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Spectrally dependent fluctuations of thermal photon sources
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Many current quantum optical systems, such as microcavities, interact with thermal light through a small
number of widely separated modes. Previous theories for photon number fluctuations of thermal light have been
primarily limited to special cases that are appropriate for large volumes or distances, such as single modes, many
modes, or modes of uniform spectral distribution. Herein, a theory for the general case of spectrally dependent
photon number fluctuations is developed for thermal light. The error in variance of prior art is quantitatively
derived for an example cavity in the case where photon counting noise dominates. A method to reduce the spectral
impact of this variance is described.
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I. INTRODUCTION

The development of microcavities of dimensions compara-
ble to the wavelength of thermal light [1–5], as in coherent ther-
mal emission [3,5–10], narrowband thermal detection [1,4,11],
and cavity quantum electrodynamics [12–18], has opened an
entire class of devices whose thermal statistics cannot be
addressed by existing theory. Thermal light emitted into free
space generally interacts with an enormous spectral density of
modes. The photon number fluctuations of thermal emission
into each mode have Poisson and Bose-Einstein contributions,
but the latter average out when integrated over many modes,
leaving only standard Poisson statistics. Historically, since
almost all thermal emission occurred in systems with large
numbers of modes, it has not been important to have a
quantitative model of photon statistics for a small number;
however, the aforementioned experimental and theoretical
work in cavity micro- and nano-optics has greatly changed
this situation.

A microcavity can define an enormous variety of mode
distributions, and the strength of coupling between these
modes and free space can vary from mode to mode. An
analytical derivation of the thermal photon noise for the general
case of an arbitrary number of modes with an arbitrary spectral
distribution (determined by both the Planck distribution and
the mode coupling) has eluded scientists since the late 1950s
due to the complicated mathematics at hand [19–23]. We
propose and demonstrate using an expansion of the probability
density function to analytically find an exact general result
for thermal photon population fluctuations for any average
number of photons in any number of modes with any spectral
dependence. This method sidesteps many of the mathematical
complexities of previous treatments and produces a closed-
form result.

Thermal photons will have number fluctuations given by
the sum of Poisson and Bose-Einstein (BE) terms in single-
mode systems. The BE contribution will be reduced to zero
when integrated over many modes, resulting in only Poisson
statistics for most thermal light. If there are multiple modes
but the spectrum is completely uniform, then the variance
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in the number fluctuations can be given by the following
equation [19,24]:

〈(�n)2〉 = 〈n〉 + 〈n〉2

M
. (1)

In Eq. (1) n is the number of photons, 〈n〉 is the expected
number of photons, M is the number of modes, and 〈(�n)2〉
is the variance.

Following an algorithm developed previously [25] and in
the Appendix, the general probability density for thermal
photons is given by the following equation:

P (n) =
D∑

d=1

M∏
m=1

1

(1 + 〈nm〉)(1 + 〈nm〉−1)
nm,d

. (2)

In Eq. (2) and the rest of the paper the following variables
are defined: n is the number of photons; m indicates the mode
index; 〈nm〉 is the average number of photons in mode m; d
indicates the distribution index; P (n) denotes the probability
of having n photons given 〈nm〉; M is the total number of
modes; D is the total number of ways to distribute n photons
in M modes; nm,d denotes the number of photons in mode m

and distribution d; 〈n〉 is the average total number of photons;
〈(�n)2〉 is the variance in the total number of photons.

Note that n is a discrete random variable; in other words, for
n = 0, Eq. (2) computes the probability of having 0 photons
given the distribution 〈nm〉. The number of possible photon
distributions, D, is given by

D = (n + M − 1)!

n!(M − 1)!
. (3)

II. GENERAL SPECTRALLY DEPENDENT MODE
DISTRIBUTIONS

To find the variance of general spectrally dependent thermal
photon statistics, we first need to find an expression for the
mode distribution scaled to the total average photon number.
The scaled mode distribution in the general case can be
visualized in Fig. 1. Naturally, the sum of the average photon
number in each mode equals the total average photon number,
but it is convenient to normalize a scaled distribution to the
total average photon number such that the distribution is a
function of the total average photon number.
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FIG. 1. General spectrally dependent mode distributions; the
subscript s signifies that this distribution is scaled, and that the sum
does not equal the total average photon number.

