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Weak Langmuir optical turbulence in a fiber cavity
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We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a
highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent
dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is
responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states,
we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types
of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive
a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose
structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and
damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation
with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular
integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber
cavity experimental setup in which the theoretical predictions can be observed and studied.
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I. INTRODUCTION

The propagation of partially coherent nonlinear optical
waves is a subject of growing interest in different fields of
investigations, such as, e.g., supercontinuum (SC) generation
[1,2], rogue waves [3–6], shock waves [7–9], nonlinear
interferometry [10,11], or incoherent wave propagation in
homogeneous [12–16], discrete [17], multimode [18,19], and
single-mode fibers nearby the integrable limit [20–22]. From
a different perspective, optical cavities and lasers offer an
interesting experimental platform to study different regimes of
optical turbulence [12,23–37]. In particular, the phenomenon
of condensation of photons has been recently demonstrated in
optical microcavities [38], which raised important questions
such as the relation between lasing and condensation [39].
Light condensation is expected to be associated to the natural
thermalization of an optical wave in a nonlinear Kerr material.
This irreversible process of thermalization is described in
detail by the wave turbulence (WT) theory, which is inherently
a nonequilibrium theory formally based on irreversible kinetic
equations, as expressed by a H theorem of entropy growth
[40,41]. In particular, the WT formalism describes a process
of wave condensation that can occur in an incoherently pumped
passive optical cavity [42].

In this article, we show that optical cavities can exhibit
a turbulent regime of fundamental different nature than
that discussed above. In this respect, we first note that the
phenomenon of optical wave thermalization does not occur
systematically, in the sense that it can be inhibited by different
mechanisms, e.g., the presence of a nonlocal nonlinearity
[9,43] or the existence of additional invariants in generalized
one-dimensional (1D) nonlinear Schrödinger-type equations
(NLSE) [1,20,44,45]. Another mechanism responsible for a
breakdown of optical wave thermalization is related to the
causality condition underlying a noninstantaneous nonlinear

response of the medium. A typical example is provided by
the Raman effect in optical fibers. In this case, the turbulent
behavior of the random wave manifests itself in its spectral
dynamics: The incoherent wave self-organizes into spectral
incoherent solitons (SIS), i.e., incoherent solitons that cannot
be identified in the spatiotemporal domain but solely in the
spectral domain [46–51].

In this work, we consider a passive optical fiber ring cavity
pumped by an incoherent optical wave, whose coherence
time tc is much smaller than the round-trip time tc � tR
[42,52,53]. In this way, the optical beams from different cycles
are mutually incoherent with one another, which makes the
optical cavity nonresonant. As a consequence, the cavity is
no longer modeled by the Lugiato-Lefever equation [54,55].
The analysis reveals that the system exhibits, as a general
rule, a turbulent dynamics. The main difference with respect
to the previous works [42,53] is that we consider here a highly
incoherent pump wave, in such a way that the Raman effect can
no longer be neglected. The causality condition inherent to the
Raman response function fundamentally changes the nature of
the turbulent dynamics considered previously [42,53]. More
specifically, the analysis reveals that the turbulent behavior
is exclusively dominated by the Raman effect, whose kinetic
description is found to be formally analogous to that used to
describe weak Langmuir turbulence in plasmas [56–58] (also
see [59,60]).

It is important to note that, from a broader perspective,
Langmuir turbulence in the strongly nonlinear regime has been
the subject of a huge number of theoretical and experimental
studies [61,62], in particular in the original context of
hydrodynamics [62–65], or in controlled laboratory [66,67]
and space plasma experiments [68–70]. Furthermore, evidence
of cavitating Langmuir turbulence has been recently shown
to occur in natural Earth’s aurora driven by solar wind [71].
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Aside from preliminary experiments reported in [49], clear
experimental evidence of Langmuir turbulence is lacking so
far in nonlinear optics.

We discuss a formal analogy between the universal form of
the kinetic equation describing the weakly nonlinear regime
of Langmuir turbulence [58] and the kinetic equation derived
here to describe an incoherently pumped passive optical fiber
cavity. Indeed, we show that when the fiber ring cavity is
pumped by a strongly incoherent wave, the system exhibits a
turbulent dynamics which is described in detail by a mean-
field kinetic equation (MF-KE) accounting for the incoherent
pumping, the finesse of the cavity, the propagation losses and
the delayed nonlinearity. The direct formal analogy between
the weak Langmuir turbulence KE and the derived MF-KE
mainly relies on two factors: (i) the presence of the optical
incoherent pump excitation and the natural losses inherent
to an optical cavity configuration, (ii) the analogy between
molecular vibrations mediated by the optical Raman effect
and the excitations of ion-sound waves mediated by the decay
of plasma oscillations.

It is worth noting that, in spite of the formal analogy with
weak Langmuir turbulence, in the optical context discussed
here the nonlinear response function of the material is
constrained by the causality condition, so that the (Raman-
type) spectral gain function involved in the MF-KE exhibits
a long-range interaction in frequency space. In this way, the
analysis of the MF-KE reveals the existence of nonequilibrium
stationary turbulent states, whose balance among forcing,
damping, and nonlinearity can be either local or strongly
nonlocal in frequency space. More generally, the forced-
dissipative nature of the cavity system is responsible for a
large diversity of nonstationary turbulent behaviors, such as the
formation of a periodic pattern of continuous or discrete SISs,
as well as the formation of spectral singularities, i.e., incoher-
ent dispersive shock waves and incoherent spectral collapse
singular behaviors. We stress the fact that the simulations of the
stochastic NLSE describing the incoherent wave circulating
in the cavity have been found in quantitative agreement
with those of the MF-KE as well as the corresponding
singular integrodifferential reduction, without using adjustable
parameters. In the first part of the article we discuss an
ideal cavity configuration to provide a panoramic overview of
different regimes of the turbulent cavity dynamics. In order
to stimulate experiments, in the second part of the article
we consider a specific realistic fiber ring cavity system. We
finally note that this work can also shed new light on the
peculiar role that plays the Raman effect on the generation
of frequency combs in high-finesse optical microcavities [72–
76], a subject of current intense investigations in relation with
the important issue of the coherence properties of frequency
combs [77–81].

