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Three-dimensional atom localization from spatial interference in a double two-level atomic system
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We propose a efficient scheme for high-precision three-dimensional (3D) atom localization via spatial
interference in a generic double two-level atomic system driven by a weak probe field and three mutually
perpendicular standing-wave fields. Because the spatial interference originates from the position-dependent
atom-field interaction, the position information of the atom can be obtained by the measurement of the atom
population. We find that the precision of 3D atom localization in volumes depends sensitively on the frequency
detuning and the phase shifts associated with the standing-wave fields. Interestingly enough, we show that
adjusting the frequency detuning and phase shifts can lead to a redistribution of the atoms and a significant
change in the visibility of the interference pattern. As a result, the atom can be localized in volumes that are
substantially smaller than a cubic optical wavelength.
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I. INTRODUCTION

The precision position measurement on an atomic scale is
a longstanding issue and has attracted considerable attention
because of its potential wide applications in laser cooling and
trapping of neutral atoms [1,2], atom nanolithography [3,4],
Bose–Einstein condensation [5–7], the measurement of the
center-of-mass wave function of moving atoms [8], coherent
patterning of matter waves [9], and so on. Usually, the spatial
resolution cannot be better than the length scale given by the
wavelength of the applied light beam due to that the diffractive
scattering that takes place when a beam of atoms interacts
with the periodic structure of light [10]. Note that there are
some different methods for going beyond this limit for atom
localization, such as the measurement of the atomic resonance
frequency [11–13], the phase shift of the standing-wave field
[14–16], and the atomic dipole [17].

On the other hand, several theoretical schemes have been
proposed to obtain position information of moving atoms
based on the atomic coherence and quantum interference
effect. In these schemes, standing-wave driving fields have
been used to encode position information into an intensity pat-
tern via the position-dependent Rabi frequency. Considerable
progress has been made in establishing the precision position
of atoms, such as the quadrature phases of light fields inter-
acting with the atom [18], long-lived electronic states [19,20],
resonance fluorescence [21–23], absorption of light [24], and
combinations thereof [25]. Subsequently, many efforts have
been made to improve the accuracy of measurement. In this
regard, we note that several proposals based on the atomic
coherence and quantum interference effect have been made
via different measurement schemes, such as amplitude- and
phase-dependent emission [26] and absorption spectra [27,28],
coherent population trapping (CPT) [29], dark resonances
[30], and multiple simultaneous measurements [31–34].

In recent years, two-dimensional (2D) atom localization
by applying two orthogonal standing-wave fields has attracted
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considerable interest because of a better prospect of application
and unique properties in contrast with the one-dimensional
(1D) schemes mentioned above. Note that, in 2D atom
localization, one can obtain mere subwavelength localization
as well as spatial structuring of the atomic locations. For 2D
atom localization, Ivanov and Rozhdestvensky [35] presented
a scheme for 2D subwavelength localization in a four-level
tripod system and found that the localization factors depend
crucially on the atom-field coupling, which results in such spa-
tial structures of population as spikes, craters, and waves. An-
other related 2D-atom-localization scheme has been proposed
[36] by controlled spontaneous emission in a four-level atomic
system with a closed loop. Afterwards, several high-precision
and high-resolution 2D-atom-localization schemes have been
reported [37–40] for different-configuration atomic systems.

A key question is whether subwavelength localization
can also be achieved in the three-dimensional (3D) case.
Possible applications of 3D atom localization may include
high-precision position-dependent state-selective chemical re-
actions. More recently, several schemes have been put forward
for 3D atom localization that use three mutually perpendicular
standing-wave fields [41,42]. For instance, a scheme for
3D atom localization based on EIT was demonstrated in
Ref. [41] by measuring the probe absorption in a five-level
M-type atomic system. Afterwards, the different 3D periodic
structures in 3D space were achieved by Ivanov and coworkers
[42] via the measurement of the atomic-level population
in a four-level tripod-type atomic system. The previous
schemes for 3D atom localization [41,42] contend that the
different localization patterns of atoms are situated in the eight
subspaces (x,y,z), (−x,y,z), (x,−y,z), (x,y,−z), (−x,−y,z),
(x,−y,−z), (−x,y,−z), and (−x,−y,−z). Thus, it reminds us
of another question: Can we localize the atom in one subspace
with a greater probability of localizing the atom in 3D space
than the previous schemes?

