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We consider the propagation of several entangled photons through an elastically scattering medium and
study statistical properties of their speckle patterns. We find the spatial correlations of multiphoton speckles
and their sensitivity to changes of system parameters. Our analysis covers both the directed-wave regime,
where rays propagate almost ballistically while experiencing small-angle diffusion, and the real-space diffusive
regime. We demonstrate that long-range correlations of the speckle patterns dominate experimental signatures
for large-aperture photon detectors. We also show that speckle sensitivity depends strongly on the number of
photons N in the incoming beam, increasing as

√
N in the directed-wave regime and as N in the diffusive regime.
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I. INTRODUCTION

The statistics of the speckle pattern of classical coherent
light propagating through a disordered medium has been the
focus of considerable research [1–3]. This system can be de-
scribed by a scalar field ψ(x) satisfying the Helmholtz equation

k̄2n2(x)ψ(x) + ∇2ψ(x) = 0. (1)

Here, k̄ is the wave number, and n = n0 + δn(x) is the index
of refraction, where n0 and δn denote, respectively, the
average index of refraction and its spatial fluctuation. (In
this paper we ignore the vector nature of the photons. Also,
without loss of generality we set n0 = 1.) Customarily one
assumes that δn(x) is a Gaussian random field with zero mean
and a correlation function:

〈δn(x)δn(x′)〉 = g(x − x′). (2)

Here angular brackets denote ensemble averaging over the
random realizations of the disorder. Within the Born approxi-
mation the scattering probability per unit length is determined
by the Fourier transform of the disorder correlation function:

G(s) = k̄4

π

∫
d3rg(x) exp(ik̄s · x) (3)

where s is a unit vector associated with the change in the ray
direction. Thus, the elastic mean free path � and the transport
mean free path �tr are given by

�−1 =
∫

d2s ′G(s − s′), (4)

�−1
tr =

∫
d2s ′G(s − s′)(1 − s · s′) (5)

where the integration over different directions is normalized
such that

∫
d2s = 1.

In many systems it is possible to identify two distinct
regimes: when the transport mean free path is much longer
than the mean free path, and the system size L satisfies the
condition � � L � �tr, then photons experience a series of
small-angle scattering events. In this “directed-wave” regime,
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as it is called, waves propagate almost ballistically through the
sample but experience small diffusive changes in direction.
The second regime is when the sample size is much bigger
than the transport mean free path, L � �tr, so that the photons
diffuse through the sample.

Recent advances [4–7] have allowed experimentalists to
entangle several photons (see, for example, Ref. [8]), creating
an excellent setup for studying multiphoton speckle statistics.
The experimental system for measuring speckle patterns of
entangled photons consists of a multiphoton source, emitting
a beam that passes through a disordered and elastically
scattering medium. The photons are then collected by a set
of photodetectors in a coincidence circuit. Figure 1 shows
a sketch of such a system, where for clarity we show a
two-detector setup. If the detectors have an angular aperture
which is much smaller than the typical size of a classical
speckle, they measure in essence the biphoton current I2(s,s′)
going in directions s and s′.

In a disordered system I2 is a random quantity. Its statistics
were studied by Beenakker, Venderbos, and van Exter [9],
using a random matrix theory (RMT) approach. In particular
they showed that the fluctuations in the biphoton current (i.e.,
the number of coincident detections per unit time by two
photon detectors) δI2(s,s′) = I2(s,s′) − 〈I2(s,s′)〉 satisfy the
relation 〈

δI 2
2 (s,s′)

〉
〈I2(s,s′)〉2

= Trρ2 + 2Tr(ρ(1))2. (6)

Here ρ is the two photon density matrix, while ρ(1) is the re-
duced density matrix obtained by tracing over the states of one
of the photons. Equation (6) shows that intensity fluctuations
of the biphoton speckle patterns encode the information about
the purity of the system as well as its degree of entanglement.

However, RMT cannot account for spatial correlations
which exist in the speckle patterns. In this paper, we study
these correlations and show they are long ranged and that they
become important when detectors collect photons from a large
enough solid angle. These long-range correlations depend only
on some reduced density matrix, and therefore they do not
contain information about the purity of the system. We also
study the speckle pattern’s sensitivity to a change in parameters
such as the photon wave packet’s incidence angle or frequency,
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FIG. 1. Illustration of an experimental system for measuring a biphoton speckle pattern. The entangled photons are generated by spontaneous
down-conversion in a nonlinear crystal. The two photons pass through a scattering medium and are collected by two detectors in a coincidence
circuit.

and to changes in the scattering potential. The description of
this sensitivity is also beyond RMT.

