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Vector cavity optomechanics in the parameter configuration
of optomechanically induced transparency
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We propose the concept of vector cavity optomechanics in which the polarization behavior of light fields is
introduced to achieve optomechanical control. The steady states and optomechanically induced transparency
are studied in the vector regime, and we show that the polarization of optical fields may be a powerful tool
to identify the underlying physical process and control the signal of optomechanically induced transparency.
In particular, the conditions for obtaining a linearly polarized output probe field is given, which reveal some
nontrivial polarizing effects. Despite its conceptual simplicity, vector cavity optomechanics may entail a wide
range of intriguing phenomena and uncover a novel understanding for optomechanical interaction.
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I. INTRODUCTION

A typical optomechanical system consists of a Fabry-Pérot
cavity in which one mirror of the cavity is movable as a
mechanical resonator [1]. The photons inside the cavity can
exert forces on the movable mirror and consequently change
the position of the mirror. Meanwhile, the dynamical behavior
of the cavity fields depends sensitively on the position of the
mirror [2]. Such a feedback backaction mechanism enables
external optical control of both the mechanical motion and
the light transmission [3–5]. Cavity optomechanics, which
describes the radiation pressure interaction between well-
coupled optical modes and mechanical oscillations, has pro-
gressed enormously in recent years and plays an important role
in various fields of physics, including precision measurements
[6–8], frequency comb generation [9–11], asymmetric optical
transmission [12,13], slowing and storage of light pulses
[14,15], squeezing of light and nanomechanical motion [16],
and even fundamental tests of quantum mechanics [17]. These
achievements provide unprecedented access to a new type of
light-matter interface and enable a new class of devices in
on-chip sensing and signal processing.

Although most research has concentrated on achieving
optomechanical control through scalar optical fields (that is the
optical fields are described by the parameters frequency, am-
plitude, and phase), the polarization behavior, which describes
the vector nature of light fields, however, has not been well
discussed in optomechanical systems. In some previous works,
optomechanical systems with bidimensional dynamical back-
action (where the mechanical motion is described by a vector
field) have been experimentally realized, and the dynamical
effects reveal a novel topological instability which underlies
the remarkable nonconservative nature of the optomechanical
interaction [18].

Optical modulation by means of polarization management
plays a relevant role in coherent optical communications,
gyroscopes, and sensors [19,20]. In this paper, we introduce
a group of orthogonal basis vectors of polarization in an
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optomechanical system and consider that the optomechanical
system is driven by linearly polarized fields. Such a general
approach can be applied to various configurations and regimes
of interest, but here we focus on the parameter configuration of
optomechanically induced transparency in the weak-coupling
regime. We show that rich nontrivial behaviors occur if the
vector nature of the light field is introduced into the topic
of cavity optomechanics. Discussion of optomechanically
induced transparency in the vector regime reveals that the
polarization of the optical fields may be a powerful tool to
identify the underlying physical process and control the signal
of optomechanically induced transparency. The conditions of
obtaining a linearly polarized output probe field are discussed,
which reveal a nontrivial optomechanical polarizer obeys
Malus’ law in the parameter configuration of optomechanically
induced transparency.

This paper is organized as follows. We give a description of
the vector optomechanical system in Sec. II where a group of
orthogonal basis vectors of polarization in an optomechanical
system is introduced and the optomechanical system is driven
by linearly polarized fields. In Sec. III, we discuss the
features of optomechanically induced transparency in the
vector regime, including the steady state and the output field. In
Sec. IV, the conditions of obtaining a linearly polarized output
probe field are discussed, and we find a nontrivial polarizing
effect—an optomechanical polarizer. Finally, a conclusion of
the results is summarized in Sec. V.