To further improve the precision of 3D atom localization
and the probability of localizing the atom in a cubic optical
wavelength, we propose a scheme for realizing high-precision
3D atom localization in a generic duplicated two-level atomic
system by measuring the atomic-level population. By properly
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adjusting the system parameters, we can localize the atom
in one subspace, and the probability of finding the atom
in 3D space is increased by a factor of eight compared
with the previous schemes [41,42]. Interestingly enough, we
show that, in the weak driven situation, adjusting the phase
shifts associated with the standing-wave fields leads to a
redistribution of the atoms and a significant change of the
visibility of the interference pattern so that the atom can be
localized in volumes that are substantially smaller than a cubic
optical wavelength.

II. THEORETICAL MODEL AND BASIC EQUATIONS

Let us consider a double two-level atomic system with
two degenerate ground states |1〉 and |2〉 and two degenerate
excited states |3〉 and |4〉, as shown in Fig. 1(a). The transitions
between levels |1〉 and |3〉 (with transition frequency ω31) and
between levels |2〉 and |4〉 (with transition frequency ω42)
are coupled simultaneously by the relevant standing-wave
field with position-dependent Rabi frequency Gs(x,y,z). A
degenerate σ -polarized probe field Ep (with angular frequency
ωp and Rabi frequency 2�p) is applied to drive simultaneously
the electric-dipole transitions between levels |1〉 and |4〉 (with
transition frequency ω41) and between levels |2〉 and |3〉
(with transition frequency ω32). It is worth pointing out that
Gs(x,y,z) corresponds to the combination of three orthogonal
standing-wave fields that drives simultaneously the transitions
|1〉 ↔ |3〉 and |2〉 ↔ |4〉, i.e.,

Gs(x,y,z) = Gs(x) + Gs(y) + Gs(z), (1)

where Gs(x), Gs(y), and Gs(z) are also the combinations
of two orthogonal standing-wave fields aligning along the
corresponding x, y, and z directions, respectively, i.e.,

Gs(x) = �1[sin (κ1x + ϕ) + sin (κ2x)], (2)

Gs(y) = �2[sin (κ3y + φ) + sin (κ4y)], (3)

Gs(z) = �3[sin (κ5z + η) + sin (κ6z)], (4)

FIG. 1. (a) The energy-level diagram of a generic double two-
level atomic system interacting with a weak probe field �p and a
combination of three mutually perpendicular standing-wave fields
Gs(x,y,z). 	1 and 	2 represent the relevant frequency detun-
ings. Note that 	1 = 	2 = 	 in the present system. (b) Field
configurations.

with κi = 2π/λi (i = 1–6) being the wave vectors correspond-
ing to wavelength λi of the relevant standing-wave fields.
Here, for simplicity, we assume �1 = �2 = �3 = �s . The
parameters ϕ, φ, and η are the phase shifts of the relevant
standing-wave fields corresponding to wave vectors κ1, κ3,
and κ5, respectively. An atom moves along the z direction and
passes through the intersecting region of the three mutually
perpendicular standing-wave fields in 3D space. As a result,
the interaction between the atom and the standing-wave fields
is spatially dependent on the 3D space.

Such an atomic structure can be realized in cold
6Li atoms [43] using the D1-line with the transi-
tion 2 2S1/2 → 2 2P 1/2. The designated states can be
chosen as follows: |1〉 = |2 2S1/2 , F = 1

2 ,mF = 1
2 〉, |2〉 =

|2 2S1/2 ,F = 1
2 ,mF = − 1

2 〉, |3〉 = |2 2P 1/2 , F = 1
2 ,mF = 1

2 〉,
and |4〉 = |2 2P 1/2 , F = 1

2 ,mF = − 1
2 〉, respectively. Accord-

ing to the Wigner–Eckart theorem [44,45], the electric-dipole
matrix element for the corresponding transition is proportional
to the Clebsch–Gordan coefficient 〈(J ′I ′)F ′mF ′ |(JI )F1mF q〉
[46], i.e.,

〈(J ′I ′)F ′mF ′ |μ̂(1,q)|(JI )FmF 〉 = 〈(J ′I ′)F ′||μ̂(1)||(JI )F 〉〈(J ′I ′)F ′mF ′ | (JI )F1mF q〉. (5)

In such case, the Clebsch–Gordan coefficient can be given by the 3-j symbol,

〈(J ′I ′)F ′mF ′ | (JI )F1mF q〉 = (−1)F
′−mF ′

(
J ′ 1 J

−mF ′ q mF

)
. (6)

On the other hand, the proportionality factor is factorized into the reduced matrix element 〈J ′||μ̂(1)||J 〉 and the corresponding
Wigner 6-j symbol can be given by