The sum of the average photon number in the modal distri-
bution 〈nm〉 is equal to the expected number of photons,〈n〉 as
in the following equations:

〈n〉 =
M∑

m=1

〈nm〉 =
M∑

m=1

A〈nm〉s , (4)

A = 〈n〉∑M
m=1 〈nm〉s

, (5)

〈nm〉 = 〈n〉〈nm〉s∑M
m=1 〈nm〉s

. (6)

The scaling factor A in Eq. (4) scales the modal distribution
to a normalized value as in Eq. (6). Now that there is an
expression for the general mode distribution we can plug this
into Eq. (2) and solve for the probability of having 0 or 1
photon in the system:

P (0) =
M∏

m=1

1(
1 + 〈n〉〈nm〉s∑M

m=1 〈nm〉s
) , (7)

P (1) =
M∑

d=1

M∏
m=1

1(
1 + 〈n〉〈nm〉s∑M

m=1 〈nm〉s
)(

1 +
∑M

m=1 〈nm〉s
〈n〉〈nm〉s

)δm,d
, (8)

P (2) ∼= 1 − P (1) − P (0), (9)

P (n > 2) ∼= 0. (10)

These probabilities are accurate for average photon num-
bers much less than 1. However, notice that it is the scaling
factor that has forced the photon number to this low value.
We will later consider the limit as the average photon number
approaches zero to recover the analytical result, and then adjust
the scaling factor to show that it applies to all photon numbers,
low and high.

With the above probabilities, the variance in the signal can
be found for small expected photon numbers. Using standard
statistical techniques the variance is defined by the following
equation:

〈(�n)2〉 =
2∑

n=0

(n − 〈n〉)2P (n). (11)

From Eq. (1) it is reasoned that the variance must have
a lower limit defined by Poissonian statistics in the case of

infinite modes, and an upper limit defined by the sum of both
Poissonian and BE terms in the case of a single mode. It
follows then that the variance can be scaled and normalized
by the following equation to force the variance between the
limits of zero and 1:

〈(�n)2〉 = 〈(�n)2〉 − 〈n〉
〈n〉2 . (12)

From the normalized and scaled variance, finding the
limit as the average photon number goes to zero can now
be attempted. Solving the equation would be quite difficult;
instead a limit-based approach is presented whereby the
solution is found.

The first thing to notice is that in most cases where spectrally
dependent thermal photon noise will be critical, the number of
modes will be small. This is because in systems with large
numbers of modes the statistics will approach Poissonian
statistics, and the spectral dependence will become negligible.
Therefore, the number of modes, M , will be set to 1 and
the limit will be found. The number of modes will then be
increased and a new limit will be found. This will continue
until a fit is found for the limit as a function of the number of
modes. The limit of the normalized and scaled variance as the
average photon number goes to zero is found to be given by
the following equation:

Lim
〈n〉→0

[〈(�n)2〉] =
∑M

m=1 〈nm〉s2(∑M
m=1 〈nm〉s

)2 . (13)

Equation (13) was verified and confirmed with MATHEMAT-
ICA to be exactly correct for 1 � M � 36 modes for any photon
distribution 〈nm〉s with any photon occupancy greater than 0.
Systems with more than 36 modes could not be solved exactly,
but it is strongly implied that Eq. (13) is exactly correct for any
arbitrarily large number of modes. To verify this assumption
further, the limit can be solved numerically with some certain
defined spectra with more than 36 modes, and no spectra were
found that did not obey Eq. (13). More importantly Eq. (13)
is exactly correct for any photon occupancy, even when the
BE term dominates with an average photon occupancy greater
than 1.

Denormalization of the result in Eq. (13) can be completed
by substituting the result into Eq. (12) and solving for the
variance. Doing so results in the following general theory of
thermal photon statistics:

〈(�n)2〉 = 〈n〉 + 〈n〉2

∑M
m=1 〈nm〉s2(∑M
m=1 〈nm〉s

)2 . (14)

It can be shown that Eq. (14) reduces to the standard
estimation given in Eq. (1) for a uniform spectrum.