II. MODEL

We study the temporal dynamics of a partially coherent
wave that circulates in a passive optical fiber ring cavity
pumped by a highly incoherent wave. The propagation of the
optical wave in the fiber is known to be described by the

standard generalized NLSE model [51]

− i∂zψ(z,t) = d̂(∂t )ψ(z,t) + γ (1 + iτs∂t )ψ(z,t)

×
∫ +∞

−∞
R(t ′) |ψ(z,t − t ′)|2 dt ′ + iαψ(z,t),

(1)

where d̂(∂t ) = ∑
j�2

βj

j ! (i∂t )j is the linear dispersion oper-
ator accounting for the lowest-order (β2) and higher-order
dispersion effects, γ refers to the nonlinear coefficient, and
R(t) = (1 − fR)δ(t) + fRR(t) to the usual response function
accounting for the instantaneous Kerr effect and the nonin-
stantaneous Raman response R(t), which is constrained by the
causality condition R(t) = 0 for t < 0. The typical width of
R(t) denotes the nonlinear response time τR . Equation (1) also
describes self-steepening through the term proportional to τs∂t ,
which accounts for the dispersion of the nonlinearity [51]. We
remind that NLSE (1) conserves the “number of photons” N =∫ |ψ̃(ω,z)|2/(1 + τsω) dω, with ψ̃(ω,z) = 1

2π

∫
ψ(t,z)eiωtdt

[82].
The cavity is pumped by a statistically stationary inco-

herent optical wave, with correlation function 〈F (t)F ∗(t ′)〉 =
CF (t ′ − t), such that 〈F̃ (ω)F̃ ∗(ω′)〉 = δ(ω − ω′)SF (ω), with
the power spectral density SF (ω) = C̃F (ω), [F̃ (ω) =

1
2π

∫
F (t)eiωtdt]. Note that, here and below throughout the pa-

per, the brackets 〈. . .〉 denote an averaging over the realizations
of the stochastic function F (t). We denote by tc the coherence
time (i.e., the width of CF ) and by PF = CF (0) the average
pump power. We denote by Fm(t) the pump injected at mth
round trip at time t − mtR . We assume that the coherence time
of the incoherent pump is much smaller than the round-trip
time tc � tR , so that 〈F̃m(ω)F̃ ∗

m′(ω′)〉 = δ(ω − ω′)δK
mm′SF (ω),

δK
m,m′ denoting the Kronecker symbol. As discussed in previous

works [52,53], the passive cavity does not operate as a
resonant “phase-sensitive interferometer” [54,55,83–88], and
the temporal modes of the cavity do not play any key role in
the dynamics of the incoherent wave. The wave circulating in
the cavity and the pump wave are thus mutually incoherent
with each other, and the boundary conditions are not sensitive
to the random relative phase among them:

ψm+1(z = 0,t) = √
ρ ψm(z = L,t) +

√
θ Fm(t), (2)

where ψm(z,t) denotes the intracavity optical field after m

round trips (0 � z � L), while ρ and θ , respectively, refer
to the reflection and transmission coefficients of the field
intensity ρ + θ = 1. Note that the boundary conditions (2)
differ from those employed to derive the mean-field Lugiato-
Lefever model [54,55], where the coherent phase shift gives
an additional parameter, namely the detuning, which critically
affects the intracavity field dynamics. In contrast, in the
incoherent case, only the finesse of the cavity is left to play an
important role, F = 2π/, where  = θ + 2αL denotes the
effective amount of losses per round trip. The cavity finesse
is related to the time required to fill an initially empty cavity,
the so-called “injection time” or average lifetime that a photon
spends in the cavity, τph = tR/. Once the cavity is filled,
the average power of the intracavity optical wave reaches a
stationary value, a feature that will become apparent through
Eq. (15).
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III. MEAN-FIELD KINETIC EQUATION

In this section, we combine the KE that describes the
evolution of the spectrum of the optical wave in the fiber (0 �
z � L) with the cavity boundary conditions (2) so as to derive
the MF-KE describing the turbulent system. In the first step,
we ignore the cavity boundary conditions, i.e., we consider the
propagation of the optical field through the fiber at the round
trip m [ψm(z,t), 0 � z � L]. A fundamental assumption of the
wave turbulence theory used to derive the KE is that the random
optical wave evolves in the weakly nonlinear regime, i.e., the
highly incoherent regime in which linear dispersive effects
dominate nonlinear effects [12,40,41], tc � τ0, where tc is the
coherence time of the incoherent wave, and τ0 = √|β2|L0/2 is
the “healing time,” L0 = 1/(γPF ) being the nonlinear length.
Notice that the healing time denotes the time scale for which
linear and nonlinear effects are of the same order, e.g., the
typical time period of modulational instability [12]. In this
weakly nonlinear regime, the statistics of the random wave
results essentially Gaussian [12,40,41,46,47,89], which allows
one to achieve a closure of the hierarchy of moments equations.
Starting from the NLSE (1), one obtains a KE governing
the evolution of the averaged spectrum of the incoherent
wave 〈ψ̃m(z,ω + �/2)ψ̃∗

m(z,ω − �/2)〉 = nm(z,ω) δ(�) for
0 � z � L:

∂znm(z,ω) = γ̄

π
nm(z,ω)

∫
G(ω,ω′)nm(z,ω′) dω′

− 2αnm(z,ω), (3)

where G(ω,ω′) = (1 + τsω)g(ω − ω′), γ̄ = fRγ , and g(ω) =
Im[R̃(ω)] is the imaginary part of the Fourier transform of
R(t), which will be denoted as “spectral gain function” in
the following [50]. In the limit α = 0, Eq. (3) conserves the
averaged number of photons N̂m = ∫

nm(z,ω)/(1 + τsω)dω

over the round trip. Note that the KE (3) accounts for
nonlinear dispersive effects (self-steepening), but not for linear
dispersion effects, although linear dispersion plays a key role
in the establishment of the weakly nonlinear regime [12].

This means that the KE does not depend on the sign of
the dispersion coefficient (normal or anomalous dispersion
regime) and thus does not describe coherent soliton states.
Note that the fact that the generation of a coherent soliton
is quenched by the strong randomness of the incoherent
wave in the weakly nonlinear regime (tc � τ0) has been
already studied in different cases [90–92], in particular through
supercontinuum generation [12,93].