〈(J ′I ′)F ′||μ̂(1)||(JI )F 〉 = δI ′I (−1)J
′+I+F+1

√
(2F ′ + 1)(2F + 1)

{
J ′ I F ′
F 1 J

}
〈J ′||μ̂(1)||J 〉, (7)

where the 6Li D1 line is defined by the total angular momentum I = 1
2 . Thus, the value of the D1-line reduced matrix element is

〈J ′ = 1/2||μ̂(1)||J = 1/2〉 = −
√

2μ0 = −2.812 × 10−29 C.m., (8)

where C.m. (i.e., Coulomb multiplied by metre) denotes SI units of electric dipole moment.
In addition, the decay rate via the Einstein A coefficient [47,48] can be given by

1

τ
= ω3

3πε0�c3

1

(2J + 1)
|〈J ′||μ̂(1)||J 〉|2. (9)
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It is worth pointing out that in our present atomic system,
the corresponding matrix elements of the dipole operator are
given by

μ̂42 =
√

1

54
〈J = 1/2||μ̂(1)||J ′ = 1/2〉,

μ̂31 = −
√

1

54
〈J = 1/2||μ̂(1)||J ′ = 1/2〉,

μ̂32 =
√

1

27
〈J = 1/2||μ̂(1)||J ′ = 1/2〉,

μ̂41 = −
√

1

27
〈J = 1/2||μ̂(1)||J ′ = 1/2〉. (10)

At the same time, the atomic dipole operator is the sum
of atomic raising μ↑ and lowering μ↓ operators, whose
components are [49]

μ↓
x = μ(|2〉〈3| − |1〉〈4|)x̂, (11)

μ↓
y = iμ(|2〉〈3| + |1〉〈4|)ŷ, (12)

μ↓
z = μ(|2〉〈4| − |1〉〈3|)ẑ, (13)

where μ
↓
k is the k component of the atomic dipole, μ is the

dipole matrix element, and x̂, ŷ, and ẑ are the usual Cartesian
unit vectors.

Here we assume that the center-of-mass position distribu-
tion of the atom along the directions of the standing-wave fields
is nearly constant and we can ignore the kinetic energy of the

atom in the Hamiltonian by applying the Raman–Nath approxi-
mation [44]. By choosing H0 = (ωs − ωp)|2〉〈2| + ωs |3〉〈3| +
ωp|4〉〈4| and taking level |1〉 as the energy origin, under the
electric dipole approximation (EDA) and the rotating-wave
approximation (RWA), the interaction Hamiltonian of the
present atomic system is given by (� = 1):

Hint = 	|3〉〈3| + 	|4〉〈4| − [�p(|3〉〈2| − |4〉〈1|)
+Gs(x,y,z)(|4〉〈2| − |3〉〈1|) + H.c.], (14)

where the symbol H.c. represents the Hermitian conjugate.
	1 = ω31 − ωs = ω32 − ωp and 	2 = ω41 − ωp = ω42 − ωs

represent the relevant frequency detunings. It is
obvious that 	1 = 	2 = 	 in the present system.
�p = μ32Ep/(2�) = −μ41Ep/(2�) and Gs(x,y,z) =
�s[sin(κ1x + ϕ) + sin(κ2x) + sin(κ3y + φ) + sin(κ4y) +
sin(κ5z + η) + sin(κ6z)], with �s = μ42Es/(2�) =
−μ31Es/(2�) being the half Rabi frequencies of the
probe field and the standing-wave fields for the relevant

driven transitions, respectively, and where μij = ⇀
μij · ⇀

e L

(i,j = 1–4) denotes the dipole matrix moment for the relevant

optical transition from level |i〉 to level |j 〉 with
⇀
e L denoting

the unit polarization vector of the corresponding laser field.
The dynamics of this system can be described by using the

density-matrix approach as

ρ̇ = − i

�
[Hint,ρ] + L[ρ(t)], (15)

where the Liouvillian matrix L[ρ(t)] denoting the relaxation
by spontaneous decay can be given by

L[ρ(t)] =

⎛
⎜⎜⎜⎝

(�31ρ33 + �41ρ44) 0 −�13+�23
2 ρ13 −�14+�24

2 ρ14

0 (�32ρ33 + �42ρ44) −�23+�13
2 ρ23 −�24+�14

2 ρ24

−�31+�32
2 ρ31 −�32+�31

2 ρ32 −(�31 + �32)ρ33 0

−�41+�42
2 ρ41 −�42+�41

2 ρ42 0 −(�41 + �42)ρ44

⎞
⎟⎟⎟⎠, (16)

where �ij (i,j = 1–4) denotes the coherent decay rate from level |i〉 to level |j 〉. It is worth pointing out that �31 = �13 = �42 =
�24 = 1

54� and �41 = �14 = �32 = �23 = 1
27�, where � = ω3

6πε0�c3 |〈J = 1/2||μ̂(1)||J ′ = 1/2〉|2 with |〈J = 1/2||μ̂(1)||J ′ =
1/2〉|2 denoting the D1-line reduced matrix element for 6Li atoms.

