0, i.e.,
di = ViV

′
i /r0 (i = 0,11). In what follows, we fix the ratio

d0/d11 = 1.90565, and consider d11 to be a free parameter, in
addition to ε. The asymmetry of the waveguide lengths breaks
the otherwise existing mirror symmetry of the cavity (this
results in asymmetric emission patterns as seen in Figs. 4–6).

We evaluated the monodromy matrix M for the open-star-
polygonal periodic orbit numerically for each set of ε and d11,
and obtained the stability diagram shown in Fig. 2, where the
periodic orbit is stable (i.e., |Tr(M)| < 2) in the gray regions.
We hereafter fix the parameter values at (ε,d11) = (0.005,0.2)
as indicated by the arrow in Fig. 2. We also fix the waveguide
widths at W0 = W11 = 0.395875 × r0, so that they are much
larger than the beam spot sizes at the waveguide ends.

FIG. 2. Stability diagram for the open-star-polygonal periodic
orbit, where ε is the deformation parameter and d11 is the scaled length
of the waveguide at V11, i.e., d11 = V11V

′
11/r0 (note that the scaled

length of the waveguide at V0 is fixed at d0 = 1.90565 × d11). The
open-star-polygonal periodic orbit is linearly stable in the gray regions
(i.e., |Tr M| < 2 with M the monodromy matrix). In this work, the
parameter values are fixed at (ε,d11) = (0.005,0.2) (indicated by an
arrow).
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III. RESONANT MODE ANALYSIS

We performed a numerical analysis of the resonant modes
for the cavity defined in Fig. 1(a) by using the boundary
element method (BEM) [16]. The resonant modes are the solu-
tions of the Helmholtz equation [∇2 + n(x,y)2k2] ψ(x,y) =
0, where k is the wave number and n(x,y) is the effective
refractive index. We set n(x,y) ≡ 3.3 (GaAs) inside the cavity,
while n(x,y) ≡ 1 (air) outside the cavity. As described later,
we fabricated the cavity with an unstrained GaAs single-
quantum-well (SQW) structure. Since the emissions from
these lasers are usually TE polarized, we employ the cavity
interface conditions for TE polarization [i.e., both ψ and
(1/n2)∂ψ/∂n are continuous at the cavity interface, where
∂/∂n is the derivative normal to the boundary]. For the TE po-
larization, the wave function ψ represents the z component of
the magnetic-field vector, i.e., Hz = Re[ψe−ickt ]. At infinity,
we assume the outgoing wave condition ψ ∝ eikr/

√
r , which

yields complex wave numbers k with Im k < 0.
Figure 3 shows the distribution of (dimensionless) complex

wave numbers kr0 for resonant modes found numerically
around Re kr0 = 224.4. This Re kr0 value corresponds to the
cavity size r0 = 30 μm when the wavelength is λ = 0.84 μm,
which is one of our experimental conditions as discussed later.

According to Gaussian optical theory [17], Gaussian beam
modes that are localized along the open-star-polygonal orbit
are expected to exist when Re kr0 values are sufficiently large.
We call these modes star modes, and we detected many of them
in the BEM calculation (the star modes were clearly identified
by their strong localization along the open-star-polygonal
orbit). In Fig. 3, the star modes are indicated by filled circles.
We can see that the star modes constitute a dominant group
among the high quality factor modes. For the star mode labeled
(a) in Fig. 3 (i.e., kr0 = 224.165 − i 0.011), we show the
corresponding spatial intensity pattern of the wave function,
|ψ(x,y)|2, in Fig. 4(a), where we can see strong localization

FIG. 3. The distribution of the resonances, where the star modes
are plotted with filled circles (•). The star modes appear regularly
with the average mode spacing �kr0 = 0.0512. The wave functions
corresponding to (a) and (b) are shown in Figs. 4(a) and 4(b),
respectively.

FIG. 4. (a) and (b) show the intensity distributions of the wave
functions for the resonances: (a) kr0 = 224.165− i0.011 and (b)
kr0 = 224.430−i0.010, where a lighter color indicates a higher
intensity. (c) and (d), respectively, show far-field emission patterns
for the mode shown in Fig. 4(a) (black curves) and for the mode
shown in Fig. 4(b) (gray curves).

along the open-star-polygonal orbit. The far-field pattern of
this mode is shown in Figs. 4(c) and 4(d) (black curves).
Figure 4(c) shows the emission to the left side of the cavity
(the side of V ′

0), while Fig. 4(d) shows that to the right side
(the side of V ′

11). We can confirm that there is a bidirectional
emission that is in good agreement with the directions of the
two attached linear waveguides [i.e., θ = 0 deg in Fig. 4(c),
while θ = 27.7 deg in Fig. 4(d)]. Note that the far-field patterns
are normalized.