It is also important to remark that the instantaneous Kerr
nonlinearity does not enter the KE (3). Indeed, the conservative
four-wave interaction is known to achieve a closure of the
hierarchy of moment equations at the second order in the
perturbation expansion procedure inherent to the WT theory
[12]: To next order, the instantaneous Kerr nonlinearity
coupled to higher-order dispersion leads to a collision term
that describes, e.g., supercontinuum generation through optical
wave thermalization [12]. We anticipate that the theory will be
validated by the simulations, as revealed by the quantitative
agreement obtained between NLSE and MF-KE simulations.

Let us now consider the boundary conditions of the passive
cavity. Taking the Fourier transform of Eq. (2) and neglecting
the correlations between the incoherent intracavity field and

the incoherent pump field, we have

nm+1(z = 0,ω) = ρ nm(z = L,ω) + θ SF (ω), (4)

where the averaged spectrum SF (ω) of the pump field, such that
〈F̃m(ω + �/2) F̃ ∗

m(ω − �/2)〉 = SF (ω)δ(�), is independent
of the round trip m. Also, note that the averaged pump power
is given by PF = ∫

SF (ω)dω.
In order to derive the MF-KE, we need to assume that

the averaged spectrum of the wave nm(ω,z) exhibits a slow
variation within a single round trip. As defined above, the
averaged spectrum denotes an average over the realizations of
the injected stochastic pump wave. We note that, contrary
to the usual mean-field approach underlying the Lugiato-
Lefever equation [54,55], here we do not assume that the
field amplitude ψm(t,z) exhibits a slow variation within a
round trip; the individual fluctuations of the incoherent wave
ψm(t,z) exhibit rapid variations with a time correlation much
smaller than the round-trip time tc � tR (or, equivalently,
the correlation length λc is much smaller than the cavity
length λc � L). It is important to note that, whenever one
considers the high-finesse cavity regime θ � 1, αL � 1,
then the assumption that the averaged spectrum exhibits slow
variations within a round trip is automatically satisfied because
we are considering the weakly nonlinear regime of interaction
tc � τ0. The evolution of the kinetic equation (3) can then
be averaged over a round trip by introducing the slow time
derivative of the averaged spectrum ∂T ñ(T ,ω) = [nm+1(z =
0,ω) − nm(z = 0,ω)]/tR , where T = mtR = mL/vg , vg being
the group velocity of the optical field in the fiber. In this way,
we obtain the MF-KE

tR ∂T ñ(T ,ω) = γ̄ L

π
ñ(T ,ω)

∫
G(ω,ω′)ñ(T ,ω′) dω′

+ θ SF (ω) −  ñ(T ,ω), (5)

where  = θ + 1 − exp(−2αL) 	 θ + 2αL for αL � 1.
This MF-KE (5) provides a mean-field description (θ �
1, αL � 1) of the evolution of the averaged spectrum of
the incoherent wave under the influence of the nonlinear
interaction, the incoherent pumping, and both the cavity losses
and the propagation losses. It describes the turbulent dynamics
of the cavity with the following hierarchy of the relevant time
scales tc � τ0 � tR . It is important to note that, because of
the presence of the forcing and dissipative nature of the cavity,
the MF-KE appears as the temporal counterpart of the weak
Langmuir turbulence KE used to describe isothermal plasma
in the presence of heavily damped ion-sound waves in the
spatial domain [57,58].

IV. STATIONARY STATES

We start our study by considering the existence of turbulent
regimes that are characterized by a stationary averaged
spectrum, i.e., we look for the existence of stationary solutions
to the MF-KE (5). We anticipate that the nonequilibrium
stationary solution results from a balance (either local or
nonlocal in frequency space), between forcing, damping, and
nonlinearity, so that their structure differs from the celebrated
Kolmogorov-Zakharov spectra of turbulence, which are es-
tablished in the inertial (conservative) regime of interaction
[40,41].
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The stationary solutions extend in frequency space over a
spectral bandwidth much larger than the typical bandwidth
of the spectral gain function g(ω). The behavior of the tails
of g(ω) are then expected to play a key role in the form of
the stationary solution of the MF-KE. In this respect, we
remind that because of the causality property of R(t), the
gain function g(ω) always decays algebraically at infinity,
e.g., ∼1/ω3 for a damped harmonic oscillator, ∼1/ω for
an exponential response. Such a long-range interaction in
frequency space introduces singularities into the convolution
operator of the MF-KE (5), Mω(T ) = ∫

g(ω − u)ñu(T ) du,
which can be properly addressed by using the Hilbert operator
Hf (ω) = π−1P

∫ +∞
−∞

f (ω−u)
u

du, where P denotes the Cauchy
principal value. It was shown in Ref. [7] that the convolution
operator is dominated by the behavior of the response function
R(t) near the origin t = 0.

More specifically, it was shown in the Supplemental
Material of Ref. [7] that the convolution operator can be written
in the following form without approximations:

Mω(T ) = −τ−1
R πR̄(0)Hñω(T ) + τ−2

R πR̄(1)(0)∂ωñω(T )

+ 1

2
τ−3
R πR̄(2)(0)H∂2

ωñω(T )

+ τ−4
R

∫ ∞

0

[
∂3
ωñω+ u

τR
+ ∂3

ωñω− u
τR

]
G(u)du, (6)

where we have defined for u > 0: G(u) = − 1
2

∫ ∞
u

[g( v
τR

) +
R̄(0)

v
− R̄(2)(0)

v3 ](v − u)2dv, and R̄(t) is a smooth function de-
fined by R(t) = τ−1

R R̄(t/τR)H (t), R̄(n)(0) denoting the nth
derivative at t = 0 and H (t) the Heaviside function. It is
important to note that the expression (6) is exact and provides
an expansion of the convolution operator Mω(T ) in powers of
1/τR , without particular stringent assumptions on the specific
form of the response function R(t).

In the following, we will consider two different repre-
sentative examples of response functions, either continuous
or discontinuous at the origin, so as to illustrate qualitative
different behaviors of the stationary turbulent solutions of
the cavity. Note that, for simplicity, we will neglect in the
following the impact of the self-steepening term, which simply
introduces a multiplicative prefactor 1 + τsω that plays a
marginal role whenever the spectrum of the intracavity field
evolves far from −1/τs .