By substituting the interaction Hamiltonian given by Eq. (14) into Eq. (15), the coupled equations of motion for the
corresponding density-matrix elements can be given as

ρ̇22 = (�32ρ33 + �42ρ44) + i�∗
pρ32 − i�pρ23 + iG∗

s (x,y,z)ρ42 − iGs(x,y,z)ρ24, (17)

ρ̇33 = −(�31 + �32)ρ33 − i�∗
pρ32 + i�pρ23 + iG∗

s (x,y,z)ρ31 − iGs(x,y,z)ρ13, (18)

ρ̇44 = −(�41 + �42)ρ44 + i�∗
pρ41 − i�pρ14 − iG∗

s (x,y,z)ρ42 + iGs(x,y,z)ρ24, (19)

ρ̇21 = i�∗
pρ31 + i�pρ24 + iG∗

s (x,y,z)ρ41 + iGs(x,y,z)ρ23, (20)

ρ̇31 = −
(

�31 + �32

2
+ i	

)
ρ31 + i�pρ21 + i�pρ34 + iGs(x,y,z)(ρ33 − ρ11), (21)

ρ̇41 = −
(

�41 + �42

2
+ i	

)
ρ41 + i�p(ρ44 − ρ11) + iGs(x,y,z)ρ21 + iGs(x,y,z)ρ43, (22)

ρ̇32 = −
(

�32 + �31

2
+ i	

)
ρ32 + i�p(ρ22 − ρ33) − iGs(x,y,z)ρ12 − iGs(x,y,z)ρ34, (23)

ρ̇42 = −
(

�42 + �41

2
+ i	

)
ρ42 − i�pρ12 − i�pρ43 + iGs(x,y,z)(ρ22 − ρ44), (24)
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ρ̇43 = −i�pρ13 − i�∗
pρ42 + iGs(x,y,z)ρ23 + iG∗

s (x,y,z)ρ41, (25)

together with ρij = ρ∗
ji (i,j = 1–4) and

∑4
j=1 ρjj = 1.

We define ne = ρ33 + ρ44 as the excited population, and the coherent terms ρπ = ρ42 − ρ31, ρσ = ρ32 − ρ41 are responsible
for the combination of three orthogonal standing-wave fields Gs(x,y,z) and the σ -polarized field, respectively. Note that the
measurement of the excited population (i.e., ρ33 + ρ44) can directly obtain the position information of the atom when the
atom passes through the standing-wave fields in 3D space. Under the weak-field approximation (i.e., �p � �1,�2,�3) and
considering the normalization condition of the present system (i.e.,

∑4
j=1 ρjj = 1), the exact steady-state results by using

professional computing software (i.e., Wolfram Mathematica) can be given by

ne = 4[|Gs(x,y,z)|2 − |�p|2]
2

(4	2 + D2)[|Gs(x,y,z)|2 + |�p|2] + 8[|Gs(x,y,z)|2 − |�p|2]
2 , (26)

ρσ = − 2(2	 + iD)[|Gs(x,y,z)|2 − |�p|2]�p

(4	2 + D2)[|Gs(x,y,z)|2 + |�p|2] + 8[|Gs(x,y,z)|2 − |�p|2]
2 , (27)

ρπ = 2(2	 + iD)[|Gs(x,y,z)|2 − |�p|2]Gs(x,y,z)

(4	2 + D2)[|Gs(x,y,z)|2 + |�p|2] + 8[|Gs(x,y,z)|2 − |�p|2]
2 , (28)

where D = �32 + �42.
Equation (26) reflects the conditional position probability

distribution of the atom in 3D space [42]. Therefore, the 3D
atom localization behavior near point (x0,y0,z0) (i.e., x0 =
2l λ

4 , y0 = 2mλ
4 , z0 = 2nλ

4 with l as well as m and n being
integers) including the increase of the detecting probability and
improvement of the localization precision can be controlled by
adjusting the system parameters.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we investigate the conditional position
probability distribution of the atom in 3D space via a
few numerical calculations based on the excited population
(ρ33 + ρ44) in Eq. (26) and then achieve high-precision
3D atom localization by measuring the population of the
levels |3〉 and |4〉. To give a clear illustration, we select
� = 3.6898 × 107 s−1, �s = 0.75�, �p = 0.01�, and all the
parameters used in the following numerical calculations are in
units of �. Subsequently, we present a few numerical results
for 3D atom localization with different values of the relevant
parameters to illustrate that high-precision 3D atom localiza-
tion can be achieved in the present double two-level atomic
system.