In this work we consider a slab geometry for the scattering
medium. The slab cross-sectional area is A ∼ W 2 and its
thickness is L. Our main concern is to describe the statistical
properties of the current associated with the scattered beam of
entangled photons, given by the following expression:

IN (s1,s2, . . . ,sN )

= βN

∑
u1 · · ·uN

ũ1 · · · ũN

ρu1···uN ;ũ1···ũN

N∏
j=1

ψuj
(sj )ψ∗

ũj
(sj ). (7)

Here βN = cN (�t)N−1, where c is the speed of light and
�t is the resolving time of the coincidence circuit, while
ρu1···uN ;ũ1···ũN

is the density matrix of the incoming beam of
N entangled photons. Finally, ψu(s) is the component of the
scattered classical wave function in direction s associated
with an incoming plane wave with direction u. In order to
simplify our final expressions, we assume that the incoming
wave packet is monochromatic with wave number k̄ and can
be decomposed into well-separated plane waves, |ui − uj | >

1/(k̄LθL) in the directed-wave regime and |ui − uj | > 1/(k̄L)
in the diffusive regime. Here θL is the typical angular spread
of the outgoing beam after crossing the sample [we will give
an explicit definition for it later; see Eq. (11)].

II. MULTIPHOTON SPECKLE PATTERNS IN THE
DIRECTED-WAVE REGIME

We begin our discussion with the directed-wave regime
� � L � �tr. To simplify the discussion, in what follows we
shall consider the case of a biphoton current, N = 2. The
results will be generalized to N photons in Sec. II D.

In the directed-wave regime it will be convenient to
decompose the three-dimensional vectors into components
that are parallel and transverse to the ray propagation direction
which we choose be the z direction, thus

x = (r,z), s = (k,1)√
1 + k2

� (k,1), (8)

where r and k are two-dimensional vectors, and k2 � 1. Figure
2 depicts a sketch of the relevant geometries and scales in the
directed-wave regime.

In the directed-wave limit, the paraxial approximation
applies and z plays a role similar to time in the propagation of
the wave function ψ(r,z). Therefore in this regime ψu(s) from
Eq. (7) takes the form

ψq(k) = A0

∫
d2rd2r ′G(r,L; r′,0)eik̄(q·r′−k·r) (9)

where G(r,z; r′,z′) is the Green’s function of (the classical)
Eq. (1). Here A0 is the incoming wave amplitude, into which
we also absorb a phase which plays no role in the final results.

FIG. 2. Angular scales and length scales in the directed-wave
regime. When the system size is larger than the elastic mean free
path but smaller than the transport mean free path, � � L � �tr, a
beam propagates through a disordered slab by a process of angular
diffusion. The typical scattering angle θ0 = √

�/�tr (purple) is larger
then the angular resolution of the scatterers, 1/k̄� � θ0, but the total
angular width is small, θL = √

L/�tr � 1 (blue). The beam spreads
superdiffusively ∼ L3 as shown by the shaded (red) region bordered
by the dotted (red) line. The far-field speckle pattern, denoted by
a solid (red) line over an (blue) arc, has an angular resolution
determined by the slab width, θW = 1/k̄W (magenta). The inset
shows a typical diffusive path with the two mean free paths denoted
on it.
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FIG. 3. The leading-order diagrams (in 1/k̄�) describing the
average biphoton current, 〈I2(k1,k2)〉. Solid lines represent the
average Green’s functions while dashed lines represent the disorder.

A. The disorder averaged biphoton current

The average biphoton current can be written as

〈I2(k1,k2)〉 = β2|A0|4
∑

q1,q2,q̃1q̃2

ρq1q2;q̃1q̃2

×
∫

exp
{
ik̄
[
k1 · (r′

1 − r̃′
1) + q1 · r1 − q̃1 · r̃1

+k2 · (r′
2 − r̃′

2) + q2 · r2 − q̃2 · r̃2)
]}

×〈G(r1,0; r′
1,L)G∗(r̃1,L; r̃′

1,0)G(r2,0; r′
2,L)

×G∗(r̃2,L; r̃′
2,0)〉d2 R, (10)

where integration is taken over all space variables:

d2 R =
∏

i=1,2

d2rid
2r ′

id
2r̃id

2r̃ ′
i .

Since the Green’s function G(r,z; r′,z′) is a classical object,
we can apply the same techniques developed in the context
of propagation of classical waves in disordered systems to the
task of finding the average and correlation function of IN . To
leading order in 1/k̄� it is given by the diagram shown in Fig. 3,
representing diffusion in angular space.
A description of the diagrammatic technique for classical
waves in the directed-wave regime can be found in Ref. [10].
Here we bring only final results, but a short review of the
technique and some details of our calculations can be found in
Appendix A. In the directed-wave regime we find that Eq. (10)
reduces to

〈I2(k1,k2)〉 � β2|A0|4A2
∑
q1,q2

ρq1q2;q1q2

1(
2πθ2

L

)2

× exp

[
− (k1 − q1)2 + (k2 − q2)2

2θ2
L

]
(11)

where A is the cross-sectional area of the slab, θ2
L = 2DθL

is the angular spread of the outgoing beam due to scattering
within the slab, and Dθ = 1/2�tr is the diffusion coefficient in
angular space. We have also, in the interest of brevity, rewritten
ρ in terms of the two-dimensional qj . From now on we shall
consider the limit |qi − kj | � θL, for all i and j , namely, that
all detectors are positioned within the angular spread of the

FIG. 4. Green’s functions associated with the correlation function
of the biphoton current before disorder averaging. In order to obtain
the connected part of the correlation function, one must pair at least
one of the red (black) Green’s functions above the dashed line with
the green (gray) Green’s function below the dashed line.

outgoing beam. In this limit Eq. (11) reduces to

〈I2(k1,k2)〉 ≡ 〈I2〉 � β2

( |A0|2A
2πθ2

L

)2

. (12)

To obtain this formula, we have used the normalization
condition: Trρ = ∑

q1,q2
ρq1q2;q1q2 = 1.