A. Continuous response function

We illustrate the case of a continuous response function by
considering the important example of the Raman-type damped
harmonic response function [51]

R(t) = H (t)
1 + η2

ητR

sin

(
ηt

τR

)
exp

(
− t

τR

)
. (7)

This function being continuous at t = 0, the first term in the
expansion of the convolution operator (6) vanishes. On the
other hand, the higher-order singular dispersive term [third
term in (6)] can be neglected in the stationary turbulent
regime considered in this section, while it plays a key role
in the nonstationary regimes discussed below. Accordingly,
the stationary solution of MF-KE (5), nst

ω, that varies slowly

ω (units of τ
0
-1)

-80 -40 0

n
ωst

0

0.2

ω (units of τ
0
-1)

-80 -40 0

n
ωst

0

0.2

ω (units of τ
0
-1)

-100 -50 0

n
ωst

0

1

ω (units of τ
0
-1)

-100 -50 0

n
ωst

0

1
(c)

(a) (b)

−Ωd −Ωd

(d)

−Ωc/
√

5 −Ωc/
√

5

FIG. 1. Turbulent regimes characterized by a statistical stationary
solution of the MF-KE (5). For a continuous (Raman-type) response
function, the stationary solution is given by (9) (red line, with
c = 1/

√
5) (a), (b); while for a discontinuous (exponential-like)

discontinuous response function, the stationary solution is given by
(14) (red line) (c), (d). The stationary solutions are unstable, as
revealed by the numerical simulations of the the MF-KE (5) (blue
line), z = 50 (a), (c); z = 400 (b), (d).

compared to 1/τR , is solution of the following reduced
equation:

�c

N2
c

nst
ω∂ωnst

ω + �c

2
S̃F (ω) − 1

Nc

nst
ω = 0, (8)

where we have introduced the characteristic frequency
�c =

√
2(1 + η2)θγ̄ PF L/(τR), and characteristic spectral

amplitude Nc = τR

√
2θPF /[(1 + η2)γ̄ L], while S̃F (ω) =

SF (ω)/PF . We are looking for a stationary solution nst
ω on a

frequency interval that excludes the pump spectrum S̃F (ω), i.e.,
ω � −σF , where σF denotes the typical spectral bandwidth of
the pump wave. Then, assuming �c/σF � 1 and τR�c � 1
(which is a condition independent of τR), the stationary
solution reads as

nst
ω = Nc

(
ω

�c

+ c

)
(9)

in the bulk spectrum away from the source S̃F (ω), i.e., for
−c�c � ω � −σF [see Fig. 1(a)]. Note that the constant of
integration c can be chosen in such a way that nst

ω matches with
the pump source nearby ω ∼ 0. This stationary solution results
from a balance between the (Burgers) derivative operator and
the losses, which are uniformly distributed in frequency space.

B. Discontinuous response function

Let us now consider the case of a discontinuous response
function, which we illustrate with the familiar example of a
purely exponential decay of the response

R(t) = H (t) exp(−t/τR)/τR. (10)

The discontinuity at t = 0 completely changes the form of the
stationary solution. According to the dominant singular term
in the expansion of the convolution operator (6), we obtain the
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following reduced form of the stationary MF-KE:

− 1

N2
d

nst
ωHnst

ω + π�d

2
S̃F (ω) − 1

Nd

nst
ω = 0, (11)

where we have introduced the characteristic frequency �d =
2θγ̄ LPF /(πτR2) and spectral amplitude Nd = τR/(γ̄ L).
We assume again that the pump spectrum SF (ω) is localized
over a narrow frequency band at ω = 0 and look for a stationary
solution on some interval (−�,0), with � � σF . We first
note that, since nst

ω > 0 for ω ∈ (−�,0), the Hilbert transform
qω = Hnst

ω satisfies

qω = −Nd for ω ∈ (−�,0). (12)

Second, using the Poincaré-Bertrand identity 2H(fHf ) =
(Hf )2 − f 2, and nst

ω = −Hqω, we find that qω satisfies

(Hqω)2 = q2
ω − πN2

d �dHS̃F (ω) + 2Ndqω. (13)

Since Hqω = −nst
ω � 0, we have nst

ω = [q2
ω −

πN2
d �d HS̃F (ω) + 2Ndqω]1/2. To pursue the analysis, we

approximate the normalized pump spectrum by S̃F (ω) = δ(ω),
so that HS̃(ω) = 1/(πω). Therefore, for ω ∈ (−�,0), we
obtain nst

ω = Nd (−1 − �d/ω)1/2. This solution should be
continuous away from the source, so this imposes � = �d

and therefore the stationary solution reads as

nst
ω = Nd

√
−1 − �d

ω
for ω ∈ (−�d,0). (14)

We can check that this solution indeed satisfies
∫ 0
−�d

nst
ωdω =

πNd�d/2, as expected by integrating (11) with respect to ω.
An illustrative plot of the stationary solution (14) is reported
in Fig. 1(b).

We remind that the stationary solution (14) of the MF-KE
results from a balance between the forcing, the dominant
nonlinear singular term of the convolution operator, and the
losses distributed uniformly in frequency space. Contrary
to the previous case of continuous response function where
such a balance is achieved “locally” in frequency space as
a result of the local property of the (Burgers) derivative
operator, here the Hilbert operator is inherently nonlocal,
so that the balance among forcing, nonlinearity, and losses
results strongly delocalized in frequency space. As already
commented, these nonequilibrium stationary solutions are of
different nature than the Kolmogorov-Zakharov spectra of
turbulence, which are solutions of the cubic nonlinear collision
term of the kinetic equation in the inertial regime of interaction
[40,41]. In particular, the stationary solutions discussed in this
section are not characterized by a constant flux of particles (or
energy) in frequency space.

In the next section, we study the turbulent dynamics of
the cavity by means of numerical simulations considering the
natural experimental configuration where the cavity is initially
empty and gets gradually filled by the injected incoherent
pump wave. We note in this respect that numerical simulations
performed by starting from the stationary solutions indicate
that they are unstable, even in the absence of an additional
perturbation (see Fig. 1). This is due to the fact that the
stationary solutions refer to exact solutions of the stationary
MF-KE in the “bulk spectrum,” i.e., far away from the
frequency band that supports the pump source ω ∈ [−σF ,σF ].

Accordingly, the stationary solutions do not account for the
specific form of the pump spectral shape, i.e., they do not match
with the specific details of SF (ω). This introduces a weak
perturbation in the system, which is sufficient to destabilize
the stationary solutions. This aspect has been also confirmed
by remarking that stationary solutions featured by large values
of �c and �d result more robust numerically, a feature which is
consistent with the fact that such solutions are less sensitive to
the details of the pump spectrum. We will see in the next
section that, instead of the stationary solutions, the cavity
develops a large diversity of nonstationary turbulent behaviors
characterized by the emergence of spectral incoherent solitons
or spectral singularities.