First of all, we investigate the influence of the frequency
detuning of the relevant optical fields 	 on 3D atom local-
ization near point (x0,y0,z0) without considering the phase
shifts of the standing-wave fields (i.e., ϕ = φ = η = 0). From
Fig. 2, one can find that the spatial distribution as well as
the precision of 3D atom localization are dependent on the
frequency detuning of the relevant optical fields. In the case of
	 = 2.15� [see Fig. 2(a) (a)], two ellipsoidal structures with
the same size are situated in the two subspaces (−x,−y,−z)
and (x,y,z), respectively. When the frequency detuning of the
relevant optical fields 	 increases to 3.15� with keeping all
other parameters fixed, the localization pattern of atoms in
the two subspaces is still ellipsoid like but with the smaller
sizes [see Fig. 2(b)]. Direct comparison of Figs. 2(a) and
2(b) implies that the precision of 3D atom localization can

be significantly improved when the frequency detuning of
the relevant optical fields 	 increases. Thus, high-precision
of 3D atom localization is indeed achieved via adjusting the
frequency detuning of the relevant optical fields.

The above interesting localization phenomena as shown in
Fig. 2 originates from the far-field phase-dependent spatial
interference induced by the optical fields. For calculating
the far-field phase-dependent spatial interference pattern, we
assume that the atoms interacting with the optical fields are
identical and independent of each other. Let us consider the
observing screen being placed in the far field (large y) and
oriented in the x-z plane. We label a point on the screen by
(τ1,τ2), where τi (i = 1,2) is the light travel time from the ith
atom to the observation point. Thus, the intensity of the light
at this point is given by [50–52]

I (τ1,τ2) ∝ 〈E↑
x E↓

x + E↑
z E↓

z 〉, (29)

where

E
↑
k (t ; τ1,τ2) ∝ e−iω(t−τ1)u

↑
k + e−iω(t−τ2)U

↑
k , (30)

for k ∈ {x,z}, u and U are the atomic dipoles of the first and
second atoms, respectively, and ω is the angular frequency
of the laser light. Since we assumed that the atoms are
independent and identical, the intensity of the interference
pattern when all light is detected is given by

I (τ1,τ2) ∝ 〈u↑
xu↓

x + U↑
x U↓

x + u↑
z u↓

z + U↑
z U↓

z 〉
+ 〈u↑

xU↓
x 〉eiω(τ1−τ2) + 〈u↓

xU↑
x 〉e−iω(τ1−τ2)

+〈u↑
z U↓

z 〉eiω(τ1−τ2) + 〈u↓
z U↑

z 〉e−iω(τ1−τ2). (31)

The components in Eq. (31) in the steady state can be given
by

〈u↑
xu↓

x 〉ss = 〈U↑
x U↓

x 〉ss
∝ μ2〈(|3〉〈2| − |4〉〈1|)(|2〉〈3| − |1〉〈4|)〉ss
= μ2〈|3〉〈3| + |4〉〈4|〉ss
= μ2ne, (32)
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FIG. 2. The excited population ne = 0.4 as functions of (κx,κy,κz) for different frequency detunings 	 with the units of the wave vector
κ being rad/nm. (a) 	 = 2.15�; (b) 	 = 3.15�. The other values of the parameters are � = 3.6898 × 107 s−1, �32 = 1

27 �, �42 = 1
54 �,

�s = 0.75�, �p = 0.01�, κ1 = κ3 = κ5 = κ , κ2 = κ4 = κ6 = κ , and ϕ = φ = η = 0.

and similarly

〈u↑
z u↓

z 〉ss = 〈U↑
z U↓

z 〉ss = μ2ne, (33)

〈u↑
xU↓

x 〉ss = 〈u↑
xU↑

x 〉∗ss ∝ μ2〈u↑
x 〉ss〈U↓

x 〉ss = μ2ρσρ∗
σ , (34)