B. The two-photon current correlation function (small aperture
detectors)

Let us now calculate the biphoton current correlation
function:

K(k1,k2; k′
1,k

′
2) = 〈δI2(k1,k2)δI2(k′

1,k
′
2)〉. (13)

Before disorder averaging, the diagrammatic representation of
I2(k1,k2)I2(k′

1,k
′
2) is as shown in Fig. 4. After disorder aver-

aging, the biphoton current correlator Eq. (13) is represented
by the diagrams in Figs. 5–7. We now discuss three different
limits for the correlation function which correspond to three
experimental setups with two small aperture detectors: The
first is when both detectors are held fixed at two angles; the
second is when one detector is held fixed and the position of
the other is changed; the third is when the positions of both
detectors are changed. In all cases we shall assume that the
detectors are separated by an angle much larger than

θW = 1

k̄W
, (14)

where W is the slab width (see Fig. 1). It will be shown below
that θW is the typical angular size of a speckle.

1. The correlation function at two different directions:
K(k1,k2; k1,k2) = 〈δ I2

2 (k1,k2)〉 (the RMT limit)

The case when both detectors are held fixed is the one
described in Ref. [9] by RMT. It is given by choosing k1 =
k′

1,k2 = k′
2. The leading contribution in this case is described

by the diagrams shown in Fig. 5, which yield

K(k1,k2; k1,k2) = 〈I2〉2
∑

q1,q2,q̃1,q̃2

[ρq1q2;q̃1q̃2ρq̃1q̃2;q1q2

+2ρq1q2;q̃1q2ρq̃1q̃2;q1q̃2 ]. (15)

The first contribution is associated with the diagram shown in
Fig. 5(a), while the second comes from Figs. 5(b) and 5(c).
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FIG. 5. The leading-order diagrams associated with the correlation function K(k1,k2; k1,k2) = 〈δI 2
2 (k1,k2)〉, corresponding to an

experimental setup where both detectors are held fixed at given angles k1,k2. These diagrams yield the RMT result in Eq. (6).

Performing the summation yields the RMT result, Eq. (6), after
noting that the reduced density matrix ρ

(1)
q1;q̃1

= ∑
q2

ρq1q2;q̃1q2 .

2. The correlation function at three different directions:
K(k1,k2; k1,k′

2)

The case when one detector is held fixed while the
other changes position is described by choosing k1 = k′

1,
|k2 − k′

2| � θW ). In this case the leading-order diagram in
1/(k�), which is shown in Fig. 6, yields

K(k1,k2; k1,k′
2) = 〈I2〉2Tr

(
ρ(1)

)2
. (16)

3. The correlation at four different directions: K(k1,k2; k′
1,k

′
2)

Consider now the third case when the positions of both
detectors are changed. The leading-order diagrams in this case
are shown in Fig. 7. The result is

K(k1,k2; k′
1,k

′
2) = 〈I2〉2 Tr

(
ρ(1))2 ∑

ij=1,2

C(ki ,k′
j ) (17)

where C(k,k′) is a correlation function which is calculated in
Appendix A. In the regime of interest, θL � k1,k2,q1,q2, this

FIG. 6. The leading-order diagram associated with the correlation
function at three different angles K(k1,k2; k1,k′

2), corresponding to
one fixed detector and one detector that changes position.

correlation function reduces to a function of the difference of
the directions C(k1,k2) → C0(|k1 − k2|) where

C0(k) � − 1

k̄2A

{
2π�G(k) (θWθ2

0 )1/3 � k � θ0
1

2θ2
L

θ0 � k � θL
. (18a)

Here θ2
0 = �/�tr is the typical scattering angle at distances on

the order of the elastic mean free path,G was defined in Eq. (3),
and we assume the disorder to be isotropic. [Note that the Born
approximation is valid when θ0 � 1/(k̄�).]

For small scattering angles, k � (θWθ2
0 )1/3, the correlation

function can be calculated from diagram (c) in Fig. 7. The
result is

C0(k) =
(

2J1(k/θW )

k/θW

)2

. (18b)

Here J1(x) is a Bessel function of the first kind and we have
assumed a slab geometry with a circular cross section of radius
W .

