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Counterintuitive dispersion effect near surface plasmon resonances in Otto structures
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In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of
reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited.
We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half
complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of
the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile,
we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and
zeros in both reflection and transmission functions when considering the properties of metal substrates. For a
realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond
to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties
may be helpful to manipulate light propagation in optical devices.
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I. INTRODUCTION

The propagation of light pulses in dispersive media and
optical devices is an interesting topic in physics and has
been explored extensively for several decades [1,2]. It is
well known that the dispersion of light usually exists in
various materials and structures and is often associated with
absorption or dissipation. The relations between the dispersion
and absorption (or dissipation) of materials or between the
amplitude and phase in transfer functions of optical devices
are usually described by the conventional Kramers–Kronig
(CKK) relations [3,4], which are very important to deter-
mine dispersion in experiments by directly measuring its
corresponding absorption or transmitted spectra. Traditionally,
the dispersion inside a spectral dip is anomalous, which
leads to the superluminal propagation, while it is normal
inside a spectral peak, which corresponds to the subluminal
propagation.

However, there are some unexceptional situations that
are invalid for CKK relations. For examples, there exists
the complicated change of phase accompanied by uniform-
intensity transmission for all frequencies in the Gires–Tournois
interferometer [5,6]. Meanwhile, the dispersion can exhibit
different behavior (from normal to abnormal) under different
parameters and, even there, CKK relations do not exist for a
birefringent filter [6,7]. In 2002, Wang [8] found the dispersive
behavior opposite to that of a Lorentz oscillator in a linear
and causal system when gain or loss media are introduced.
Heebner and Boyd [9] found exotic optical properties includ-
ing subluminal and superluminal group velocities in a device
constructed of a sequence of microresonators coupled to an
optical waveguide, in which both normal and abnormal dis-
persion may appear near the spectral dip [9,10]. Later, Chang
and Smith [11] further considered gain-assisted superluminal
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propagation in coupled optical resonators. Most recently, we
demonstrated the counterintuitive dispersion effect in gain
slabs that the peaks (dips) in the gain spectrum correspond to
abnormal (normal) dispersion [12]. In all these investigations,
there is a common feature: the poles and/or zeros of transfer
functions (reflection and transmission coefficients of light)
may move into the upper-half complex-frequency plane (CFP),
which essentially leads to exotic dispersion not obeying the
CKK relations.

Optical surface plasmon resonances (SPRs) are the result of
the interaction of light with free electrons at a metal-dielectric
interface [13]. The energy of light may transfer to the collective
excitations of free electrons under certain conditions. There are
unique features of SPRs, such as the enhancement of localized
electromagnetic fields and highly sensitive plasmons. Thus,
SPRs are expected to be applied in the sensing and detection
of chemicals, biological agents, and phase transitions [14–16]
(for a review in biosensing, see Ref. [17]). Meanwhile,
various strategies are proposed to excite SPRs, such as
grating couplers [18], waveguides couplers [19], fiber-optic
couplers [20], and prism couplers [21,22]. The Kretschmann
configuration [21] and the Otto configuration [22], which
belong to the frustrated total internal structure, are two typical
prism couplers and the corresponding dispersion relations
are studied extensively [23–26]. These investigations have
concentrated on the dispersion relations and the properties
of the different modes. Through the dispersion relations,
the optical characteristics of the two prism couplers have
also been analyzed, including the propagation length, the
penetration depth, field enhancement, Goos–Hänchen shift
and the amplitude and phase variation [27–30]. In 2000,
researchers noticed poles in the upper-half CFP in the photon’s
tunneling through frustrated total internal reflection [31].
In earlier literature [32], Depine et al. used the concept of
complex thickness to solve the singularity of reflection in
film systems. Recently, Zeller et al. [33,34] used the similar
method to obtain the critical coupling for positive or negative
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Goos–Hänchen shifts in Kretschmann (or Otto) systems
containing metamaterials. In this paper, we focus on the zeros
and poles of the complex frequency in the transfer functions
(reflection and transmission) to reveal that the counterintuitive
dispersion effect exists due to the presence of the zeros
and poles in the upper-half CFP for an Otto configuration.
By analyzing the movements of “zero” or “poles” in the
transfer functions, the behavior of the corresponding optical
properties, including the amplitude, the phase, and group
delay of reflected and transmitted pulse, are characterized.
Moreover, we present the approach to control the transition
between the conventional and counterintuitive dispersion
effects near the SPRs. It may be useful to design the optical
devices and control the pulse propagation.