〈u↑
z U↓

z 〉ss = 〈u↑
z U↑

z 〉∗ss ∝ μ2〈u↑
z 〉ss〈U↓

z 〉ss = μ2ρπρ∗
π . (35)

Thus, in our duplicated two-level atomic system, the visibility of the interference pattern, which is defined as V = (Imax −
Imin)/(Imax − Imin), can be calculated by using the steady-state solutions [Eqs. (26)–(28)]:

V = 1

2ne

(ρπρ∗
π + ρσρ∗

σ ) = (4	2 + D2)[|Gs(x,y,z)|2 + |�p|2]

2(4	2 + D2)[|Gs(x,y,z)|2 + |�p|2] + 16[|Gs(x,y,z)|2 − |�p|2]
2 , (36)

where D = �32 + �42.
According to Eq. (36), we plot the visibility V as func-

tions of (	,κz) at the expected position [i.e., (κx,κy) =
(±0.55π,±0.55π )], as shown in Fig. 3. Figure 3(a) shows
that the visibility is mainly covered in the positive direction
of the Oz axis when (κx,κy) = (0.55π,0.55π ) and the values
of other parameters are the same as in Fig. 2. When κx and
κy are tuned to (κx,κy) = (−0.55π,−0.55π ) with all other
parameters the same as in Fig. 3(a), the visibility is mainly
situated in the negative direction of the Oz axis, as shown in
Fig. 3(b). From Figs. 3(a) and 3(b), one can find that, upon
increasing 	 from 2.15� to 3.15�, the values of visibility
increase progressively when κz remains fixed [see points A
and B labeled in Figs. 3(a) and 3(b)]. That is, the increase of the
spatial interference will lead to the size of the 3D localization
structure becoming smaller, which gives the physical reason
for the sizes of 3D localization structures being changed in
going from Fig. 2(a) to Fig. 2(b).

It is desirable to obtain the position of the atom when the
atom passes through the standing-wave fields. The present
scheme for 3D atom localization is based on the fact that
the conditional probability distribution of the atom carries the
information about the atomic position. Therefore, one can
extract the localization information by means of a similar
measurement scheme for 1D and 2D atom localization reported
in Refs. [23,39]. We noticed that the previous scheme [39] for
2D atom localization had shown that the phase shifts played
an important role in the spatial measurement of the atom in
two dimensions and a single atom localization peak could be
observed when one chose slightly different wavelengths of the

standing-wave fields. Here we will investigate the influences
of the phase shifts (ϕ,φ,η) of three orthogonal standing-wave
fields on the behavior of 3D atom localization. In Fig. 4, we plot
the excited population ne = 0.4 as functions of (κx,κy,κz) in
dependence on the phase shift (ϕ,φ,η) of three perpendicular
standing-wave fields with slightly different wavelengths. In
the condition of κ1 = κ3 = κ5 = κ and ϕ = φ = η = 0, it can
be found from Fig. 4(a) that two ellipsoidal structures with
the same size are situated in two subspaces (−x,−y,−z) and
(x,y,z), respectively. Such a result is the same as in Fig. 2(a).
When the phase shifts ϕ and φ are both equal to π/2, and
the wave vectors κ1 and κ3 are both equal to 0.85κ , the
localization patterns of the atoms in Fig. 4(b) are still ellipsoid
like, where the smaller one is situated in subspace (−x,−y,−z)
while the bigger one is situated in subspace (x,y,z). Different
from Fig. 4(a), the equal-probability-distribution situation
has been destroyed when the phase shifts ϕ and φ of the
corresponding standing-wave fields are nonzero. In such a
case, the phase-dependent spatial-interference effect induced
by the standing-wave fields and the probe field shows up.
As a result, the corresponding atom localization precision
in subspace (−x,−y,−z) is significantly improved compared
with Fig. 4(a). More interestingly, for the case that (κ1,κ3,κ5) =
(0.85κ,0.85κ,0.85κ) and (ϕ,φ,η) = (π/2,π/2,π/2), the el-
lipsoidal shell in subspace (−x,−y,−z) disappears, and the
size of ellipsoidal shell localized in subspace (x,y,z) becomes
smaller, as shown in Fig. 4(c), in which the probability of
finding the atom in 3D space is indeed increased by a factor of
two compared with Fig. 4(b). The above results demonstrate
that the behavior of 3D atom localization is sensitive to
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FIG. 3. The visibility V as functions of (	,κz) for different situations with the units of the wave vector κ being rad/nm. (a) (κx,κy) =
(0.55π,0.55π); (b) (κx,κy) = (−0.55π,−0.55π ). The other values of the parameters are � = 3.6898 × 107 s−1, �32 = 1

27 �, �42 = 1
54 �,

�s = 0.75�, �p = 0.01�, κ1 = κ3 = κ5 = κ , κ2 = κ4 = κ6 = κ , and ϕ = φ = η = 0.

the phase shift (ϕ,φ,η) associated with three orthogonal
standing-wave fields having slightly different wavelengths and
also demonstrate the sensitive phase-related property of double
two-level atomic systems.