V. HIGH-FINESSE CAVITY CONFIGURATION

In this section, we consider an “ideal cavity configuration,”
in the sense that the finesse of the incoherently pumped cavity
is deliberately enhanced in order to freely explore the large
variety of turbulent regimes of the cavity. It is in this regime
that the cavity deeply influences the turbulent dynamics, in
the sense that the photon lifetime (τph) is larger than all other
relevant time scales; it is larger than the time required for the
formation of the pattern of SISs, or the time required for the
development of spectral shock and collapse singularities. In the
following, we compare in a systematic fashion the simulations
of the incoherently pumped passive cavity based on the NLSE
with those based on the MF-KE. Notice that all results of NLSE
simulations reported below refer to a single simulation: no
averaging over different simulations has been performed, while
we implicitly perform an averaging over different realizations
of the pump source since Fm(t) is generated independently
at each round trip (see Sec. II). We study different turbulent
regimes depending on the relative importance of the response
time of the nonlinearity and the healing time, with τR � tR ,
τ0 � tR .

The NLSE simulations are performed by integrating Eq. (1)
for the field ψm(z,t) from z = 0 to L, while ψm+1(z = 0,t)
is computed by applying the boundary conditions given
by the cavity map (2) at each round trip. The incoherent
pump spectrum is assumed to be Gaussian shaped, SF (ω) ∼
exp[−ω2/(2σ 2

F )]. For convenience, we normalized the prob-
lem with respect to the pump power PF , the nonlinear length
L0, the nonlinear time T0 = L0/vg , and the healing time
τ0 [12]. The dimensionless variables are obtained through
the transformations z/L0 → z, ψ/

√
PF → ψ , F/

√
PF → F ,

αL0 → α, L/L0 → L, t/τ0 → t , and T/T0 → T = mL/L0,
where we remind that m denotes the number of round trips.
Also note that a constant noise background has been added in
the simulations. Such a spectral noise is important in order to
sustain a steady incoherent soliton propagation [12], otherwise
the SIS undergoes a slow adiabatic reshaping so as to adapt
its shape to the local value of the noise background. This
noise background can also simulate the presence of a quantum
noise background. The amount of noise background is defined
from the ratio, say μ = Pn/PF , between the background noise
power (Pn) and the average power of the injected pump wave
(PF ). In the following, otherwise stated, we have considered
the typical of μ 	 5.1 × 10−7, which is of the order of the
quantum noise background level.
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A. Formation of a spectral pattern of SISs

We start the simulations by investigating the possibility
to generate SISs in the incoherently pumped passive cavity.
For this purpose, we consider a spectral bandwidth of the
incoherent pump σF of the same order as the corresponding
bandwidth of the spectral gain function σF ∼ �ωg ∼ 1/τR .
The response function implemented in the simulations refers
to the Raman-type damped harmonic oscillator given in
Eq. (7). In the following, we will always consider the natural
experimental configuration in which the cavity is initially
empty, while the incoherent pump progressively fills the cavity
in time. The cavity is characterized by a length L = 5L0, while
the amount of losses (αL = 10−3) has been chosen in such a
way to enhance the cavity finesse, so that the intracavity power
reached in the stationary regime is of the same order as the
injected pump power. Note that concrete experimental values
of the normalized parameters used in the simulations reported
in this section are discussed in detail in Sec. VI. For instance,
the simulations reported in Figs. 2 and 3 typically correspond
to the experimental parameters given through the first line of
Fig. 7 in Sec. VI.

The simulations reveal that the intracavity field exhibits
a turbulent dynamics characterized by statistically stationary
fluctuations. The cavity is filled according to the solution of
MF-KE for N̂ (T ) = ∫

ñ(T ,ω)/(1 + τsω)dω: The “number of

FIG. 2. Spectral pattern formation of SISs: temporal evolution
of the spectrum of the intracavity turbulent optical field obtained
by solving the NLSE with boundary conditions (1) and (2) (a), and
the MF-KE (5) (b). (c) Corresponding evolutions of the intracavity
power N (T ) = ∫

ñ(T ,ω)dω: NLSE (1) and (2) (solid blue), MF-
KE (5) (dashed red). Corresponding power corrected by the self-
steepening factor N̂ (T ) = ∫

n̂(T ,ω)dω (solid black), which relaxes
toward a stationary state as predicted by Eq. (15): N̂ st = θ


P̂F 	 0.83.

Parameters: L = 5L0 is the total length of the cavity, η = 1,τR =
0.2 in the response function, pump spectral bandwidth σF = 2π ,
losses αL = 10−3, fR = 0.18, τs = 1/280, sign(β2) > 0. Note that
the typical SIS spectral width is given by the bandwidth of the spectral
gain function �ωg , so that the spectral interval among adjacent SISs
in (a) and (b) is much larger than �ωg , i.e., �ωpatt � �ωg .

FIG. 3. Spectral pattern formation of SISs: temporal evolution
of the spectrum of the intracavity turbulent optical field obtained
by solving the NLSE (1) and (2) (a), and the MF-KE (5) (b).
(c) Corresponding evolutions of the intracavity power N (T ) =∫

ñ(T ,ω)dω: NLSE (1) and (2) (solid blue), MF-KE (5) (dashed
red). Corresponding power corrected by the self-steepening factor
N̂ (T ) = ∫

n̂(T ,ω)dω (solid black), which relaxes toward a stationary
state as predicted by Eq. (15), N̂ st = θ


P̂F = 0.83. Parameters are the

same as in Fig. 2, except that η = 2.6, which entails a larger velocity
of the soliton in frequency space (note that the frequency windows
are different for Figs. 2 and 3).

photons” evolves according to

N̂ (T ) = θ



[
1 − exp

(
− T

tR

)] ∫
SF (ω)

1 + τsω
dω. (15)

This means that it relaxes exponentially, with the characteristic
photon lifetime τph = tR/, toward the stationary state N̂ st =
θP̂F /, with P̂F = ∫

SF (ω)
1+τsω

dω. This prediction is confirmed
by the numerical simulations, as illustrated in Fig. 2(c).