III. DISCUSSION

Equation (14) can be simplified further by noticing that a
physical mode distribution is actually just the scaled mode
distribution with a scaling factor equal to 1. In this case we
can simplify the general theory of thermal photon statistics as
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in the following equation:

〈(�n)2〉 = 〈n〉 + 〈n〉2

∑M
m=1 〈nm〉2(∑M
m=1 〈nm〉)2 . (15)

By substituting Eq. (4) into (15) the following simplifica-
tions can be made:

〈(�n)2〉 =
M∑

m=1

〈nm〉 +
(

M∑
m=1

〈nm〉
)2 ∑M

m=1 〈nm〉2(∑M
m=1 〈nm〉)2

=
M∑

m=1

〈nm〉 +
M∑

m=1

〈nm〉2

=
M∑

m=1

〈nm〉 + 〈nm〉2. (16)

What is proved by Eq. (16) is that spectrally dependent
thermal photon statistics are very simple to compute with
a general closed-form expression. The variance in photon
number for a thermal source is given by the sum of the
variances of each individual mode. This also means that the
covariance between any two modes is zero for thermal photons.

As an example of how important this result can be, we
calculate the thermal noise in the emission spectrum of an
absorbing Fabry-Pérot cavity, as plotted in Fig. 2. When the
cavity with this mode distribution is heated, it will emit thermal
radiation defined by the spectral emissivity of the cavity
multiplied by Planck’s law of thermal radiation. The peaks
generated by the cavity can be thought of as different thermal
emission modes. Integration over each peak will produce the
photon mode distribution to be modeled.

The number of modes can be estimated by the following
equation [20]:

M ≈ 8πν2μ3V

c3
dν. (17)

FIG. 2. Spectral photon radiance of a thermal source at 2000 K
in a microcavity, calculated for normal incident light. R1 and R2 are
the reflectivities of the top and bottom cavity mirrors, respectively, A
is the single-pass absorption of the cavity, and l is the thickness of the
cavity. The discrete modal spectral distribution can be calculated
by integrating over each peak as highlighted, and is decidedly
nonuniform.

In Eq. (17), μ is the index of refraction in the middle of
the cavity, ν is the frequency of light, V is the volume of
the cavity, and c is the speed of light. Using the cavity in
Fig. 2, the weighted number of modes is approximated as
2.5.

Let us use this cavity to compare the variance predicted by
assuming a uniform spectral distribution of photons in Eq. (1),
and the exact results derived in Eq. (14). In Eq. (1) the variance
is shown to be

〈(�n)2〉 ≈ 〈n〉 + (0.4)〈n〉2, (18)

while in Eq. (14) the variance is shown to be (to three
significant figures)

〈(�n)2〉 = 〈n〉 + (0.459)〈n〉2 (19)

The average number of photons in the cavity is about 0.173,
found by integrating the spectrum in Fig. 2 and multiplying
by the volume of the cavity. The standard uniform spectrum
approximation results in about a 1% error in the total variance.

At this point is reasonable to ask if such errors would
have a measurable impact on a practical microcavity. A cavity
with the spectrum shown in Fig. 2 can be constructed of two
distributed Bragg reflectors made from alternating SrF2 and Ge
layers, with a doped Ge absorbing layer in a central half-wave
cavity layer. The finesse of the cavity is a function of the
reflectivity of the mirrors and the absorptivity of the center
layer.

Specifically, such a cavity might have a top mirror made of
two pairs of 528-nm-thick SrF2 and 185-nm-thick Ge layers,
followed by an air cavity 571 nm thick with a 25-nm doped
Ge absorbing layer in the center of the cavity, and finally a
bottom mirror made from eight pairs of identical layers as the
top mirror.

Two main noise sources, thermomechanical and photon
counting noise, can cause the cavity dimensions to depart from
their equilibrium positions. Photon pressure within the cavity
is another source of noise, although the overall contribution
to the total noise is negligible due to the extremely limited
number of photons existing in the cavity at any one time. The
photon counting noise is inversely proportional to the variance
as seen in the following equation [26,27]:

〈(�z)2〉 ∼=
(

λ

4πF

)2 1

〈(�n)2〉 . (20)

In the previous equation λ is the wavelength of light, F

is the finesse of the cavity, and z is the displacement of
the mirrors and absorber within the cavity relative to their
equilibrium positions. If the cavity contains very few photons,
the photon counting noise will approach infinity and will
dominate all other noise sources. The ambiguity in the cavity
center frequency due to the apparent displacement degrades the
finesse of the cavity proportionally to the variance in thermal
photons. Given a spectrometer with a resolution of 1 cm−1,
this cavity could then be used to measure the thermal photon
statistics accurately enough to measure a difference between
the predictions of Eqs. (18) and (19).