A schematic plot of C0(k̂) is depicted in Fig. 8. It is
characterized by four distinct regions: At angles smaller than
θW the correlation decays rapidly from its maximal value, 1,
and it changes sign at an angle of order θW . In the second
region, θW < k < θ0 the correlation function is negative and
of order −1/(k̄2Aθ2

0 ). Its absolute value decreases to a value
of order −1/(k̄2Aθ2

L) at k = θ0. The correlation function
remains essentially fixed at this value within the third region
θ0 � k � θL. Finally, for k � θL the correlation function
decays as exp[−k2/(2θ2

L)], due to the Gaussian decay of the
beam envelope in the directed-wave regime [see Eq. (11)].
This decay is not described by the limiting formula (18a).

C. Fluctuations of two-photon currents measured with large
aperture detectors

When the detector aperture collects a beam from an angle
θ1 � θW , the long-range correlations described in the previous
section will dominate the measurement. For such a setup, the
total flux incident on the detector will be

P (k,k′) =
∫

|k1|,|k2|<θ1

d2k1d
2k2I2(k + k1,k′ + k2) (19)
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FIG. 7. (a) The leading-order diagrams contributing to the correlation function at four different angles K(k1,k2; k′
1,k

′
2). (b) Diagram

describing a Hikami box. (c) Diagram describing the short-range limit of the correlation function.

and the mean square variation of P is then

〈δP (k,k′)2〉=
∫

〈δI2(k + k1,k′ + k2)δI2(k + k′
1,k

′ + k′
2)〉
(20)

where integration is over the space, k1,k2,k
′
1,k

′
2 < θ1. There

are several contributions to this integral. The first comes
from the short-range correlation associated with RMT. The
typical angular scale of these short-range correlations is θW

[see Eq. (18b) and Fig. 8]. Therefore the corresponding
contribution is of order K(k,k′; k,k′)θ4

1 θ4
W . There are two

additional long-range contributions. One comes from the
integral (20) along the lines k1 = k′

1 or k2 = k′
2 and is of

order K(k,k′; k,k̃′)θ6
1 θ2

W [see Eq. (16)]. The other is associated

FIG. 8. A schematic illustration of the behavior of the correlation
function C0(k) the asymptotic behavior of which is given by Eqs. (18).

with the long-range correlation shown in Eq. (17) and is
of order K(k,k′; k,k̃′)θ8

1 θ2
W/θ2

0 . However, this term is much

smaller since θ0 � θW . Thus assuming Trρ2 and Tr(ρ(1))
2

to
be of the same order, then for large enough apertures such
that θ1 > θW the long-range correlations will dominate the
signal. In addition it is clear that once the aperture is large
enough, θ1 ∼ θL, current conservation implies that fluctuations
in P (k,k′) vanish.

D. Generalization to N entangled photons (small aperture
detectors)

Our previous results can be readily generalized to the case of
N entangled photons. We continue to assume that the absolute
value of all photon wave numbers is k̄. The correlation function
for the case where ν detectors are held fixed and N − ν

detectors change positions is

〈δIN (k1, . . . ,kν,kν+1, . . . ,kN )

× δIN (k1, . . . ,kν,k′
ν+1, . . . ,k

′
N )〉

= 〈IN 〉2
ν−1∑
j=0

(
ν

j

)[
Tr
(
ρ(ν−j )

)2

+(1 − δν,N )Tr
(
ρ(ν−j+1)

)2
N∑

i,i ′=ν+1

C(ki ,ki ′ )

]
(21a)

where N � ν � 1. Here ρ(N−j ) is the reduced density matrix

obtained by tracing out j photons, and 〈IN 〉 = βN ( |A0|2A
2πθ2

L

)
N

is
the average N -photon intensity . In the case where all detectors
change position the result is

〈δIN (k1 · · · kN )δIN (k′
1 · · · k′

N )〉

= 〈IN 〉2Tr
(
ρ(1)

)2
N∑

i,j=1

C(ki ,k′
j ). (21b)
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FIG. 9. The diagrams contributing to K(k1,k2; k′
1,k

′
2) in the dif-

fusive regime. The diagrams denote two types of possible interference
paths and each of the the diagrams at the top of Fig. 7(a) is replaced by
such a pair. In these diagrams R,R′ are conjugates to the two outgoing
wave vectors, e.g., to k1,k′

1 in the top left diagram of Fig. 7(a).

Thus by measuring the fluctuations in the intensity when
ν detectors are fixed at their positions and N − ν detectors
change their positions one is able to measure all the trace of

squares of the reduced density matrix, ρ(N−j ), obtained when
j photons are traced out.