The main result revealed by the simulations is the formation
of a spectral pattern of almost regularly spaced SISs. This is
remarkably illustrated in Figs. 2(a) and 2(b), which reports
the temporal evolution of the spectrum of the turbulent field
starting from an empty cavity.

In a first stage, due to the high cavity finesse, a small
amount of the incoherent pump enters the cavity, so that
the system evolves in the linear regime. Once the intracavity
pump intensity becomes large enough, the nonlinear regime
leads to the generation of a SIS, which propagates in the
spectral domain toward the low-frequency components. As
a consequence, the frequency interval of incoherent pump
excitation ω ∈ [−σF ,σF ] results to be cleared out by the
emission of the SIS. In this way, the process can start again: The
intracavity pump is regenerated and once its intensity becomes
large enough, a second SIS is emitted and is red-shifted away
from the pump frequency band, and so on the process is
repeated, thus leading to the formation of a regular spectral
pattern of SISs, as evidenced in Figs. 2(a) and 2(b). The
resulting spectral pattern of SISs then spans several orders
of the resonant Raman frequency shift. The cavity losses
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combined with the self-steepening effect lead to a slowdown
of the most spectrally shifted SISs. Actually, the spectral
bandwidth of the pattern of SISs is essentially limited by the
finesse of the cavity F = 2π/.

One may wonder whether the spectral pattern of SIS
reported here can be explained by a mechanism of cascaded
Raman scattering, a well-known process that has been widely
studied in both single-pass propagation [94,95], or in cavity
systems, e.g., in cw fiber lasers [96], in mode-locked fiber
lasers [97], or in passive micro-resonators [98,99]. Cascaded
Raman scattering refers to the generation of several Stokes
orders, the first order subsequently leading to the generation
of the second order, which in turn generates the third one,
and so on several orders are generated in cascade. In this
way, the different Stokes bands have fixed frequencies in
the spectrum, and adjacent bands are separated one from
each other by the Raman resonant frequency (�ωg 	 13.2
THz in conventional silica fibers). These properties contrast
with the spectral pattern of SIS discussed here since (i)
each individual band is itself continuously frequency shifted
during the temporal evolution, and (ii) the frequency separation
among adjacent bands is much larger than the Raman resonant
frequency �ωpatt � �ωg [see Fig. 2(a)]. These fundamental
differences with cascaded Raman scattering are not surprising
since, as explained here above, in our system the mechanism
underlying the formation of the spectral pattern of incoherent
frequency bands is based on the emission of SISs from the
injected incoherent pump. In other words, the different bands
in our spectral pattern do not correspond to different Stokes
orders, but to the successive emission of different SISs from
the injected incoherent pump. As a consequence, it is difficult
to assess even qualitatively the frequency separation among
adjacent SISs since such a shift is related to the processes
of SIS emission and pump regeneration in the cavity (which
obviously depends on the cavity length and finesse).

Also note that the frequency shift of a SIS is very different
from the well-known soliton self-frequency shift due to intra-
pulse Raman scattering [51] since this effect is fundamentally
related to the propagation of a coherent soliton pulse. In
contrast, there is no pulse confinement in the temporal domain
here since we deal with an incoherent wave characterized by
fluctuations that are statistically stationary in time.

A continuous SIS is known to become unstable under
certain conditions, and can thus relax during the propagation
toward a discrete SIS [49]. Indeed, depending on different
key parameters, such as e.g., the spectral bandwidth of the
pump, the amount of noise background, or the structure of the
response function g(ω), the cavity system can self-organize
into a spectral pattern of discrete SISs, as illustrated in Fig. 3.
The discrete SIS is characterized by three incoherent spectral
bands equally spaced by the Raman frequency: a new Raman
band grows up by absorbing the previously generated spectral
band, thus leading to a “discrete propagation” of the discrete
SIS in frequency space. As for continuous SISs, the cavity
finesse also delimits the spectral bandwidth of the generated
spectral pattern of discrete SIS.

We also verified by NLSE simulations that perturbative
higher-order dispersion effects do not affect the spectral
dynamics of the incoherent wave, in agreement with the
theory. Notice the remarkable agreement between numerical

simulations of the NLSE (1) with boundary conditions (2), and
the simulations of the MF-KE (5), without using adjustable
parameters.

B. Incoherent spectral singularities

In the previous section we discussed the turbulent regime
of the cavity when the spectral bandwidth of the incoherent
pump is of the same order as the bandwidth of the spectral gain
function g(ω). Let us now consider the regime in which the
pump spectral bandwidth is increased in a significant way
σF � �ωg ∼ 1/τR . The cavity then enters a qualitatively
different turbulent regime. As already discussed above in
Sec. IV through the analysis of the stationary solutions, in
this “long-range regime” the behavior of the tails of the
gain spectrum g(ω) plays an important role in the spectral
dynamics. We anticipate that the cavity will be shown to
exhibit a turbulent dynamics featured by the formation of
spectral singularites, whose structures are described in detail
by the expansion of the convolution operator Mω given in
Eq. (6). Proceeding as in Sec. IV, we will consider two different
examples of continuous and discontinuous response functions
to illustrate different forms of spectral singularities. We will
also neglect the impact of the self-steepening term since the
spectral dynamics of the cavity will be shown to evolve far
away from −1/τs , as will be confirmed by the numerical
simulations reported in Figs. 4 and 5.

1. Continuous response function: Spectral shock wave

We first consider the Raman-type response function to
illustrate the example of the continuous response function.

FIG. 4. Development of dispersive spectral incoherent shock
waves (with continuous response function): (a)–(d) Temporal evolu-
tion of the spectrum of the intracavity turbulent optical field obtained
by solving the NLSE (1) and (2) (gray line), the MF-KE (5) (dashed
red line), the singular integrodifferential MF-KE (16) (dashed green
line). (e) Corresponding evolutions of the intracavity power N (T ) =∫

ñ(T ,ω)dω: the cavity develops the shock well before reaching the
stationary steady state (15), τshock � τph. Parameters: L = 20L0 is the
total length of the cavity, η = 1,τR = 2τ0 in the response function,
pump spectral bandwidth σF = 4π , losses αL = 10−3, fR = 0.18.
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FIG. 5. Development of spectral collapse singularity (with dis-
continuous response function): temporal evolution of the spectrum
of the intracavity turbulent optical field obtained by solving the
NLSE (1) and (2) (gray line), the MF-KE (5) (dashed red line),
the singular integrodifferential MF-KE (17) (dashed green line).
The inset shows the corresponding evolutions of the intracavity
power N (T ) = ∫

ñ(T ,ω)dω: the cavity develops the collapse before
it reaches the statistical stationary regime τcoll � τph. Parameters:
L = 20L0 is the total length of the cavity, pump spectral bandwidth
σF = 6π , τR = 3τ0, η = 1, losses αL = 10−3, fR = 0.18.

