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Two-color resonant filamentation in gases
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In this paper, it is shown that two-photon resonance involving a fundamental field and one of its odd harmonic
strongly influences the filamentation process, i.e., the nonlinear propagation of an ultrashort and ultraintense laser
field. This particular situation happens, for instance, when a 400 nm fundamental field propagates together with
its third harmonic in krypton. Using three-dimensional ab initio calculations, the optical response of krypton
is evaluated and the underlying nonlinear refractive indices are extracted. It is found that the resonance also
exacerbates higher-order nonlinear processes. Injecting the retrieved higher-order Kerr indices in a nonlinear
propagation solver, it is found that the resonance leads to an enhanced defocusing cross-phase modulation that
strongly participates to the filament stabilization. This work sheds a light on the mechanism of filamentation, in
particular, in the ultraviolet range, where two-color two-photon resonances are expected to occur in many atomic
gases.

DOI: 10.1103/PhysRevA.94.013805

I. INTRODUCTION

Since its very first observation [1], laser filamentation
in gases has been the subject of numerous theoretical and
experimental studies. Induced by the dynamic equilibrium
between different nonlinear effects, a filament can sustain
very high intensities over very long distances, contrary to a
laser pulse propagating linearly. The competition between the
Kerr effect, responsible for beam self-focusing and plasma
generation (i.e., ionization), responsible for beam defocusing,
was rapidly identified as the underlying basic mechanism
driving this self-guiding process. Nevertheless, a few years
ago, time-resolved nonlinear refractive index measurements
performed in gases seemed to show that Kerr effect saturates
by itself and becomes a defocusing effect as the intensity
increases [2]. This unexpected observation, called higher-order
Kerr effect (HOKE), has raised an active debate about its
interpretation and its possible impact on the filamentation
process [3–16].

In this theoretical study, we exhibit a mechanism leading to
HOKE in the case where a two-photon transition, involving a
fundamental field and one of its odd harmonic, is close to an
atomic resonance. In this situation, the cross-phase modulation
induced by the generated odd harmonic on the fundamental is
strongly enhanced, almost instantaneous, at least for a pulse
duration higher than 10 fs, and leads to an inversion of the
refractive index experienced by the fundamental field. Note
that apart from this large negative cross-phase modulation,
the presence of an odd harmonic also leads to a strong
modification of ionization, a mechanism already reported in
[17–20]. It is also shown that higher-order Kerr effect also
impacts the process of odd-harmonic generation. Comparing
the nonlinear polarization obtained by means of ab initio
quantum calculations with a weak-field Taylor expansion of
the field in the case of krypton for a 400 nm fundamental
field accompanied with its third-harmonic, nonlinear suscep-
tibilities are evaluated up to the eleventh order. Since the
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process takes place close to a resonance, the susceptibilities are
highly frequency dependent, so that the nonlinear refractive
indices responsible for self-, cross-phase modulation, third-
harmonic generation, and three-photon generation (fission of
a third-harmonic photon into three fundamental photons) have
amplitudes that deviate by about two order of magnitudes
and have different signs. Finally, using the fitted nonlinear
refractive indices in a propagation code, it is shown that
the above mentioned HOKE deeply impacts the filamentation
dynamics and actively participates in the intensity clamping
occurring during the filamentation process.