III. DIFFUSIVE WAVE PROPAGATION

Consider now the case where rays diffuse in real space,
i.e., the size of the system is much larger than the transport
mean free path but we can neglect reflections from the slab
boundaries, �tr � L � W . The diagrams describing this case
are very similar to those shown for the directed-wave regime.
The only change is that diagrams containing Hikami boxes
should be replaced by the two diagrams shown in Fig. 9.The
result for the N -photon correlation function is

〈δIN (k1, . . . ,kν,kν+1, . . . ,kN )δIN (k1, . . . ,kν,k′
ν+1, . . . ,k

′
N )〉

= 〈IN 〉2
ν−1∑
j=0

(
ν

j

){
Tr
(
ρ(ν−j )

)2 + (1 − δν,N )

[
Tr
(
ρ(ν−j+1)

)2
(N − ν − 1)2C̃(0) +

N∑
i,i ′=ν+1

C̃(|ki − k′
i |)
]}

(22a)

where now 〈IN 〉 = βN ( |A0|2A
2πα

�tr
L

)
N

is the average N -photon intensity, α is a factor of order 1 depending on the shape of the slab
face, and [11]

C̃(k) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2WJ1(k/θW )
L sinh(k/ϕL)

)2
k < θW

2π

k
2A

L
�tr

θW � k � ϕL

3π

k
2A

1
k�tr

1
k

k � ϕL

(22b)

where ϕL = 1/k̄L. Finally, in the case where all detectors change position the result is

〈δIN (k1 · · · kN )δIN (k′
1 · · · k′

N )〉 = 〈IN 〉2

⎡
⎣Tr

(
ρ(1)

)2
N2C̃(0) +

N∑
i,j=1

C̃(|ki − k′
j |)
⎤
⎦. (22c)

A sketch of adaptation of the well-known classical treat-
ment [11] yielding Eq. (22b) to the multiphoton scenario
appears in Appendix B.

Considerations similar to those discussed above imply that
for two large aperture detectors fluctuations in the detected
flux are dominated by the long-range part of the correlation
function when θ1 > θW , just as for the directed-wave regime.

IV. SENSITIVITY OF N-PHOTON SPECKLES TO CHANGE
OF EXTERNAL PARAMETERS

The speckle pattern of an N -photon beam changes as a
function of external parameters such as the incidence angle φ

or frequency ω of the incoming beam, as well as realization
of the scattering potential. To analyze this dependence one
defines a correlation function:

K(γ ; N ) = 〈
δI

(γ )
N (k)δI (0)

N (k)
〉

(23)

where γ represents some external parameter. It is customary to
characterize the sensitivity of the speckle pattern to a change
γ by a typical value γ ∗, beyond which the correlation function
(23) will have decayed significantly.

The sensitivity to changing an external parameter is
described by the diagrams shown in Fig. 10, where red and
green lines correspond to different values of γ . For the specific
cases of changes in φ and ω one finds the following typical
values:

φ∗
N =

{
1√

Nk̄LθL

directed-wave regime
1

Nk̄L
diffusive regime

, (24)

ω∗
N =

{
c√

Nθ2
LL

directed-wave regime
c�tr
NL2 diffusive regime

. (25)

At N ∼ 1 this sensitivity is on the order of the sensitivity
of classical speckles, but it increases dramatically for N � 1.
The qualitative explanation for this criterion is as follows: A
classical wave propagates through the sample via a series of
channels, undergoing (L/�)2 scattering events per channel.
Changing an external parameter γ will change the phase
accumulated at each scattering event by some quantity φ0(γ ),
and the total phase change will also accumulate diffusively
so that the total change of phase per channel is ∼ φ0(γ )L/�.
The speckle pattern will change significantly when this phase
difference is of order 1. In the case of directed waves, the phase
difference equals (k̄LθL)φ for a change in incidence angle φ,
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FIG. 10. The leading-order diagram contributing to the sensitivity correlation function K(γ ; N ). For simplicity we depict the diagram in
for the case where the incident beam is rotated by an angle φ, i.e., γ = φ = |�q|.

and (DθL
2/c)�ω ∼ (θ2

LL/c)�ω for a frequency change. The
sensitivity of an N -photon speckle is to leading order given
by a product of the sensitivities of each detector measurement,
and so we expect a further strong dependence of the sensitivity
on N .

As an illustrative example let us focus on a change of
incidence angle in the directed-wave regime. We assume that
it is sufficiently small that its effect on the phase of a trajectory
going from one end of the sample to the other is small, namely,

φ < 1/(θLk̄L). (26)

Evaluating the diagrams in Fig. 10 we find

K(φ; N ) = 〈IN 〉2
N−1∑
j=0

(
N

j

)
Tr
(
ρ(N−j ))2

× exp

[
−N − j

3
(θLk̄Lφ)2

]
. (27)

For pure nonentangled states Tr(ρ(ν−j ))
2 = 1 for all j and we

obtain

K(φ; N )

K(0; N )
=
(

1 + e− 1
3 (θLk̄Lφ)2

)N

− 1

2N − 1
−−→
N�1

e− N
6 (θLk̄Lφ)2

.

(28)

In the directed-wave regime, the classical correlation function
decays as a Gaussian, as shown in Eq. (27). As a result the
typical angle φ∗

N is proportional to 1/
√

N .
In the diffusive regime, the decay of the classical correlation

function associated with short range correlations is exponen-
tial,K(φ; 1) ∼ exp(−φ/φ∗) where φ∗ = 1/k̄L [see Eq. (22b)].
Similar considerations to those used in the directed-wave
regime imply that φ∗

N is inversely proportional to N , yielding
Eq. (25).