On the basis of the expansion of the convolution operator
discussed through Eq. (6), the MF-KE for the averaged spectral
dynamics ñω(T ) takes the form

tR ∂T ñω = γ̄ L(1 + η2)

τ 2
R

(
ñω∂ωñω − 1

τR

ñωH∂2
ωñω

)

+ θ SF (ω) −  ñω. (16)

The leading-order Burgers term in (16) is responsible for the
development of a gradient catastrophe, which is subsequently
regularized by the nonlinear dispersive term involving the
Hilbert operator [7]. This prediction is confirmed by numerical
simulations of the NLSE (1) with boundary conditions (2),
which have been found in quantitative agreement with the
MF-KE (5) and the reduced singular integrodifferential MF-
KE (16), as shown in Fig. 4. As discussed in detail in
[7], the dispersive shock wave reported here develops in
the spectral evolution of the incoherent wave. It is thus of
fundamental different nature than the conventional dispersive
shocks that develop either in the spatial or the temporal domain
from coherent disturbances, which have been experimentally
observed in ion-acoustic waves [100], water surface gravity
waves [101], and fiber optics [102], and have recently regained
great interest in optics [103–112]. Coherent dispersive shocks
and their stationary analogs have shown to play a role also
in passive cavity configurations [113–115], where one can
envisage that they can impact the generation of combs in the
normal dispersion regime [116,117].

Note that, in the incoherent case examined here, the
incoherent shock singularity develops in the cavity well before
it reaches the statistically stationary steady state. In other

words, the characteristic shock time scale is much smaller
than the photon lifetime, τshock � τph, (see Fig. 4). This
is interesting when one reminds the fact that the rapidly
oscillating dispersive shock wave structure is known to reg-
ularize the shock singularity in a conservative (Hamiltonian)
system. Here, the dispersive shock wave develops far from
the statistical stationary regime, i.e., in the nonconservative
regime where the injected pump is still filling the cavity,
∂T N (T ) > 0.

2. Discontinuous response function: Spectral collapse

To illustrate the example of a discontinuous response
function, we consider a purely exponential decay given in (10).
The discontinuity at t = 0 completely changes the dynamics
[7], which is now dominated by a nonlinear singular term

tR ∂T ñω = γ̄ L

τR

(
− ñωHñω − 1

τR

ñω∂ωñω

+ 1

2τ 2
R

ñωH∂2
ωñω

)
+ θSF (ω) − ñω. (17)

The impact of the leading-order term in (17) was discussed
in detail in Ref. [7], in relation with an analytical solution
originally derived in [118]. It was shown that the spectrum
exhibits a collapselike behavior, while the spectral peak is
shifted toward the low-frequency components (ω < 0) with
a constant velocity. This general behavior is confirmed by
the numerical simulations of the turbulent cavity, although
the cavity operates far from the statistical stationary regime
in the presence of a significant forcing, i.e., the collapse
time is much smaller than the photon lifetime, τcoll � τph

[see the inset of Fig. 5 with ∂T N (T ) > 0]. Note again the
quantitative agreement between NLSE (1), MF-KE (5), and the
singular integrodifferential MF-KE (17), without adjustable
parameters.

VI. MODERATE-FINESSE CAVITY CONFIGURATION

A. Numerical results

Let us now discuss a more realistic fiber ring cavity
configuration characterized by a moderate finesse. A typical
experimental setup of the fiber ring cavity is reported in
Fig. 6. To be concrete, we considered here a cavity of length
L = 25 m, with fiber nonlinear coefficient γ = 2 W−1 km−1,
which operates in the anomalous dispersion regime β2 =
−10−26 s2/m at the carrier pump wavelength λp = 1550 nm
(193.5 THz). We remind here that in the strongly incoherent
(i.e., weakly nonlinear) regime, the sign of second-order
dispersion does not affect the turbulent dynamics, as discussed
above through the kinetic theory and the MF-KE. However,
we will see that the weakly nonlinear regime is not guaranteed
as the spectral bandwidth of the injected incoherent pump
is decreased, which can be responsible for the generation of
coherent soliton states. In order to increase the finesse of the
cavity, we considered in the simulations a coupler of efficiency
0.99, weak fiber losses 0.2 dB/km, as well as a strong (average)
pump power of PF = 100 W that enables a reduction of the
length of the cavity. Note that such a high-power source can be
implemented in practice by considering a cavity synchronously
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FIG. 6. Scheme of the fiber ring cavity experiment. The incoher-
ent source can be modulated in time so as to synchronously pump
the cavity with high-power incoherent long pulses. The polarization
controller can be used to get rid of fiber birefringence. A high-
efficiency coupler is inserted in the cavity to increase the finesse.
Numerical simulations of the NLSE reveal that the cavity generates
a spectral pattern of SISs.

pumped by incoherent long pulses. With these parameters
we have a typical cavity finesse of F 	 500. Simulations
of the NLSE include both the instantaneous and the delayed
contributions to the nonlinear response function, with the
usual Raman contribution fR = 0.18 and response function
R(t) = 1+η2

ητR
sin(ηt/τR) exp(−t/τR), with η = 2.6 and τR =

32 fs. Note that this expression refers to the usual expression of
the Raman response function in optical fibers with τR = 32 fs
and η = 2.6 (τ1 = τR/η = 12.2 fs) [51].

We report in Fig. 7 the results of the numerical simulations
of the NLSE (1) with boundary conditions (2). Because of
the large spectral bandwidth of Raman gain in optical fibers
(i.e., the small response time τR), the simulations reveal that
the cavity usually operates in the regime characterized by
the formation of a spectral pattern of SISs. The dynamics
of the cavity is reported for different values of the spectral
bandwidth of the incoherent pump, as illustrated by Fig. 7,
where the pump bandwidth is varied from 6.2 to 3.1 THz.
More specifically, for small spectral bandwidths, the generated
SISs exhibit a discrete behavior. Conversely, for larger spectral
bandwidths, the cavity initially tends to generate a pattern
of continuous SISs. However, each of the continuous SIS
subsequently decays toward a stable discrete SIS, in analogy
with a previous study of SIS emerging from a supercontinuum
spectrum [49].