II. STRONG-FIELD EVALUATION OF ATOMIC
OPTICAL RESPONSE

Close to a two-photon resonance, it is well known that
the third-order nonlinear susceptibility is highly frequency
dependent and can even become negative. For instance, it
has been shown that the third-order nonlinear susceptibil-
ity responsible for self-phase modulation (SPM) in xenon
becomes negative in the ultraviolet spectral region [21]. Here,
we consider a completely different case in which the SPM
lies far from any two-photon resonance (i.e., the third-order
nonlinear susceptibility responsible for SPM is positive and
leads to self-focusing), while the medium becomes defocusing
because of a higher-order Kerr effect. The process described
here takes place because, first, odd-harmonic generation occurs
and, second, because there is a two-photon two-color atomic
resonance leading to large negative cross-phase modulation
(XPM) of the odd-harmonic pulse on the fundamental one.
This particular situation happens, for instance, when a 400 nm
fundamental field propagates in krypton. In this case, the si-
multaneous absorption of a fundamental and a third-harmonic
photon (previously produced by third-harmonic generation)
is close to resonance with both the 4p-5p (�11.5 eV) and
the 4p-6p (�12.8 eV) two-photon transitions. In order to
evaluate the optical response of the krypton atom when
irradiated by a λ0 = 400 nm field and its third harmonic,
ab initio calculations have been performed under the single
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active electron approximation. Technical details about the
numerical method can be found in [13,22]. Briefly, the method
consists in evaluating the time evolution of the electronic
wave function |�〉 when it is submitted to the influence
of the atomic potential and a linearly polarized (along a
direction denoted hereafter Z) electric field E(t) by solving the
time-dependent Schrödinger equation. The atomic potential
used for representing krypton has been published recently [23].
The polarization P along Z is then calculated all along the
interaction as 〈�|Z|�〉. The fundamental and third-harmonic
(TH) fields considered during the calculations have a 14 fs
(full width at half maximum) and 8 fs Gaussian temporal
envelope profile, respectively. For the sake of clarity, only
the complex envelopes of the nonlinear polarizations Pω0 (t)
and P3ω0 (t) oscillating respectively around the fundamental
frequency ω0 and around the third-harmonic one are presented.
They are obtained by an appropriate spectral filtering of
the polarization and by removing the fast oscillating carrier
field in the temporal domain. Following this procedure, the

real (imaginary) part of the nonlinear polarization corresponds
to the part that is in phase (out of phase) with the fundamental
pulse. While ab initio calculations supply a very accurate
description of the atom-field interaction, so far they require
too high resources for numerical simulation propagation
over macroscopic distances. Recent theoretical work has
also developed an original approach describing analytically
nonlinear optical processes in the strong-field regime [24].
This work allows one to evaluate in a more efficient way the
optical response of an atom in the strong regime even in the
case of a multicolor field but works well far from any atomic
resonances, which is not the case here. The standard treatment
in propagation simulations consists in approximating the
optical response of the atom with a perturbation model, in
which the atomic polarization is developed as a Taylor series
of the field. Following this approach, it is found that the
complex envelopes of the nonlinear polarizations derived from
TDSE are well reproduced both in shape and amplitude by the
following weak-field developments:
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where ε0 is the vacuum permittivity, c is the light velocity in
vacuum, A0 (A3) is the complex envelope of the fundamental
(third-harmonic) field expressed in

√
W/m. Equations (1) and

(2) are the main results of this work. All the coefficients are
summarized in Table I. These equations take into account
four distinct mechanisms occurring during the interaction of
a field composed by a fundamental and a third-harmonic field
and an atom, namely, self-, cross-phase modulation (SPM
and XPM), third-harmonic generation (THG), and fission
of a third-harmonic photon into three fundamental photons
(denoted hereafter recombination [R]). The different mecha-
nisms involved in the nonlinear polarization are summarized
in Fig. 1. The equations also take into account the slightly
delayed nature of the different processes at play but do not
take into account the contribution of ionization to the optical
atomic response, which is treated separately. The procedure
used to fit the different coefficients is detailed in the next
section.

III. WEAK-FIELD FIT PROCEDURE

Each nonlinear effect, namely, SPM, XPM, THG, and
recombination (R), can be fitted individually by noting that
they do not share the same dependence with respect to the
amplitude and phase of the two-color field. It then allows one
to minimize the number of free parameters used simultane-
ously to recover the exact polarization obtained by solving
TDSE.