The whole paper is organized as follows: In Sec. II,
we present the theoretical model and formula of the wave
propagation in the Otto configuration. In Sec. III, we discuss
the change of the zero and pole points in the reflection and
transmission coefficients and the corresponding dispersion
relations, which lead to the controlling of the group delays
of light pulses passing through the system. Finally, we present
a brief summary in the Sec. IV.

II. THEORETICAL MODEL AND FORMULA

The Otto configuration, as shown in Fig. 1, consists of a
prism with large relative dielectric constant ε1 and a metal
substrate with relative permittivity ε3, and the prism and metal
are separated by an air (or vacuum) gap with permittivity ε2 =
1 and thickness d. Let a transverse-magnetic (TM) plane-wave
light pulse be injected into the structure from the prism side
at an angle of incidence θ . Here, the transmitted light is the
evanescent wave, and it may be enhanced by the excitation of
a surface plasmon along the air-metal interface. For simplicity
but without loss of generality, we neglect the dissipation (or
absorption) of the prism and assume that the angle of incidence
θ is larger than the critical angle θc for total internal reflection.

From Maxwell’s equations and boundary conditions, the
reflection and transmission coefficients can be expressed
as [35–37]

r = (p1 + p2)(p2 − p3)e−kηad + (p1 − p2)(p2 + p3)ekηad

(p1 − p2)(p2 − p3)e−kηad + (p1 + p2)(p2 + p3)ekηad
,

FIG. 1. Schematic of an Otto configuration consisting of the
prism, air (or vacuum) gap, and metal substrate. The permittivities of
prism, air, and metal are ε1, ε2 = 1, and ε3, respectively, and d is the
thickness of the air (or vacuum) gap.

(1)

t = 4p1p2

(p1 − p2)(p2 − p3)e−kηad + (p1 + p2)(p2 + p3)ekηad
,

(2)

where k = ω/c is the wave number of light in vacuum,
p1 = (ε1 − k2

y/k2)1/2/ε1, p2 = iηa/ε2, p3 = iηb/ε3, ηa =
(k2

y/k2 − ε2)1/2, ηb = (k2
y/k2 − ε3)1/2, ky = kε

1/2
1 sin θ is the

wave number in the y direction, and c is the light speed in
vacuum. The transmission coefficient t stands for the ratio of
the magnetic field on the air-metal interface to the incoming
magnetic field in the prism. These coefficients (both r and
t) can be rewritten in exponential form [38,39] as F (ω) =
eln |F (ω)|+iφF (ω), where F denotes r or t , and |F (ω)| and φF (ω)
are the amplitude and phase of these functions, respectively.
In complex-frequency space, when all “poles” and “zeros” of
these functions (r and t) are usually located at the lower-half
CFP, then the amplitude and phase can be transformed into
each other via the following relations [3,40,41]:

ln |F (ω)| = −ω2

π
P

∫ ∞

−∞

φF (ν)

ν(ν2 − ω2)
dν, (3)

φF (ω) = ω

π
P

∫ ∞

−∞

ln |F (ν)|
ν2 − ω2

dν, (4)

where P denotes the Cauchy integral principal value. In all
our discussion, we call these two equations the CKK relations.
Here we emphasize that, as pointed out in literatures [3,5,6,8],
the violation of Eqs. (3) and (4) does not imply the violation of
causality. From Eqs. (1) and (2), if the zeros and poles in these
functions exist, they should, respectively, satisfy the solutions
of the following equations:

(p1 + p2)(p2 − p3)e−kηad + (p1 − p2)(p2 + p3)ekηad = 0,

(5)

(p1 − p2)(p2 − p3)e−kηad + (p1 + p2)(p2 + p3)ekηad = 0,

(6)

in the complex-frequency domain. In the discussion below, we
assume ε1 is a real positive constant. In fact, when Eq. (6) is
held within the real frequency domain, its solution corresponds
to the dispersion equation of surface plasmons [42,43]. When
d = 0, the dispersion relation for a single dielectric-metal
interface can be readily obtained: ε1/k1z + ε3/k3z = 0, where
k1z = (k2ε1 − k2

y)1/2, and k3z = (k2ε3 − k2
y)1/2 through solv-

ing Eq. (6). Within this paper, we use the prism coupling to
excite the surface plasmon. Since light cannot pass through
the metal substrate, the result discussed below should be
experimentally verified by the reflection of light. Next we
discuss the different situations for different ε3.

Case 1. When ε3 is a real constant (i.e., no loss for the
metal), then the solutions of the complex frequencies (ω̃z,p =
ωr

z,p + iωi
z,p), corresponding to the zeros and poles in Eqs. (5)

and (6), can be obtained analytically. For the cases of the
angle of incidence obeying sin2 θ <

|ε3|
ε1|1+ε3| , these solutions

are, respectively, given by
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ωr
z = c

ηad
tanh−1

(
−ε3ηa

ηb

)
, ωi

z = c

ηad
tan−1

[
ηa

p1

]
,

(7)

ωr
p = c

ηad
tanh−1

(
−ε3ηa

ηb

)
, ωi

p = − c

ηad
tan−1

[
ηa

p1

]
.

(8)

For the cases of the angle of incidence satisfying
sin2 θ >

|ε3|
ε1|1+ε3| , the solutions become

ωr
z = c

ηad
tanh−1

(
− ηb

ε3ηa

)
, ωi

z = − c

ηad
tan−1

[
p1

ηa

]
,

(9)

ωr
p = c

ηad
tanh−1

(
− ηb

ε3ηa

)
, ωi

p = c

ηad
tan−1

[
p1

ηa

]
,

(10)

whereas for the case sin2 θ = |ε3|
ε1|1+ε3| , both ωr

z and ωr
p tend to be

infinite values with ωi
z = ωi

p = 0 in Eqs. (5) and (6). Clearly,
both the zeros and poles for the reflection and transmission
coefficients can be located in the lower-half or upper-half CFP.
Once these zeros and poles move into the upper-half complex-
frequency plane, Eqs. (3) and (4) are invalid. Therefore, as in
Ref. [12], counterintuitive dispersion effects are expected.

Case 2. When ε3 is a complex constant (i.e., with the loss or
gain for the metal), the analytical solutions of Eqs. (5) and (6)
can be formally expressed as

ω̃z = c

2ηad
ln

[
(p1 + p2)(p3 − p2)

(p1 − p2)(p3 + p2)

]
, (11)

ω̃p = c

2ηad
ln

[
(p1 − p2)(p3 − p2)

(p1 + p2)(p3 + p2)

]
. (12)

Here the function “ln” is calculated in the complex domain.
Now the solutions seem to be more complicated than those in
Case 1. In fact, the solutions of Case 1 are the special case.
Therefore, there are also the possibilities that the zeros and
poles are located in the upper-half CFP. We discuss them in
detail in the next section.

Case 3. When the metal substrate is in general a dispersive
medium, i.e., ε3 is a function of frequency, then Eqs. (5) and
(6) have to be solved numerically. Similar to the two cases
discussed above, we show below the locations of the zeros and
poles in the CFP.