II. DESCRIPTION OF THE VECTOR OPTOMECHANICAL
SYSTEM

Figure 1(a) gives the schematic of a vector optomechanical
system, which consists of a Fabry-Pérot cavity with one
movable mirror. The mass of the movable mirror is m, and the
eigenfrequency is �m. For the Fabry-Pérot cavity, a group of
orthogonal basis vectors of polarization (�e�,�e↔) corresponding
to TE and TM modes can be introduced, and any linearly
polarized field with polarization vector �e can be decomposed
as �e = α�e� + β�e↔ with |α|2 + |β|2 = 1 [shown in Fig. 1(b)].
In the present case, the orthogonal bases � and ↔ are not
special but are chosen for simplicity. The orthogonal basis
vectors of polarization corresponding to TE and TM modes
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FIG. 1. (a) Schematic of a vector optomechanical system. (b)
Any linearly polarized field with polarization vector �e can be
decomposed by a group of orthogonal basis vectors of polarization
in the vector optomechanical system. (c) Frequency spectrogram of
a vector optomechanical system in the parameter configuration of
optomechanically induced transparency. Here both control and probe
fields are linearly polarized optical fields, and the included angle
between the polarization of control (probe) field and the vertical mode
is θ1 (θ2). The cavity resonance frequency ωc which has a linewidth
of κ is detuned by �1 from the control field.

may be introduced similarly for other types of cavity or
resonator, and some previous works on a ring resonator [21]
have experimentally demonstrated the effect of the polarization
rotation induced by curved waveguides.

The interaction between light and these nano- or microme-
chanical systems is determined by the form of optomechanical
coupling, and the nonrelativistic Hamiltonian of the interaction
between cavity fields and a moving mirror via radiation
pressure can be derived from the wave equation with time-
varying boundary conditions [22]. As depicted in Figs. 1(a)
and 1(b), an optomechanical system driven by vector optical
fields can be described by the following Hamiltonian:

Ĥ = Ĥ0 + �Gx̂
∑

j=�,↔
â
†
j âj + i�

√
ηκ

∑

j=�,↔
(â†

j Sj − âj S
∗
j ),

Ĥ0 = p̂2

2m
+ m�2

mx̂2

2
+ �ωc

∑

j=�,↔
â
†
j âj , (1)

where p̂ and x̂ are the momentum and position operators
of the mechanical resonator, respectively. âj (â†

j ) are the
annihilation (creation) operators of the orthogonal cavity
modes with degenerate cavity resonance frequency ωc. G is the
optomechanical coupling constant for both orthogonal cavity
modes. κ is the total loss rate of the cavity field which contains
an intrinsic loss rate κ0 and an external loss rate κex. The
coupling parameter η = κex/κ , which describes the coupling
between pump and cavity fields, can be continuously adjusted.
Sj is the amplitudes of the driving fields. For linearly polarized

input fields
∑

k �ekske
−iωkt , where sk = e−iθk

√
Pk/�ωk is the

amplitude of the kth input field normalized to a photon flux at
the input of the cavity with Pk as the power of the kth input
field, �ek is the unit vector of polarization of the kth input field
and can be represented as �ek = ek� � +ek↔ ↔ with ek� and
ek↔ as the projections of �ek onto the vertical and horizontal
modes, respectively. Using the included angle θk between �ek

and the vertical mode as shown in Fig. 1(b), we obtain ek� =
cos θk and ek↔ = sin θk . So S� = ∑

k sk cos θke
−iωkt , S↔ =∑

k sk sin θke
−iωkt .

III. OPTOMECHANICALLY INDUCED TRANSPARENCY
IN THE VECTOR REGIME

It has been demonstrated that electromagnetically induced
transparency, which originally discovered in atomic vapors
[23–25], has an analog in the optomechanical system through
mechanical effects of light [26–31]. In the parameter con-
figuration of optomechanically induced transparency [14], the
optomechanical system is driven by two fields: a strong control
field with amplitude s1 and frequency ω1 and a weak probe
field with amplitude s2 and frequency ω2. In the present paper,
we consider that both control and probe fields are linearly
polarized optical fields [shown in Fig. 1(c)], and the included
angle between the polarization of control (probe) field and the
vertical mode is θ1 (θ2).