A. Self-phase modulation and third-harmonic generation

Cross-phase modulation and recombination do not occur if
there is no third-harmonic or no fundamental field within the
initial electric field. In this situation, only SPM and THG take
place. Their respective contributions are easily distinguishable
since they evolve at very distinct frequencies (close to ω0 and
3ω0, respectively). After an appropriate spectral filtering, both
effects can then be fitted individually as a function of both time
and peak intensity.

As shown in Fig. 2, self-phase modulation of the fundamen-
tal field is found to behave almost linearly with respect to the
intensity up to 20 TW/cm2. The associated nonlinear refractive
index extracted from the fit is n2SPM = 2.9×10−7 cm2/TW,
in good agreement with data found in the literature [25].
Nevertheless, a closer look at the TDSE results reveals the pres-
ence of a positive higher-order Kerr term n4SPM = 3.45×10−9

cm4/TW2. This value agrees also well with data found in the
literature [26]. At higher intensity, the polarization saturates
and becomes negative in the trailing edge of the field beyond
about 50 TW/cm2. This delayed behavior in the temporal
domain is in fact characteristic of the ionization-induced
saturation of the atomic optical response.

The nonlinear refractive index relative to the self-phase
modulation of the third-harmonic field has been estimated
differently. One has to note that two different mechanisms
participate to SPM: the one-photon [see Fig. 1(b)] and two-
photon [see Fig. 1(c)] contributions. For the third-harmonic
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TABLE I. Nonlinear refractive indices of krypton at λ0 = 400 nm retrieved from ab initio calculations.

k n(k)
2SPM,ω0

(fskcm2 TW−1) n(k)
4SPM

(fskcm4 TW−2) n(k)
2R

(fskcm2 TW−1) n(k)
4R1

(fskcm4 TW−2)

0 2.92 × 10−7 − 4.88i × 10−10 3.45 × 10−9 + 7.27i × 10−12 1.82 × 10−6 − 2.37i × 10−9 −8.84 × 10−8 − 1.33i × 10−9

1 2.23 × 10−8 2.05 × 10−8 1.12 × 10−6 + 1.77i × 10−8 −2.69 × 10−8 + 1.70i × 10−9

2 9.66 × 10−9 − 3.92i × 10−9 −3.17 × 10−10 1.35 × 10−6 + 2.83i × 10−7 −7.83 × 10−8 − 3.01i × 10−8

3 0 0 −6.07 × 10−8 − 5.67i × 10−9 9.52 × 10−8 + 1.26i × 10−8

k n(k)
4R2

(fskcm4 TW−2) n(k)
6R1

(fskcm6 TW−3) n(k)
6R2

(fskcm6 TW−3) n(k)
2XPM

(fskcm2 TW−1)

0 −8.91 × 10−8 − 8.99i × 10−10 1.14 × 10−9 + 2.48i × 10−10 1.09 × 10−9 + 2.14i × 10−10 −1.07 × 10−5 + 9.61i × 10−7

1 4.81 × 10−8 + 1.77i × 10−9 6.81 × 10−10 − 7.26i × 10−10 −7.06 × 10−10 − 6.10i × 10−10 8.42 × 10−6 + 1.70i × 10−6

2 −4.33 × 10−8 + 1.19i × 10−8 1.76 × 10−9 + 1.32i × 10−9 9.60 × 10−10 + 1.77i × 10−11 −4.13 × 10−6 + 8.36i × 10−6

3 5.59 × 10−8 + 1.31i × 10−9 −3.38 × 10−9 + 2.16i × 10−10 1.90 × 10−10 + 1.13i × 10−9 2.86 × 10−6 + 1.15i × 10−5

k n(k)
4XPM

(fskcm4 TW−2) n(k)
6XPM

(fskcm6 TW−3) n(k)
2THG

(fskcm2 TW−1) n(k)
4THG

(fskcm4 TW−2)

0 1.27 × 10−7 − 4.64i × 10−8 1.72 × 10−9 + 1.28i × 10−9 1.74 × 10−6 + 2.89i × 10−9 −7.80 × 10−8 + 3.54i × 10−10