For exploring the physical reason for the improvement of
the 3D-atom-localization precision as shown in Figs. 4(a)
and 4(b), we draw plots of the visibility V as functions of
(ϕ = φ,κ1 = κ3) at certain (x,y,z) according to Eq. (36) [see
Figs. 5(a) and 5(b)]. By direct comparison in Figs. 4(a) and
4(b), we obtain that the 3D-localization precision in subspace
(x,y,z) is almost not changed while the 3D-localization
precision in subspace (−x,−y,−z) is significantly enhanced.
From Fig. 5(a), one can find that, when (x,y,z) are tuned to
(x,y,z) = (0.5,0.5,0.5), keeping all other parameters the same
as in Figs. 4(a) and 4(b), the visibilities of the points A and
B labeled in Fig. 5(a) are almost equal, which explains the
reasons for the 3D-localization precision in subspace (x,y,z)
remaining almost unchanged from Fig. 4(a) to Fig. 4(b). For
the case that (x,y,z) = (−0.3,−0.3,−0.35), Fig. 5(b) shows
that the visibility enhances significantly as the phase shifts ϕ

and φ are simultaneously changed from 0 to π/2 with the wave
vectors κ1 and κ3 remaining fixed [see points A and B labeled in
Fig. 5(b)]. Such a result gives the physical reason for the sizes
of the 3D localization structures in subspace (−x,−y,−z)
being changed from Fig. 4(a) to Fig. 4(b). Furthermore,
for fully understanding the influence of the phase-dependent
spatial interference on the 3D localization precision, we plot
the visibility V versus the wave vector κ5 and the phase
shift η at expected position [i.e., (x,y,z) = (0.5,0.5,0.5) and

(x,y,z) = (−0.3,−0.3,−0.35)] as shown in Figs. 5(c) and
5(d). From Fig. 5(c), we can find that the values of the visibility
in subspace (x,y,z) remain almost unchanged with (η,κ5)
being changed from (η,κ5) = (0,κ) to (η,κ5) = (π/2,0.85κ)
[see points A and B labeled in Fig. 5(c)]. That is, if we only
adjust the values of the wave vector κ5 and the phase shift η

but with keep all other parameters fixed, the atom will still
be localized in subspace (x,y,z), and the precision of the
3D localization will be almost not changed. Based on the
distribution of the visibility shown in Fig. 5(c), the results
about the population distribution in subspace (x,y,z) shown
in Figs. 4(b) and 4(c) can be also understood clearly. More
interestingly, when the expected position is tuned to (x,y,z) =
(−0.3,−0.3,−0.35) with keeping all other parameters being
same as Fig. 5(c), the atom will be localized in subspace
(−x,−y,−z), and it can be found from Fig. 5(d) that the
distribution of the visibility is similar to Fig. 5(b). In such case,
the visibility reaches its maximum value when (η,κ5) is tuned
to (η,κ5) = (π/2,0.85κ) [see point B labeled in Fig. 5(d)].
Thus, it is reasonable to achieve the high-precision 3D atom
localization in Fig. 4(c).

To obtain a better understanding of how the excited
population ne modifies the 3D atom localization behavior, we
draw plots of 3D conditional position probability distribution
versus the normalized position (κx,κy,κz) for three different
values of the excited population, as shown in Fig. 6. Figure 6
shows that the precision of the 3D atom localization depends
sensitively on the excited population ne. When ne is equal
to 0.355 with keeping all other parameters being same as

FIG. 4. The excited population ne = 0.4 as functions of (κx,κy,κz) in dependence on the phase shifts (ϕ,φ,η) of the standing-wave fields
with slightly different wavelengths. (a) (κ1,κ3,κ5) = (κ,κ,κ), (ϕ,φ,η) = (0,0,0); (b) (κ1,κ3,κ5) = (0.85κ,0.85κ,κ), (ϕ,φ,η) = (π/2,π/2,0);
(c) (κ1,κ3,κ5) = (0.85κ,0.85κ,0.85κ), (ϕ,φ,η) = (π/2,π/2,π/2). The wave vector κ has units of rad/nm. The other values of the parameters
are � = 3.6898 × 107 s−1, �32 = 1