To discuss the sensitivity to the change in the scattering
potential, we have to introduce parameters describing these
changes. In the diffusive case, it is customary to characterize
the change by the number of impurities shifted from their
initial positions. It is assumed that the amplitude of the
scattering length, and the spatial shifts, are both on the order

of the wavelength. A repetition of the qualitative arguments
mentioned above yields a typical number of impurities:

n∗
N = Ak̄2�/LN. (29)

In the directed-wave regime, one cannot treat the disorder as
a series of strong (S-wave) scatterers. Thus, the sensitivity
should depend on the precise form of the change in the
scattering potential. Qualitatively we expect the behavior to
be the same as for the other parameter changes we analyzed,
i.e., the sensitivity will depend in some exponential way on
both the strength of the change and the number of photons.
However, we shall not pursue the subject further in this work.

V. SUMMARY

In this paper we studied the statistics of speckle patterns
of N -entangled photons propagating in disordered systems.
Most previous studies in this field concentrated on the random
matrix theory regime. Our study moves beyond this, focusing
on corrections beyond RMT, associated with long-range
correlations caused by diffraction.

We showed the existence of long-range correlations in these
speckle patterns. To a leading-order approximation in 1/k̄�

these depend only on the reduced density matrix Tr(ρ(1))
2
,

namely, they are a single-photon property. The reason behind
this can be traced to a simple phase-space argument. Multi-
photon interference effects depend on coincident crossings of
classical trajectories in the bulk. The phase space for each such
crossing is inversely proportional to the cross-sectional area,
and therefore such multiple crossings are strongly suppressed.

Nevertheless, it turns out that the long-range correlations
of N -photon speckle patterns determine the results measured
by large aperture detectors.

We also showed that the sensitivity of the N -photon
speckle pattern to change of parameters is greatly enhanced.
This enhancement is by a factor of N for the case of
real-space diffusion, and by a factor of

√
N for directed

waves.
In our work we assumed that the incident light was

monochromatic with wave number k̄. This is the case with,
for example, creation of photon pairs via monochromatic
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spontaneous down-conversion, used in several previous ex-
periments (e.g., Refs. [4,12]). However, the generalization to
frequency-entangled photons can be performed in a straight-
forward manner by adding the standard frequency dependence
to the classical Green’s function. It becomes necessary when
the frequency spread is of the order of the classical sensitivity,
δω ∼ ω∗

1, where ω∗
1 was defined in Eq. (25). Work in this

direction can be found in Ref. [7].
We wish to point out that our analysis is relevant to

much broader problems than the specific system of entangled
photons in quenched disorder described above. For example,
many of our results apply to problems of diffusion in

systems of coupled quantum bits. Random benchmarking of
quantum computation systems [13–15] is rapidly emerging as
a powerful diagnostic tool and our work provides a further
framework for measurement and analysis in this field.
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APPENDIX A: DERIVATION OF THE CORRELATION FUNCTION C(k1,k′
1)

In this appendix we show that the leading-order diagrams for K(k1,k2,k′
1,k

′
2) are those shown in Fig. 7, and we calculate the

correlation function (13).
Consider the general expression for the correlation function:

K(k1,k2,k′
1,k

′
2) = β2

N

∑
q1,q2,q̃1,q̃2

∑
q ′

1,q
′
2,q̃

′
1,q̃

′
2

ρq1q2;q̃1q̃2ρq ′
1q

′
2;q̃ ′

1q̃
′
2

×〈δ(ψq1 (k1)ψq2 (k2)ψ∗
q̃1

(k1)ψq̃2 (k2))δ(ψq′
1
(k′

1)ψq′
2
(k′

2)ψ∗
q̃′

1
(k′

1)ψq̃′
2
(k′

2))〉. (A1)

Most of the terms in the above sum can be neglected. The terms yielding the largest contribution are those appearing in Figs. 7(a)
and 7(c). For example, the first diagram on the left of Fig. 7(a) is obtained by constraining the sum to terms with

q1 = q̃ ′
1, q ′

1 = q̃2, q2 = q̃2, q ′
2 = q̃ ′

2.

In what follows we evaluate the diagrams of Fig. 7, and show that they constitute the leading contribution. We do so using the
Langevin scheme for the directed-wave regime [10], which we briefly review here.