It is also interesting to note that, by decreasing the pump
spectral bandwidth, linear and nonlinear effects can become
of the same order (tc ∼ τ0), so that the system no longer
evolves in the weakly nonlinear regime and the validity of
the theoretical kinetic approach becomes questionable. In the
anomalous dispersion regime considered here, this may lead

FIG. 7. Spectral dynamics obtained by simulations of NLSE
(1) (including the instantaneous Kerr effect fR = 0.18 and the
Raman response function η = 2.6) with boundary conditions (2)
(first column), corresponding MF-KE (5) (second column), for the
optical fiber ring cavity described in the text (see Fig. 6 and Sec. VI
for all parameters). The third column shows the intensity temporal
dynamics |ψ |2(t,T = 400T0), in a specific temporal window. The
incoherent cavity leads to the generation of a pattern of discrete SISs
with different spectral bandwidths of the incoherent pump: first line,
6.2 THz; second line, 3.1 THz. A quantitative agreement is obtained
between NLSE and MF-KE simulations without using adjustable
parameters. Note in particular that no coherent solitons are generated,
in contrast to Fig. 8.

to the generation of a coherent soliton. This is illustrated in
Fig. 8, which reports a simulation realized with the same
parameters as in Fig. 7, except that the spectral bandwidth
has been decreased down to 1.55 THz. We can note that
the system initially tends to generate a discrete SIS, as in
Fig. 7, however, at the time T 	 60T0, the first sideband of the
discrete SIS suddenly leads to the generation of a coherent
soliton, which is rapidly shifted toward the low-frequency
components. This becomes apparent in the corresponding
temporal intensity profile reported in Fig. 8(b), which shows
that a large-amplitude coherent soliton is generated. Note in
particular in Fig. 8(b) that most of the power of the incoherent
component is transferred to the coherent soliton component.
This energy transfer process is strongly favored by the Raman
effect, whose underlying spectral red-shift confers a large
momentum to the soliton.

FIG. 8. Spectral dynamics obtained by simulations of NLSE (1)
(including the instantaneous Kerr effect fR = 0.18 and the Raman
response function η = 2.6) with boundary conditions (2) (a), and
corresponding intensity temporal dynamics |ψ |2(t,T = 70T0) for the
optical fiber ring cavity described in the text (see Fig. 6 and Sec. VI
for all parameters). The only difference with respect to Fig. 7 is that
the spectral bandwidth of the incoherent pump has been decreased
to 1.55 THz. The evolution is characterized by the generation of a
coherent soliton at T 	 60T0 (see the text for discussion).
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B. Discussion

Let us consider the possible experimental realization of the
proposed concept. While basic elements and components are
readily available on the market, there are serious technical
challenges and limitations for experimental implementation.
First, we estimate the achievable finesse in the fiber-based
ring cavity. To do that we need to account for all types of
losses, such as splice losses, bending losses, and fiber coupler
intrinsic losses. The combined splice losses together with the
bending losses will amount to ∼0.2–0.25 dB per cavity round
trip. The fiber losses of 0.2 dB/km could be neglected for
25-m-long cavity. Insertion losses on fiber coupler together
with excess losses add approximately 0.25 dB. So, the best
achievable fiber-based cavity finesse is around 55. Minimizing
the number of splices between different types of fiber and
careful elimination of bending losses, one can potentially
bring the finesse value up to 100. Another limiting factor is
the bandwidth of the fiber-based coupler. Indeed, the typical
bandwidth of a wide-band fiber optical 99/1 coupler is no
more than 200 nm, which is 25 THz or just two Raman shifts
at 1550 nm. This means that only two first lobes could be
extracted from the cavity while further lobes will encompass
much lower cavity finesse, and then the further energy transfer
will be suppressed.

Limitations also arise from the available sources of stochas-
tic pulses used to pump the cavity. One needs to have pulses of
high peak power, of long duration, and of incoherent nature.
The availability of such sources is really limited. Ideally, the
cavity should be pumped synchronously, which means that for
a 25-m-long cavity, the pump pulse repetition rate is 8 MHz.
For such a short cavity and low finesse, the average power of
the incoherent pulse should be of the order of 100 W, which
may be obtained by considering a duration of the incoherent
pulse of ∼20–50 ns. A possible solution is to use Nd:YAG
Q-switched laser coupled into a fiber. Another possibility is
a semiconductor laser, such as VECSEL, however, achieving
the required parameters could prove more difficult in this case.

VII. CONCLUSION

We have shown that the Raman effect dominates the
turbulent dynamics of an optical fiber ring cavity pumped

by a strongly incoherent source. We have derived a MF-KE
that describes in detail the spectral evolution of the turbulent
dynamics, which revealed a variety of behaviors, such as
nonequilibrium stationary turbulent states of different nature
than those predicted by the standard wave turbulence theory,
the formation of spectral patterns of SISs, or the development
of incoherent dispersive shock waves and incoherent collapse
singularities. Note that, although dispersive shock waves are
known to regularize a gradient catastrophe in a conservative
physical system, here they have been shown to develop far
from the stationary behavior of the cavity in the presence
of forcing and damping (τshock � τph). Such a diversity of
turbulent behaviors has been reported in the ideal high-finesse
cavity configuration, while the formation of patterns of SISs
has been found as the natural regime of operation for moderate
cavity finesses. We have shown that there exists a formal
analogy between the derived MF-KE accounting for forcing
and damping effects inherent to the cavity configuration and
the universal form of the kinetic equation describing weak
Langmuir turbulence. The analysis reveals that the experi-
mental feasibility of the demonstration of weak Langmuir
optical turbulence in standard optical fiber cavities is not
immediate; while basic elements and components should be
readily available, the implementation of the whole experiment
involves serious technical challenges. On the other hand, the
exceptional high-finesse inherent to optical microresonators
[72] would offer the possibility to explore in a relatively simple
optical setting the whole richness of Langmuir turbulence
[58,61,62]. These types of experiments should also be of
interest for the important issue of the coherence properties
of frequency combs in microresonators, whose study is the
subject of a current vivid interest [77–81].
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