Unexpectedly, we found another type of high-quality factor
mode in the resonance distribution [labeled (b) in Fig. 3].
Its wave function is shown in Fig. 4(b), and its far-field
patterns are shown in Figs. 4(c) and 4(d) (gray curves). A
comparison between polygonal periodic orbits and the wave-
function pattern did not reveal a single dominant periodic orbit
that explains the wave-function pattern. However, the wave
function appears to be localized along straight ray segments,
especially those of unstable triangular (three-bounce) orbits.
Such a mode might be understood as the scar mode [18].
This localization is interesting in itself, and deserves further
investigation, but this will constitute future work, since our
main focus here is on the star modes.

Gaussian optical theory [17] states that the beam waist
spot size and position are directly related to the stability
of the periodic orbit. For the open-star-polygonal orbit, the
waveguide ends V ′

0 and V ′
11 are the beam waist positions, and

their spot sizes are estimated as

w = w̃
r0√
kr0

, (3)

where w̃ = 0.961 for the beam waist at V ′
0, while w̃ = 0.898

for the beam waist at V ′
11. The beam divergence θd in the
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far field can be estimated by the formula θd ≈ λ/(πw) =
2/(w̃

√
kr0), where w is the beam spot size. This formula

yields θd = 8.0 deg for the emission at V ′
0, and θd = 8.5 deg

for the emission at V ′
11. On the other hand, for the far-field data

obtained with the BEM calculation, we found that θd = 11.8
deg for the emission at V ′

0 [black curve in Fig. 4(c)], while
θd = 14.7 deg for the emission at V ′

11 [black curve in Fig. 4(d)].
We consider that this broadening of the peaks is mainly caused
by the deformation of the Gaussian beams due to the finiteness
of the wavelength and the existence of ray chaos.

For the ten star modes that we detected in our BEM
calculations, we found an almost regular modal spacing that
fluctuated from 0.0492 to 0.0540. We consider this relatively
large fluctuation to be related to dynamical tunneling [19],
which is known generally to occur in ray-chaotic microcavi-
ties [20–22], resulting in some portion of the intensity being
leaked to ray chaotic orbits and spreading throughout the
cavity. Nevertheless, we found that the average modal spacing
is �kr0 = 0.0511, which closely agrees with a theoretical
estimate based on the optical path length, i.e., �kr0 =
π/(nL∗) = 0.0512, where L∗ = 18.596 is the (one-way) path
length of the open-star-polygonal orbit normalized by r0.

As for the decay rates, the average value of Im kr0 for the ten
star modes is −0.0120. In the short-wavelength limit, Im kr0

can be approximately expressed as [17]

Im kr0 = ln(1/R)

2nL∗
, (4)

where R = 0.286 is the Fresnel reflection coefficient for
normal incidence and TE polarization. This formula yields
Im kr0 = −0.0102. The average decay rate of the actual star
modes is about 20% larger than this theoretical estimate. This
effect can also be considered to result from the dynamical
tunneling. That is, there is an additional channel for the
leakage, or an emission that is formed by the dynamical
tunneling [20].

IV. EXPERIMENTAL DATA

We fabricated GaAs SQW microcavity lasers whose cavity
shape is defined in Fig. 1(a) with average diameters of r0 = 30
and 50 μm. The GaAs SQW heterostructures were grown by
metal-organic chemical-vapor deposition on an n-type GaAs
substrate with a 1.5-μm n-Al0.5Ga0.5As lower cladding layer,
a 0.2-μm n-AlxGa1−xAs (x=0.5−0.2) graded region, a 10-nm
GaAs quantum-well layer, a 0.2-μmp-AlxGa1−xAs(x =
0.2 − 0.5) graded region, a 1.5-μmp-Al0.5Ga0.5As upper
cladding layer, a 0.2-μmp-GaAs contact layer, and a 400-nm
SiO2 layer. The etching depth from the top of the contact
layer was about 4.2 μm, which was 2.3 μm below the active
layer. The contact area was etched through the SiO2 layer, and
the p-electrode metal was formed over the contact area and
part of the surrounding SiO2 layer using a liftoff process (see
Ref. [23] for details of the fabrication process). Figure 1(c)
shows the contact area shape, which was designed to fit to the
star modes. It mainly consists of an annular area, whose outer
and inner boundaries have the shape defined by Eq. (1) with the
average radii r0 − 5 μm and r0/2, respectively, where r0 = 30
or 50 μm. In addition, along the two linear waveguides,
2-μm-width linear contact areas are formed. The 5-μm margin