Based on the Hamiltonian, Heisenberg-Langevin equations
can be obtained to describe the evolution of the cavity fields and
the properties of the mechanical motion of the moving mirror
[32]. In this paper, we are interested in the mean response of the
vector optomechanical system, so the operators can be reduced
to their expectation values in the weak-coupling regime (the
mean-field approximation of factorizing averages, viz. 〈Qc〉 =
〈Q〉〈c〉 is also used), and the Heisenberg-Langevin equations
reduced to a group of nonlinear evolution equations (in a frame
rotating at ω1) [26] are as follows:

ȧ� = (i�1 − iGx − κ/2)a� + √
ηκ(s1 cos θ1

+ s2 cos θ2e
−i�t ),

(2)
ȧ↔ = (i�1 − iGx − κ/2)a↔

+√
ηκ(s1 sin θ1 + s2 sin θ2e

−i�t ),

ẍ + 
mẋ + �2
mx = −�G

m

∑

j=�,↔
a∗

j aj ,

where �1 = ω1 − ωc, � = ω2 − ω1, the quantum and thermal
noise terms are dropped, and the decay rates of the mechanical
oscillator (
m) are introduced classically.

It would be advantageous to choose as a reference the
polarization of the control field, viz. θ1 = 0, because the
problem is clearly rotationally invariant. In this case, the
above equations can be linearized for the case of |s2| 	
|s1| [33], and the solution can be written as a� = ā� +
δa�, a↔ = A−

↔e−i�t + A+
↔ei�t , x = x̄ + δx, where ā� =

−√
ηκs1℘ as well as x̄ = −�Gηκ|s1℘|2/m�2

m are the steady-
state solutions and δa� = A−

� e−i�t + A+
� ei�t as well as
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δx = Xe−i�t + X∗ei�t are the linearized perturbations with

A+
� = −iG

√
ηκs1℘X∗

 (�1, − �)
, A+

↔ = 0,

A−
� = iGā�X − √

ηκs2 cos θ2

 (�1,�)
,

A−
↔ = iGā↔X − √

ηκs2 sin θ2

 (�1,�)
,

X = − α0ηκ℘∗s∗
1 s2 cos θ2

 (�1,�)[θ (�) + iα0GηκA(�1,�)|s1℘|2]
,

℘ = 1/(i�1 − iGx̄ − κ/2), A(�1,�) = −2i(�1 − Gx̄)/
{ (�1,�)[ (�1, − �)]∗}, α0 = �G/m,  (x,y) = ix +
iy − iGx̄ − κ/2, and θ (x) = �2

m − x2 − i
mx. From the so-
lution we note a special situation: X = A+

� = 0 when θ2 =
π/2. In this case, although both control and probe fields are
incident upon the optomechanical system, the oscillator and
the fields are in a steady state with x = x̄ which depends on
the intensity of the control field only.

In what follows, we will give some discussion on the output
field. The output field of the optomechanical system can be
obtained by using the input-output relation sout = sin − √

ηκa.
In the linearized regime, the output field contains a frequency
component of ω1 − � (Stokes field), a frequency component
at control field ω1, and a frequency component at probe
field ω2.

From the linearized solution, the Stokes field is always
linearly polarized due to the relation arg(A+

� ) = arg(A+
↔). The

polarization vector of the Stokes field is (1,0), which clearly
turns out that the Stokes field has the same polarization with
the control field. Such a result identifies the conversion path
of the Stokes field in the linearized regime: The Stokes field
originates from the down-conversion of the control field [34],
which also implies that the polarization of the output field may
be a powerful tool to identify the underlying physical process.
The intensity of the Stokes field can be obtained as follows:

IStokes = ηκG2|s1|2
∣∣∣∣

℘X∗

 (�1, − �)

∣∣∣∣
2

∝ cos2 θ2, (3)

which is determined by the angle between the polarizations of
the control and probe fields and vanish for orthogonal cases.

The output field at the frequency of the control field is also
always linearly polarized with the polarization vector (1,0).
The intensity of the output field at the frequency of the control
field can be obtained as |s1|2|1 + ηκ℘|2, which is independent
of the polarizations of the control and probe fields. The output
field at the frequency of the probe field is of great interest, and
we obtain the field as

sout(ω2) = s2 cos θ2(�2 − �1) � +s2 sin θ2�2 ↔ , (4)

where

�1 = ηκ

 2(�1,�)[A(�1,�) + B(�1,�)]
,

(5)
�2 = 1 + ηκ

 (�1,�)
, B(�1,�) = θ (�)

iα0Gηκ|℘s1|2 .