Meanwhile, in order to observe experimentally the disper-
sion effect due to the violation of Eqs. (3) and (4), we can
measure the group delay of a light pulse reflected from the
system that we have considered. We assume that the incident
pulse is a Gaussian pulse with a very narrow spectrum, i.e.,
	ω � ω, where 	ω is the spectral width of the pulse, so that
the reflected pulse suffers minimal distortion. In this situation,
the group delay of the reflected light is defined by [44–47]

τr = dφr

dω
, (13)

where φr is the phase of the reflection coefficient in Eq. (1).
Using the reflection coefficient, we can also express the group
delay as follows [48]:

τr = 1

|r|2
[

Re[r]
dIm[r]

dω
− Im[r]

dRe[r]

dω

]
. (14)

Therefore the group delay of pulse propagations can be
obtained in our systems which may be helpful for the experi-
mental verification. Similarly, the behavior of the transmitted
light in the metal substrate could be described by its transmitted
group delay from transmission coefficient t as [48]

τt = 1

|t |2
[

Re[t]
dIm[t]

dω
− Im[t]

dRe[t]

dω

]
. (15)

Although this physical quantity cannot be measured directly,
it is meaningful to analyze the properties of the poles changing
from the lower-half to the upper-half in the complex-frequency
plane.

III. RESULTS AND DISCUSSIONS

From the above calculation and discussion, we note that
there are both poles and zeros in reflection coefficients, while
there are only poles in the transmission coefficients. All these
poles and zeros can move from the lower-half to upper-half
CFP (or vice versa) under certain conditions. In this section, we
show systematically the influence of the metal’s permittivity on
the locations of the imaginary parts of the poles and zeros for
the Otto configuration and demonstrate the dramatic change of
dispersion due to the location change of these poles and zeros.
We also discuss in detail the corresponding properties of group
delays for light reflection and transmission. In the following
calculation, without loss of generality, the parameters of the
systems are taken as follows: ε1 = 9 (for a prism, which means
that the critical angle of total reflection is θc = 19.47◦), and
d = 0.5 μm for the air gap.

A. Constant ε3

In this section, we first consider the simple case in which
ε3 is a complex constant. Thus we can use the results in
cases 1 and 2 discussed in Sec. II. The behavior of light
passing through such Otto structures can be determined by the
locations of these zeros and poles in reflection and transmission
functions. To have a complete understanding of the problem,
we assume that the metal parameter ε3 is an arbitrary complex
constant, including both the absorbing or gain cases.

In Fig. 2 we show different regions of zeros and poles of
reflection and transmission functions in the complex frequency
domain. It is clearly seen that, under different angles of
incidence, the locations of these zeros and poles in the complex
frequency domain are different. When θ is slightly larger than
the total internal reflection angle (θc) [see Fig. 2(a)], there
are four combinations denoted by four regions: Region I is
for ωi

z < 0 and ωi
p > 0, Region II is for ωi

z < 0 and ωi
p < 0,

Region III is for ωi
z > 0 and ωi

p < 0, and Region IV is for
ωi

z > 0 and ωi
p > 0. At a certain angle of incidence, there

are only two combinations, denoted Regions I and III [see
Fig. 2(b)], since the transitions for the solutions of Eqs. (11)
and (12) are overlapped in the complex-ε3 space. For an angle
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FIG. 2. Locations of zeros and poles in the complex-frequency
domain as a function of complex ε3 under different angles of
incidence. (a) θ = 20◦, (b) θ ∼ 20.439◦, and (c) θ = 21◦. Here,
Region I is for ωi

z < 0 and ωi
p > 0, Region II is for ωi

z < 0 and
ωi

p < 0, Region III is for ωi
z > 0 and ωi

p < 0, and Region IV is
for ωi

z > 0 and ωi
p > 0. The solid (or short-dashed) curves between

regions denote the smooth (or sudden) changes of ωi
z and ωi

p . The
parameters are ε1 = 9, and d = 0.5 μm. Points a–h in panels (a) and
(c) are located in different regions and are used in Fig. 3.

of incidence larger than that special angle, there are four
combinations again [see Fig. 2(c)] and, in this situation, the
locations of Regions II and IV are opposite to the case in
Fig. 2(a).