First, let us introduce a ray distribution function, given as a Wigner transform of the product of the retarded Green’s function
and advanced Green’s function:

f (R − R′,k − k′; z) =
∫

d2δrd2δr ′G
(

R + δr
2

,0; R′ − δr′

2
,z

)
G∗
(

R − δr
2

,0; R′ + δr′

2
,z

)
e−ik̄(k·δr+k′ ·δr′). (A2)

We decompose the distribution function f (R,k,z) into an average and fluctuating part:

f (R,k; z) = 〈f (R,k; z)〉 + δf (R,k; z). (A3)

The function 〈f (R,k,z)〉 satisfies the Boltzmann equation

∂〈f (R,k; z)〉
∂z

+ k · ∂〈f (R,k; z)〉
∂R

= Ist [〈f (R,k; z)〉] ≡
∫

d2k′G(k − k′)
[〈f (R,k′; z)〉 − 〈f (R,k; z)〉] (A4)

while the fluctuating part obeys the the Langevin equation

∂δf (R,k; z)

∂z
+ k · ∂δf (R,k; z)

∂R
= Ist [〈f (R,k; z)〉] + L(R,k; z), (A5)

where the Langevin sources have zero mean and correlation function,

〈L(R,k; z)L(R′,k′; z′)〉 =2π

k̄2
δαβδ(R − R′)δ(z − z′)×

×
[
δ(k − k′)f+(R,k,z)

∫
d2k̃G(k − k̃)f−(R,k̃,z) − f+(R,k,z)G(k − k′)f−(R,k′,z′)

]
, (A6)

and f± obey Eq. (A4) as well, with boundary conditions

f+(R,u; 0) = |A0|2δ(u − q), f−(R,u; 0) = |A0|2δ(u − q′), (A7)

for incoming plane waves in directions q,q′.
On length scales much larger than the elastic mean free path � and angles much larger than θ0 the Boltzmann equation (A4)

reduces to the diffusion-like equation:

∂〈f (R,k; z)〉
∂z

+ k · ∂〈f (R,k; z)〉
∂R

− Dθ

∂2〈f (R,k; z)〉
∂k2

= 0, (A8)
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where Dθ = 1/2�tr is the diffusion constant in the angle space. The solution of this equation for boundary conditions 〈f (R,k; 0)〉 =
δ(R)δ(k) is

〈f (R,k; z)〉 = 3

4π2D2
θ z

4
exp

[
− 3R2

Dθz3
+ 3k · R

Dθz2
− k2

Dθz

]
. (A9)

Furthermore in this diffusive regime Eqs. (A5) and (A6) simplify to

L(R,k; z) = ∇k · j(R,k; z), (A10)

〈jL
α (R,k; z)jL

β (R′,k′; z′)〉 = 2πDθ

k̄2
f+(R,k; z)f−(R′,k′; z)δαβδ(R − R′)δ(k − k′)δ(z − z′) (A11)

where f±(R,u; z) satisfy the equation

∂f±(R,u; z)

∂z
+ u · ∂f±(R,u; z)

∂R
− Dθ

∂2f±(R,u; z)

∂u2
= 0 (A12)

with boundary conditions (A7).
The correlation function we seek to calculate is

C(k,k′) = 1

I 2
1

∫
d2Rd2R′〈δf (R,k; L)δf (R′,k′; L)〉 (A13)

where

I1 =
∫

d2R〈f (R,k; L)〉 = |A0|2A
2πθ2

L

(A14)

(assuming q1,q
′
1,k � θL).

1. Long-range correlations: θ0 � |ki − k j |
We begin by finding the long-range correlations, when |ki − kj | � θ0, i.e., when the rays undergo many scattering events

after crossing. Solving Eq. (A12) and substituting the result in Eq. (A11) we obtain

〈jL
α (R1,u; z)jL

β (R′
1,u

′; z′)〉 = |A0|4
8Dθπk̄2z2

exp

[
− (u − q)2 + (u′ − q′)2

4Dθz

]
δαβδ(R1 − R′

1)δ(u − u′)δ(z − z′). (A15)

Thus

〈δf (R,k; L)δf (R′,k′; L)〉 =
∫

d2R1dzd2R′
1dz′d2ud2u′〈f (R − R1; k − u; L − z)〉〈f (R′ − R′

1; k′ − u′; L − z′)〉

× ∂

∂uα

∂

∂u′
β

|A0|4
8Dθπk̄2z2

exp

[
− (u − q)2 + (u′ − q′)2

4Dθz

]
δαβδ(R1 − R′

1)δ(u − u′)δ(z − z′). (A16)

Integration by parts gives

〈δf (R,k; L)δf (R′,k′; L)〉 =
∫

d2R1d
2udz

∂

∂k
〈f (R − R1; k − u; L − z)〉 · ∂

∂k′ 〈f (R′ − R1; k′ − u; L − z)〉

× |A0|4
8Dθπk̄2z2

exp

[
− (u − q)2 + (u − q′)2

4Dθz

]
.

Plugging this into Eq. (A13) yields

C(k,k′) = 1

I 2
1

∫
dzd2u

A
(4π )2D2

θ (L − z)2

∂

∂k
· ∂

∂k′ exp

[
− (k − u)2 + (k′ − u)2

4Dθ (L − z)

] |A0|4
8Dθπk̄2z2

exp

[
− (u − q)2 + (u − q′)2

4Dθz

]
.