27 �, �42 = 1
54 �, �s = 0.75�, �p = 0.01�, κ2 = κ4 = κ6 = κ , and 	 = 2.15�.
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FIG. 5. The visibility V as a function of (ϕ = φ,κ1 = κ3) for different situations with the units of the wave vectors κ1 and κ3 being
rad/nm. (a) (η,κ5) = (0,κ), (x,y,z) = (0.5,0.5,0.5); (b) (η,κ5) = (0,κ), (x,y,z) = (−0.3,−0.3,−0.35). The visibility V as functions of (η,κ5)
for different situations with the units of the wave vector κ5 being rad/nm. (c) (ϕ = φ,κ1 = κ3) = (π/2,0.85κ), (x,y,z) = (0.5,0.5,0.5); (d)
(ϕ = φ,κ1 = κ3) = (π/2,0.85κ), (x,y,z) = (−0.3,−0.3,−0.35). The other values of the parameters are � = 3.6898 × 107 s−1, �32 = 1

27 �,
�42 = 1

54 �, �s = 0.75�, �p = 0.01�, κ2 = κ4 = κ6 = κ , and 	 = 2.15�.

Fig. 4(c), it can be found from Fig. 6(a) that two ellipsoidal
shells with different sizes are situated in subspaces (x,y,z)
and (−x,−y,−z), respectively. As the excited population ne is
tuned to 0.385 with keeping all other parameters fixed, the
atoms are mainly distributed in subspace (x,y,z), and the
smaller ellipsoidal shell situated in subspace (−x,−y,−z)
disappears as shown in Fig. 6(b). Direct comparison in
Figs. 6(a) and 6(b) implies that the probability of finding the
atom at a particular position in 3D space is indeed increased
by a factor of two when the excited population ne increases
from 0.355 to 0.385. More interestingly, when the excited
population ne increases to 0.415, the atoms are completely
localized in subspace (x,y,z) with very small ellipsoidal
structure, as shown in Fig. 6(c). In this case, the high-precision
3D atom localization is indeed achieved, and the probability

of finding the atom within a cubic wavelength is significantly
improved by a factor of eight compared with Refs. [41,42].
Thus, the single-position information of the atom in 3D space
has been achieved in our present system.

IV. CONCLUSION

Before concluding, it should be noted that the present
study focuses only on the cold atomic system, and the
results of Doppler-broadening effects can be included by first
rewriting the corresponding detunings, i.e., 	1 = ω31 − ωs −
	a1 = ω32 − ωp − 	a1 and 	2 = ω41 − ωp − 	a2 = ω42 −
ωs − 	a2, with 	a1 ∼ κs,κp and 	a2 ∼ κp,κs the correspond-
ing additional broadening effects. Based on the experimental
values of the system parameters [46], one can readily check

FIG. 6. The 3D conditional position probability distribution as functions of (κx,κy,κz) for different values of the excited population ne

with the units of the wave vector κ being rad/nm. (a) ne = 0.355; (b) ne = 0.385; (c) ne = 0.415. The other values of the parameters are
� = 3.6898 × 107s−1, �32 = 1

27 �, �42 = 1
54 �, �s = 0.75�, �p = 0.01�, κ1 = κ3 = κ5 = 0.85κ , κ2 = κ4 = κ6 = κ , ϕ = φ = η = π/2, and

	 = 2.15�.
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that the additional broadening has a negligible influence on the
present results for the cold atomic system.

In conclusion, we analyzed in detail the behavior of 3D
atom localization via phase-sensitive spatial interference in a
double two-level atomic system. Due to the spatial-position-
dependent atom-field interaction, 3D atom localization can be
achieved by the measurement of the excited population ne. It
is clearly shown that the precision of 3D atom localization is
extremely sensitive to the detuning 	 of the relevant optical
fields and the phase shifts of the corresponding standing-wave
fields with slightly different wavelengths. The main advantage
of our proposed scheme is that we obtained single-position
information of the atom with high precision in 3D space,
and the probability of finding the atom in 3D space is
significantly improved by a factor of eight by adjusting the
excited population ne to ne = 0.415, which is originated from
the phase-sensitive spatial-interference effect induced by the

standing-wave fields and the probe field in the present system.
Finally, it is worth noting that our proposed scheme for
3D atom localization may be useful for the high-precision
measurement of the center-of-mass wave function of moving
atoms and atom lithography.
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