Let us discuss Fig. 2(a) in detail. From regions I to II,
the locations of the poles change suddenly from the upper-
half to lower-half CFP, and the boundary between regions I
and II for the poles, denoted by the black short-dashed curve,
is undefined in the absorbing parameter space (Im[ε3] > 0);
while all zeros in both regions I and II are located in the
lower-half CFP. In regions II and III, all poles are located in
the lower-half CFP; while the zeros change continuously from
the lower-half to upper-half CFP and the violet solid curve
between regions II and III denotes these zeros located on the
real axis of the CFP. From regions III to IV, the poles are seen
to increase continuously from the lower-half to upper-half CFP
and the gray solid curve between regions III and IV denotes
the poles located on the real axis of the CFP; while the zeros
in these regions (III and IV) are within the upper-half CFP.
Lastly, the zeros also change suddenly from the upper-half to
lower-half CFP from the regions IV to I, and similarly the
boundary between the regions IV and I for the zeros, denoted
by the purple short-dashed curve, is undefined in the gain
parameter space (Im[ε3] < 0), but the poles in both regions I
and IV are located at the upper-half CFP. It should be pointed
out that, when the zeros are located on the real axis of the
complex frequency, there is no reflected light at all and it is
meaningless to calculate the dispersion or the group delay. For
the poles, there are no possibilities to be located on the real
axis of the CFP in the absorbing parameter space (Im[ε3] > 0).
Our motivation here is to emphasize that the changes of the
zeros or poles leads to the change of dispersion as discussed
below.

Similarly, in Fig. 2(b), under a suitable angle of incidence,
regions II and IV disappear due to the accidental overlap of the
solid and short-dashed curves. Thus there are only two regions
(I and III). In the absorbing parameter space, the transition
from regions I to III for the poles is discontinuous from the
upper-half to lower-half CFP while for the zeros it changes
smoothly from the lower-half to upper-half CFP. In contrast, in

the gain parameter space, the transition from regions I to III for
the poles changes smoothly from the upper-half to lower-half
CFP but for the zeros it changes abruptly from the lower-half
to upper-half CFP.

From the discussion above, one can now understand clearly
the behavior of the poles and zeros in Fig. 2(c). The most
important feature is that the poles and zeros of both reflection
and transmission coefficients, depending on the value of ε3,
can be located at the upper- or lower-half CFP. Therefore, it
is expected that the corresponding light propagation through
such structures differs significantly. Next we demonstrate that
the property of dispersion is determined completely by the
locations of the poles or zeros, which in turn affect the group
delay of a reflected (or transmitted) pulse of light. As we have
known from the CKK relations that all the poles and zeros
in transfer functions (reflection and transmission coefficients)
are usually located at the lower-half CFP. This leads to the
criterion of dispersion that a peak (or dip) in both reflected
and transmitted spectral lines simply corresponds to a normal
(or abnormal) dispersion. However, once the poles or zeros
of transfer functions move into the upper-half CFP, the CKK
relations are invalid and the above criterion can no longer be
applied. In this sense, we refer to the effect of such dispersions
violating the CKK relation as the counterintuitive dispersion
effect.