An alternative cavity can be produced where the center
frequency is almost independent of the noise, and therefore
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FIG. 3. Photon-counting-noise-limited peak broadening for two
cavity designs. The solid lines are calculated for no noise in the system
and the dashed lines are calculated for having 50 nm of displacement
noise in the system. (a) The first cavity design showing a dramatic
reduction in finesse as well as peak height. (b) The second design
where the broadened peak is almost indistinguishable from the peak
with no noise broadening.

little or no ambiguity in the spectrum occurs. In this case
the bottom mirror starts with the Ge layer instead of the
SrF2 layer, and has a total of ten pairs, and also the cavity
thickness is increased to 1135 nm. This design is more
practical than the previous one where usually a higher finesse is
desired. Figure 3 shows the spectral response of the two cavity
designs with and without taking into account thermal photon
noise.

IV. CONCLUSION

The modal and total variance of thermal photon populations
in cavities with arbitrary mode distributions is described. Over
the past 60 years, estimations have been used to find the thermal
photon variance that work in situations where the number
of modes is essentially infinite. With recent developments in
optical micro- and nanocavities with small numbers of modes
with different couplings to free space, these estimations could
lead to significant quantitative inaccuracy. Examples of such
error were described.

The analytical expressions derived in Eqs. (14) and (16) are
marginally more complex than the standard noise expression
of Eq. (1), yet they fully describes thermal photon noise for
all systems, are derived from first principles, and make no
assumptions.
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APPENDIX: DERIVATION OF THERMAL PHOTON
PROBABILITY DENSITY

Photons are indistinguishable from one another, and can
occupy the same energy state as each other, meaning they
follow Bose-Einstein statistics. They also do not need to be
number conserved, i.e., they can be created or destroyed within
a system. This means the chemical potential is zero for photons
obeying BE statistics.

Thermal photons then further obey the canonical ensemble
whereby photons of higher energy are exponentially less likely
to exist, given by the Boltzmann distribution. Taking the
Boltzmann distribution and applying it to BE statistics one
finds that the probability of finding nm photons in a mode hν

is given by the following equation:

p(nm) = e−nmhν/kBT (1 − e−hν/kBT ), (A1)

where h is Planck’s constant, ν is the frequency of the photon,
kB is the Boltzmann constant, and T is the temperature.
The average number of photons, 〈nm〉, is then given by the
following:

〈nm〉 =
∞∑

nm=0

nmp(nm) = 1

(ehν/kBT − 1)
. (A2)

Multiplication of Eq. (A2) by the energy of a photon and
the mode density results in Planck’s law of thermal emission.
It would be convenient if Eq. (A1) were given in terms of the
average photon number as is calculated in (A2). After some
algebraic manipulation of Eq. (A2), the following equations
are derived [19,25]:

e−nmhν/kBT = 1

(1 + 〈nm〉−1)
nm

,

1 − e−hν/kBT = 1

(1 + 〈nm〉) . (A3)

Substituting the equalities from (A3) into Eq. (A1) results
in the useful representation of the probability of finding nm

photons in a mode:

p(nm) = 1

(1 + 〈nm〉)(1 + 〈nm〉−1)
nm

. (A4)

Although Eq. (A4) is mathematically nice and easy to work
with it has a few limitations when working with thermal photon
noise. The first limitation is that this is valid for a single mode.
To incorporate systems with multiple or infinite modes (as is
the case in most thermal light applications) the joint probability
must be used as in Eq. (A5). To find the joint probability the
probabilities of finding nm photons in each mode must be
multiplied together. However, there is an added difficulty in
that there are multiple distributions possible, thus requiring a
sum over all the distributions wherein each modal probability
is multiplied [19,25]:

P (n) =
D∑

d=1

M∏
m=1

1

(1 + 〈nm〉)(1 + 〈nm〉−1)
nm,d

. (A5)
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