for the outer boundary of the contact area was necessary for
the liftoff process used for forming the p-electrode metal [23].
The lasers were electrically pumped by current injection with
continuous-wave (CW) pumping at room temperature. The
lasing threshold was 30 mA for the device with r0 = 30 μm,
and 37 mA for the device with r0 = 50 μm. This implies that
the threshold current density is 2.4 kA/cm2 for r0 = 30 μm,
and 0.84 kA/cm2 for r0 = 50 μm, where the contact area is
approximately given by π [(r0 − 5)2 − r2

0 /4]. We consider that
the higher threshold current density for r0 = 30 μm is due
to the threshold increase by a temperature rise under CW
pumping, which is expected to be more significant for a smaller
cavity.

In our experiments, we observed bidirectional emissions
in good agreement with the directions of the two attached
waveguides. Figure 5 (black curves) shows measured far-

FIG. 5. Far-field patterns (normalized) for a device with r0 =
30 μm: (a) emission to the left side of the cavity and (b) emission
to the right side. The direction of the waveguide is θ = 0 deg in
(a), while it is θ = 27.7 deg in (b). Experimental data for a pumping
current of 90 mA are plotted with black curves, while numerical data
obtained with the BEM calculation are plotted with gray curves.
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field patterns for the device with r0 = 30 μm when the
pumping current was 90 mA. The far-field patterns were
measured by rotating the photodetector with a slit around
the device. The slit width was 0.5 mm and the radius of
the rotation was 30 cm, which yielded a resolution of 0.1
deg. As the result of the Lloyd’s mirror effect, the direct
output from the active layer and the output once reflected
at the GaAs substrate produced an interference pattern on the
plane vertical to the horizontal plane where the device was
placed. The height of the photodetector was adjusted to the
position of the first-order interference to maximize the detected
intensity.

The uniform background radiation caused by spontaneous
emission is subtracted from the experimental data in Fig. 5,
and the far-field patterns are normalized. When we compare
these results with the numerical results of the BEM calculation
superposed in Fig. 5 (gray curves), we can confirm good
agreement between the experimental and theoretical data. Note
that the condition for the BEM calculation was the same as
that for the experiment (i.e., r0 = 30 μm). Figure 6 shows
measured far-field patterns for the device with r0 = 50 μm
(gray curves) together with the results for the device with
r0 = 30 μm (black curves). We again see good agreement
with the theoretical prediction, as well as a slight far-field
peak narrowing for r0 = 50 μm, especially in Fig. 6(b). This is
consistent with the fact that the beam divergence θd is inversely
proportional to

√
kr0.

Figure 7(a) shows the optical spectrum obtained for the
device with r0 = 30 μm when pumped below the threshold.
In the spectral measurement, the photodetector was placed in
the direction of the left linear waveguide. We interpret the
peaks we observed here as the cavity modes coupled with
the amplified spontaneous emission. We can see a regular
modal spacing �λ = 0.154 nm. This value is in excellent
agreement with the theoretical estimate of 0.153 nm, which
takes account of the dispersion, i.e., �λ = λ2/[2nL∗r0(1 −
(λ/n)(dn/dλ)], where λ = 0.84 μm is the lasing wave-
length, L∗r0 = 557.89 μm is the (one-way) path length of
the open-star-polygonal orbit, and dn/dλ = −1.0 μm−1 is
the dispersion [24]. Figure 7(c) shows an optical spectrum
for the device with r0 = 50 μm when pumped below the
threshold. The measured modal spacing is �λ = 0.101 nm,
while the theoretical estimate based on the path length is
�λ = 0.097 nm.