In Fig. 3 we show the typical properties of dispersion and
the corresponding group delays when ε3 is located at different
regions. In Fig. 3(a), it is seen that a peak in the transmitted
spectrum corresponds to an abnormal dispersion (the decrease
of phase) with a negative group delay and the CKK relations
for t are invalid, because the pole is located in the upper-half
CFP [see Fig. 2(a)]; but a dip in the reflected spectrum still
corresponds to the abnormal dispersion with a negative group
delay, although r contains a pole in the upper-half CFP and
a zero in the lower-half CFP [see Fig. 2(a)]. In Fig. 3(b), for
the pole of t changes into the lower-half CFP, the peak in
|t | corresponds to normal dispersion (the increase of phase)
with a positive group delay, which obeys the above dispersion
criterion, so that the CKK relations are valid; meanwhile the
zero of r is still located at the lower-half CFP, the properties of
r (its dispersion and group delay) are the same as in Fig. 3(a).
In Fig. 3(c), because the zero of r moves into the upper-half
CFP, the dip in |r| corresponds to the normal dispersion
accompanied by a positive group delay and here the CKK
relations for r are also invalid; however, both the dispersion
and the CKK relations for t are the same as in Fig. 3(b). Thus,
for the cases of Im[ε3] > 0 [see Figs. 3(a)–3(c) and Fig. 2(a)],
it can be seen that the zero of r only determines the behavior
of the reflected light and the pole of transmission coefficient
only determines the behavior of the transmitted light.

However, assume that the metal’s parameter ε3 can be
gain, i.e., Im[ε3] < 0, the properties of transfer functions
become more interesting (although gain metals do not exist
naturally but might be fabricated artificially in the future).
In Fig. 3(d), the peaks in r and t correspond to the normal
dispersion and these properties also seem to obey the above
dispersion criterion, but in this case the zero of r is located
at the upper-half CFP and the poles of r and t are located
at the lower-half CFP [see Fig. 2(a)]. In Fig. 3(e), both the
peaks in r and t correspond to the abnormal dispersion and
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FIG. 3. Typical properties of the amplitude and phase of the reflection (solid lines) and transmission (dashed lines), and their corresponding
group delays under different situations: from panels (a) to (f): ε3 = −22 + i5, −20 + i5, −15 + i5, −15 − i5, −20 − i5, −22 − i5,
respectively, with θ = 20◦, and from panels (g) to (h): ε3 = −6 + i5, −6 − i5, respectively, with θ = 21◦. All these values of ε3 are denoted
by points a–h in Fig. 2; the other parameters are the same as in Fig. 2.

negative group delays, and now all these properties violate
the above dispersion criterion again since the poles of r and
t move into the upper-half CFP but the zero of r is still in
the upper-half CFP [see Fig. 2(a)]. In Fig. 3(f), the dispersion
for r and t is the same as in Fig. 3(e), but now the zero of r

changes to be in the lower-half CFP. Obviously, for all these
gain cases of Im[ε3] < 0, the properties of both r and t and
their dispersion are only determined by their poles, and the zero
of r does not affect the behavior of the reflected light. These
properties are similar to the results in our recent work for gain
slabs [12].

Similarly, we can readily understand the properties of the
reflected and transmitted light in Figs. 3(g) and 3(h). The dip
in r leads to a sharp normal dispersion [see Fig. 3(g)] because
of ωi

z > 0 [see Fig. 2(c)], while the behavior of the transmitted
light in Fig. 3(g) is similar to the case of Fig. 3(a) because
of ωi

p > 0. In Fig. 3(h), due to ωi
p < 0 under the cases of

Im[ε3] < 0, it is expected that both the peaks of r and t cor-
respond to the normal dispersion with positive group delays.
Here, we should emphasize that the magnitude maximum in
transmission peak usually corresponds to the excitation of the
surface plasmon under a certain angle of incidence larger than
that of the internal reflection in the prism. These poles do
not lead to the infinite transmission since they are in general
located at lower-half or upper-half CFP. In the next section, it
shows that all the poles are actually located at the lower-half
CFP for the absorptive systems.

In addition, when ε3 becomes a real number, i.e., there is
no absorption (or gain), then it is seen that there are only two
regions (see regions I and III in Fig. 2 along the real axis of
ε3). The properties of both the reflected and transmitted light in
this situation are similar to those in Figs. 3(a) and 3(c), except
for the amplitude |r|, which is always equal to unity under the
condition of total internal reflection.
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It should also be mentioned that there is a phase-matching
condition to excite the surface plasmons in this Otto config-
uration. For real ε3, the phase-matching condition is sin2 θ =

|ε3|
ε1|1+ε3| . For a complex ε3, this condition is the solution of
Eq. (6), and in this situation it differs from the solution of
Eq. (5) for the zeros.