Finally, changing variables to ζ = z/L and performing the d2u integral, we arrive at

C(k,k′) = 1

4k̄2A

∫ 1

0

dζ

(1 − ζ )ζ

∂

∂k
· ∂

∂k′ exp

[
− (k − k′)2

4θ2
L(1 − ζ )

− (k + k′ − q − q′)2

4θ2
L

− (q − q′)2

4θ2
Lζ

]
. (A17)

Performing the integral and specializing to θL � |k − k′| � θ0 we end up with the second line of Eq. (18a).
Next we show that the contribution we just calculated is the dominant one. To do so it is enough to evaluate the diagram in

Fig. 11. The boundary conditions in this case are

f±(R,q; 0) = |A0|2 exp(±ik̄�q · R)δ(q − q̄) (A18)
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where �q = q1 − q′
1 and q̄ = (q1 + q′

1)/2. Furthermore we assume k̄LθL�q � 1. Repeating the steps above and comparing to
expression (18a), we find the result to be smaller by an order of �

L
.

2. Intermediate-range correlations: θW � |ki − k j | � θ0

The integral (A17) diverges logarithmically when |ki − kj | � θ0. This is because of the breakdown of the diffusive
approximation, as for small angles the main contribution comes from the last scattering event before the ray leaves the sample.
Thus when θW � |ki − kj | � θ0 we can neglect the diffusion term in Eq. (A5), and simply solve for the correlation function to
first order in the scattering probability G. In this limit Eq. (A5) can be easily solved and we find

δf (R,k,z) =
∫ z

dζL(R + (ζ − z)k,k,ζ ). (A19)

We then evaluate Eq. (A13) directly (to leading order in G) and find

C(k1,k2) = 2π

k̄2A [δ(k1 − k2) − �G(|k1 − k2|)]. (A20)

The first term can be understood as a small correction to Eq. (18b) arising from short-range interference that occurs when
two rays meet. The second term comes from impurity scattering and represents the fact that in the directed-wave regime all ray
meetings occur when rays have both the same position and the same direction of propagation. This is different from the diffusive
case, where many rays moving in different directions may cross at the same point. Thus, in the directed-wave regime the free
propagation of the rays from a given point implies that they cannot scatter to an angle ∼ θ0, giving rise to the negative correlation.
Neglecting the first term in Eq. (A20) we find the first line in Eq. (18a).

3. Short-range correlations: |ki − k j | � θW

When |ki − kj | ∼ θW , one can neglect the correlations from ray diffraction (Hikami box). In this limit we may treat ψq(k) as
independent Gaussian variables satisfying the relation

α(k,k′) = 〈ψq(k)ψ∗
q (k′)〉 =

∫
d2R〈f (R,

k + k′

2
,L)〉eik̄(k−k′)·R. (A21)

and the correlation function we seek to calculate is C(k,k′) = |α(k,k′)/α(k,k)|2. Assuming |k|,|k′| � θL and that 〈f (R,k,L)〉
is independent of R throughout the slab (which is the case when W � θLL) we obtain Eq. (18b). By equating Eqs. (18a) and
(18b) we find the range of validity of these expressions.

APPENDIX B: DERIVATION OF THE MULTIPHOTON
CORRELATION FUNCTION IN THE DIFFUSIVE REGIME

In this appendix we sketch out the steps leading to
Eqs. (22). Just as in the directed-wave regime, the leading-
order corrections are given by the diagrams of Fig. 7. However,
in this regime we have real-space diffusion, and the distribution
function f (R,q; z) is replaced by the local intensity, obtained
by integrating out the angular part of f :

I (R; z) = 〈I (R; z)〉 + δI (R; z), (B1)

where δI is the fluctuating part of the intensity. Referring to
Eq. (A1) we see that we must evaluate a product of four Green’s
functions, as in the directed-wave case, e.g.,

〈ψq(k)ψ∗
q̃ (k)ψq′(k′)ψ∗

q̃′(k′)〉

=
∫

ei(q·r−k·s)e−i(q̃·r̃−k·s̃)ei(q′ ·r′−k′ ·s′)e−i(q̃′ ·r̃′−k′ ·s̃′)

FIG. 11. A subleading diagram contributing to C(k1,k2).

×G(r,s)G∗(r̃,s̃)G(r′,s′)G∗(r̃′,s̃′), (B2)

where we have suppressed the explicit L dependence of the
Green’s functions. It is clear that upon disorder averaging
there are two ways to match Green’s functions into diffusons,
namely,

r = r̃′,r′ = r̃,s = s̃,s′ = s̃′ ⇒ q = q̃′,q′ = q̃, (B3)

r = r̃,r′ = r̃′,s′ = s̃,s = s̃′ ⇒ q = q̃,q′ = q̃′. (B4)

These two matchings are depicted in Fig. 9. The constraints
on the incoming q’s can be obtained straightforwardly by
evaluating the two diagrams using well-known results [11].
The result is

Cq,q̃,q ′,q̃ ′ (k,k′) = δqq̃ ′δq ′q̃ C̃(0) + δqq̃δq ′q̃ ′ C̃(|k̂ − k̂′|), (B5)

where C̃(k) was described in Eq. (22b). Generalizing to N

photons and performing the necessary summation we get our
final result, Eq. (22a).
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