From the above far-field and spectral data, we concluded
that the star modes existed and were successfully excited in our
fabricated devices. As for the unexpected high-quality factor
modes that we observed in the BEM calculation [i.e., the modes
exemplified in Fig. 4(b)], their existence cannot be confirmed
in the spectra shown in Figs. 7(a) and 7(c). This might be
due to our contact pattern [Fig. 1 (c)], which we designed to
preferentially excite the star modes. Also, as can be seen in the
spatial intensity pattern of the unexpected high-quality factor
mode shown in Fig. 4(b), it does not couple significantly with
the linear waveguides. Thus, the photodetector placed in the
direction of the waveguide might not be able to capture the
emission from an unexpected high-quality factor mode, even
if it is excited.

Interestingly, when the devices are pumped above the
threshold, we observed single-mode lasing, as shown in

FIG. 6. Far-field patterns (normalized) for devices with r0 = 30
and 50 μm: (a) emission to the left side of the cavity and (b) emission
to the right side. The direction of the waveguide is θ = 0 deg in (a),
while it is θ = 27.7 deg in (b). Experimental data for r0 = 30 μm
are plotted with black curves, while those for r0 = 50 μm are plotted
with gray curves. The pumping current is 90 mA in all cases.

Fig. 7(b) for the device with r0 = 30 μm and in Fig. 7(d)
for the device with r0 = 50 μm, where the pumping currents
were 90 mA in both cases. For chaotic cavity lasers, single-
mode lasing has been experimentally observed with CW
pumping [25–28]. For chaotic cavity lasers, it has been
numerically observed that nonlinear interactions among modes
reduce the number of lasing modes [29], and experimentally
observed single-mode lasing is attributed to large modal
overlaps between resonant modes [28].

The excitation of multiple longitudinal Gaussian beam
modes has been observed with CW pumping for a stable
Fabry-Perot cavity laser [30]. This is in contrast to our results.
We consider this difference to be caused by the fact that our
Gaussian beam modes are affected by dynamical tunneling.
As discussed in Sec. III, the intensity pattern of our Gaussian
beam mode was slightly deformed from an exact Gaussian
beam because of the intensity leakage throughout the cavity.
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FIG. 7. Optical spectra: (a) r0 = 30 μm and below the threshold,
(b) r0 = 30 μm at 90 mA, (c) r0 = 50 μm and below the threshold,
and (d) r0 = 50 μm at 90 mA. In (a) and (c), respectively, equidistant
vertical dotted lines with 0.154- and 0.101-nm spacings are plotted
as an eye guide.

This can result in a fluctuation in the decay rates (i.e., Im kr0)
as well as an increase in the modal overlaps. The former
makes a certain mode preferential for lasing, while the latter
can cause the suppression of the other lasing modes. We
expect these effects to lead to single-mode lasing, although
more thorough investigations are needed for a definitive
understanding.

FIG. 8. Long-path formation by coupling nine identical deformed
disks with Q = 10 and an average radius r0. The total path length is
about 107 × r0, whereas the entire system length is about 6 × r0.

V. SUMMARY AND DISCUSSION

We studied both theoretically and experimentally a de-
formed microdisk designed for long-path formation. We
performed resonant mode analysis to reveal that the
long-path modes were characterized by high-quality fac-
tors. For fabricated deformed microdisks with average
radii r0 = 30 and 50 μm, we presented measured far-
field and spectral data that confirmed the path length of
18.596 × r0.

Based on this approach, the path length can be in principle
extended by increasing the size parameter r0 or the number of
vertices Q, although the finite wavelength limits the maximum
Q value, since each vertex needs to be resolved by the light
wave so that a path is distinctly formed. Another interesting
way of extending a path is to couple many cavities as illustrated
in Fig. 8, where nine identical deformed disks with Q = 10
and an average radius r0 are connected. In this example,
the total path length adds up to about 107 × r0, whereas
the entire system length is about 6 × r0. We performed
a linear stability analysis as described in Sec. II for this
self-retracing periodic orbit, and confirmed the existence of
cavity parameter regimes where the periodic orbit becomes
stable. In this way, we can use two dimensions efficiently to
obtain a long path. Conventionally, a spiral geometry has been
adopted for long-path formation [31]. For a spiral waveguide,
bending losses are inevitable, limiting the maximum curvature
of a spiral and thus the entire system size. Our approach
may be useful as an alternative that is free from bending
losses.

The cavity studied here can also be viewed as the
one exhibiting relatively good emission directionality. Bi-
directionality is inevitable for our cavity design based on
the open-star-polygonal periodic orbit. However, we believe
that unidirectionality can be achieved, by letting one of the
waveguide facets coincide with a cleavage facet, and coating
it with high reflectivity film.
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