B. Dispersive ε3

As pointed out in Ref. [8], in general, a Lorentz medium
has poles but not zeros in the complex transmission, whereas
resonators may have both poles and zeros. If there are no
zeros in the transfer functions, the change of reflected and
transmitted dispersion relations is the consequence of the
movement of the poles like the situations in Ref. [12]. In
our above calculations, it was shown that both poles and
zeros of complex transfer functions may coexist in the upper-
half CFP for the Otto systems with constant ε3, and the
transmission is only affected by the poles of the transmitted
function.

Now let us consider the general cases that the realistic
metal substrate ε3 contains both absorption and dispersion.
The relative permittivity ε3 can be described as a Drude
model,

ε3 = 1 − ω2
p

ω2 + iγ ω
,

where ωp and γ are the plasma and damping frequencies,
respectively. This model is suitable for many usual metals [49].
The results of our following example are suitable for the
cases of other metals. The only difference is that the sim-
ilar effects happen in different frequency regions for other
metals.

Here we take the metal silver (Ag) as a typical example.
According to Ref. [49], the optical parameters of Ag are ωp =
1.3926 × 1016 Hz and γ = 3.18712 × 1013 Hz. Due to the
frequency dependence of ε3, Eqs. (11) and (12) are hard to
be solved directly and they should be solved numerically. To
know the locations of the zeros and poles for the reflection and
transmission functions, Eqs. (11) and (12) can be transformed
into the forms

d = c

2ηaω̃z

ln

[
(p1 + p2)(p3 − p2)

(p1 − p2)(p3 + p2)

]
,

d = c

2ηaω̃p

ln

[
(p1 − p2)(p3 − p2)

(p1 + p2)(p3 + p2)

]
.

Requiring d to be a positive and real quantity in these two
equations, one can readily obtain the locations of the zeros
and poles in the CFP.

In Fig. 4, we demonstrate the locations of these zeros (solid
line) and poles (dashed line) for this Otto configuration with
the Ag substrate. In Fig. 4, we see that the location of the zeros
can change from the lower-half to upper-half CFP, while for
the poles, it can change only within the lower-half CFP. The
direction of arrows indicates the increasing change of thickness
d. In principle, there is no limit on the thickness d. Every value
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FIG. 4. Changes of the zeros (solid lines) and poles (dashed lines)
in the complex-frequency domain for the existence of the real solution
of thickness d in Eqs. (11) and (12) for (a) θ = 20◦, (b) θ = 21◦,
(c) θ = 22◦, (d) θ = 24◦, (e) θ = 28◦, and (f) θ = 32◦. Here ε3 =
1 − ω2

p

ω2+iγω
is a dispersive silver metal with ωp = 1.3926 × 1016 Hz

and γ = 3.18712 × 1013 Hz, and the direction of arrows indicates the
increasing change of thickness d .

of d corresponds to a zero and a pole. For the zeros, there is a
critical thickness that corresponds to the transition point from
the lower-half to upper-half CFP. However, for the poles, there
is no such a transition.

In Fig. 5, we further show the properties of the reflection
and the corresponding movements of the imaginary parts of
zeros in the reflection. We observe that there are the optimal
angle (θopt) and thickness (dopt) for maximally exciting the
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FIG. 5. The existence of the optimal angle (a) and thickness
(b) from the reflection coefficient to judge the excitation of the
surface-plasmon mode, which corresponds to the critical angle (c)
and thickness (d) of the transition point for the zeros moving from
the lower-half to upper-half CFP, respectively. The thickness is
d = 0.5μm in panels (a) and (c) and the angle is θ = 21◦ in panels
(b) and (d). Other parameters are the same as in Fig. 4.
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respectively. The thickness is d = 0.5 μm in panels (a), (c), (e), and
the angle is θ = 21◦ in panels (b), (d), (f). Other parameters are the
same as in Fig. 4.