In general, the output field at the frequency of the probe field is
elliptical polarized instead of linearly polarized. The physical
interpretation is that there are two sources (or paths) for the
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FIG. 2. The transmission of probe fields with different po-
larization versus � under control fields with different pow-
ers: (a) 1 mW, (b) 3 mW, (c) 6 mW, and (d) 10 mW. The
wavelength of the control field is 532 nm, δθ = θ1 − θ2, and
the parameters used in the calculation are chosen from the re-
cent experiment [26]: m = 20 ng, G/2π = −12 GHz/nm, η = 1/2,


m/2π = 41.0 kHz, κ/2π = 15.0 MHz, �m/2π = 51.8 MHz, and
�1 = −�m.

output field at the frequency of the probe field: One is the input
field of the probe field, and the other is the up-conversion of
the control field. The superposition of the two sources with
different polarizations leads to the elliptical polarized field.
In the conventional optomechanical system, both the control
and probe fields are of the same polarization, and the coherent
superposition of the two sources results in the phenomenon of
optomechanically induced transparency.

The transmission of the probe field in the vector optome-
chanical system can be obtained as

Tprobe = |�2|2 + |�1|2 cos2 θ2, (6)

which reveals optomechanically induced transparency in the
vector regime. By tuning the polarizations of the probe field,
the transmission of the probe field changes periodically. The
transmission of probe fields with different polarizations is
shown in Fig. 2 where conventional optomechanically induced
transparency occur when δθ = 0 whereas the signal of optome-
chanically induced transparency vanishes for the orthogonal
case in which the optomechanical system falls into the steady
state. It is interesting that the coherent phenomenon (the signal
of optomechanically induced transparency) disappears if the
two source paths of the output field at the frequency of the
probe field are completely identified by the polarization.

IV. OPTOMECHANICAL POLARIZER

The transmission of the probe field depends on functions
|�1| and |�2|. As shown in Fig. 3, as the power of the control
field increases, the raised peak of the function |�1| becomes
wider obviously, which is responsible for the broadening of the
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FIG. 3. Calculation results of |�1| and |�2| versus � in the
parameter configuration of optomechanically induced transparency.

induced transparency, whereas the function |�2| only shifts
tinily due to the modification of the cavity length.

As we have shown, the output field at the frequency of
the probe field is elliptically polarized instead of linearly
polarized in general. The conditions of obtaining a linearly
polarized output probe field are quite interesting. From the
expression (4) which describes the output field at the frequency
of the probe field, we can directly obtain that the output field
sout(ω2) is linearly polarized if θ2 = π/2 or θ2 = 0. The former
is the orthogonal case in which the optomechanical system
falls into the steady state, whereas the latter is conventional
optomechanically induced transparency. These two conditions
are trivial for obtaining a linearly polarized output probe field
via optomechanical interaction.

A nontrivial condition of obtaining a linearly polarized
output probe field can exist for the critical coupling case
of η = 1/2. Figure 3 shows that �2 achieves a zero point
near � = �m [35]. Analytically, if the parameters of the

optomechanical system satisfy the condition �1 − Gx̄ = −�

[36], then we have �2 = 0, and the output probe field reduces
to −s2�1 cos θ2 �, which is obviously a linearly polarized
field with the same polarization of the control field, and the
intensity Iprobe = |s2�1|2 cos2 δθ obeys Malus’ law. We call
this phenomenon an optomechanical polarizer. In contrast
to conventional bulk polarizers [19,20], an optomechanical
polarizer can be adjusted rapidly by tuning the polarization of
the control field.

V. CONCLUSIONS

We study the vector cavity optomechanics in the parameter
configuration of optomechanically induced transparency. The
steady states and optomechanically induced transparency
are studied in the vector regime, and we show that the
polarization of the optical fields may be a powerful tool
to identify the underlying physical process and control the
signal of optomechanically induced transparency. Despite its
conceptual simplicity, vector cavity optomechanics may entail
a wide range of intriguing phenomena and uncover a novel
understanding for optomechanical interaction. In the present
paper, we only focus on the case that the input fields are
linearly polarized optical fields. The input fields with other
polarization states, such as circular polarization and the Bessel
beam, may give rise to rich interesting effects due to the angular
momentum carried in the light. A non-Abelian synthetic gauge
field (spin-orbit coupling) in a vector cavity optomechanical
array, which is a natural continuation of the implementation
of topological phases of sound and light based on cavity
optomechanics [37], is also an exciting perspective.
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