surface plasmons [see Figs. 5(a) and 5(b)] after including
the dispersive property of the metal substrate. The optimal
angle θopt and thickness dopt actually correspond to the critical
angle and thickness for the zeros (in the reflection coefficient)
transiting between the lower-half and upper-half CFP [see
Figs. 5(c) and 5(d)]. For systems with different metals, the
optimal angle and thickness are different due to the change of
ωp and γ .

Figure 6 shows the properties of the reflection, its phase,
and group-delay dependence on the incident frequency under
different incident angle θ in Figs. 6(a), 6(c), and 6(e) and
thickness d in Figs. 6(b), 6(d), and 6(f). Although there is
always a dip in |r|, the group delay changes dramatically
from positive to negative, i.e., the dispersion is totally different
before and after the corresponding critical angle or thickness,
see Figs. 6(a), 6(c), 6(e) and 6(b), 6(d), 6(f). For example, as θ

increases and gradually approaches θopt, the normal dispersion
becomes steeper and steeper, thus the group delay is larger and
larger. When θ = θopt, the phase of reflection is undefined at
the frequency of |r| = 0, so that it is meaningless to calculate
the group delay. Once θ is larger than θopt, there occurs the
abnormal dispersion accompanying a dramatic phase change
(corresponding to a large negative group delay). There are
similar phenomena as d changes; see Figs. 6(b), 6(d), and 6(f).
It should be mentioned that such changes of the dispersion and
the group delay could be realizable in experiments since one
has demonstrated the high-precision control on the thickness or
angle of incidence in the Otto configurations [22]. Therefore,
for a practical Otto configuration, one can tune the properties

of pulse reflection by adjusting the angle of incidence or the
thickness.

Lastly, it should be pointed out that such counterintuitive
dispersion effects determined by the movement of the poles or
zeros of the transfer functions in CFPs may also be explained
by the coupling mechanism. According to Ref. [22], the
internal and radiation dampings around the SPR coexist in
the system. The former, caused by the energy absorption
in the metal, is proportional to the imaginary part of ε3,
and the latter, induced by the emission of waves into the
prism by the SPR, is strongly dependent on the thickness
d of the air gap. That is, one can manipulate the radiation
damping by changing the value of d in experiments. Like in the
Kretchmann configuration [50,51], when the internal damping
is greater than radiation damping, such coupling is regard
as the undercoupled system, and the abnormal dispersion
happens as mentioned in Refs. [9,11]. When the internal
damping is chosen to be weaker than radiation damping, it
becomes overcoupled and the normal dispersion occurs in the
overcoupled regime. When the internal damping and radiation
damping are exactly equal, which is critically coupled, then the
reflection of the pulse vanishes. This d is known as the optimal
thickness, as mentioned above, and the dispersion relations
display the reversal behavior before and after this critical
thickness.

IV. SUMMARY

We have investigated the counterintuitive dispersion effect
of reflection and transmission functions in an Otto configura-
tion as the SPR of the metal is excited. The dispersion relations
may violate the CKK relations (3) and (4) since, under certain
conditions, there are zeros and poles in the upper-half CFP.
These relations are sensitive to the complex permittivity of the
metal and the incident angle. We explain the transition of the
dispersion in both lossless and lossy systems by controlling
the movements of the poles and zeros in the transfer function.
Furthermore, we show that there is an optimal thickness and
incident angle for general systems containing dispersion and
absorption. We observe that the dispersion effects have a dras-
tically different behavior when the thickness of the gap and the
angle of incidence are above and below certain critical values,
respectively. Due to the existence of the optimal thickness and
optimal incident angle, there is the critical coupling to control
light propagation from subluminal to superluminal. Thus our
results are valuable in manipulating light propagation in optical
devices.
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