1 −7.35 × 10−8 − 1.74i × 10−7 9.51 × 10−12 + 3.10i × 10−9 1.41 × 10−6 − 1.00i × 10−7 −4.68 × 10−8 + 3.31i × 10−8

2 5.69 × 10−8 − 1.51i × 10−7 −1.07 × 10−11 + 2.13i × 10−9 3.39 × 10−6 − 1.78i × 10−7 −1.90 × 10−7 − 1.30i × 10−8

3 −1.79 × 10−7 + 5.32i × 10−10 9.32 × 10−10 − 7.48i × 10−9 −1.54 × 10−5 6.43 × 10−7

k n(k)
6THG

(fskcm6 TW−3) n(k)
8THG

(fskcm8 TW−4) n(k)
10THG

(fskcm10 TW−5) n(k)
12THG

(fskcm12 TW−6)

0 6.70 × 10−10 − 1.78i × 10−10 7.36 × 10−12 + 2.55i × 10−11 −1.05 × 10−13 − 4.54i × 10−13 2.40 × 10−16 + 2.24i × 10−15

1 3.04 × 10−9 − 3.39i × 10−9 −1.02 × 10−10 + 8.46i × 10−11 1.31 × 10−12 − 8.19i × 10−13 −5.61 × 10−15 + 2.81i × 10−15

2 7.00 × 10−9 + 3.30i × 10−9 −1.16 × 10−10 − 1.21i × 10−10 8.25 × 10−13 + 1.51i × 10−12 −2.03 × 10−15 − 6.27i × 10−15

3 −1.03 × 10−8 −4.73 × 10−14 1.20 × 10−12 −6.89 × 10−15

n2SPM,3ω0
(cm2TW−1) = −7.8 × 10−7

FIG. 1. Nonlinear processes occurring when a krypton atom is irradiated by a fundamental field at 400 nm and its third harmonic: self-phase
modulation for the fundamental field (a), one-photon (b), and two-photon (c) contributions to self-phase modulation for the third-harmonic field,
third-harmonic generation (d), cross-phase modulation (e), and three-photon emission (f). The dotted arrows stand for higher-order processes
enhanced because of resonances.
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FIG. 2. Nonlinear refractive index of krypton at 400 nm as
a function of the pulse intensity (a). Real part of the nonlinear
polarization envelope related to self-phase modulation obtained with
TDSE (b) and its associated perturbative fit (c). Imaginary part of
the nonlinear polarization envelope related to self-phase modulation
obtained with TDSE (d) and its associated perturbative fit (e).

field (λ3 � 133 nm), the two-photon contribution cannot
be decoupled from the ionization process in the ab initio
calculations because the latter is also a two-photon absorption
process. This then prevents the identification of the nonlinear
refractive index related to SPM of the third-harmonic field
from TDSE calculations. In order to circumvent this point, the
nonlinear refractive index n2SPM,3ω0 has been directly evaluated
with the dipolar transition moments tabulated from the atomic
potential of krypton used in the TDSE and only the one-photon
contribution has been retained. This approximation then leads
to a negative nonlinear refractive index. Nevertheless, this
approximation does not significantly change the conclusion
of this work. Indeed, by changing both the value and sign of
this index, it has been found that the latter does not play a
significant role in the nonlinear propagation dynamics.

In the present case (krypton, λ0 = 400 nm), the process
of third-harmonic generation also takes place close to a
resonance, namely the (4p-5s) three-photon resonance. As
a result, the nonlinear refractive index associated to THG
n2THG is found to be about six times higher than the one
associated to SPM. The vicinity of the resonance also impacts

FIG. 3. Contribution of the different processes to the real part of
the nonlinear polarization envelope as a function of time and funda-
mental pulse intensity. Top row: cross-phase modulation induced by
a 0.15 TW/cm2 third-harmonic field calculated by TDSE (a) and the
associated higher-order weak-field fit (d). Middle row: recombination
induced by a 0.15 TW/cm2 third-harmonic field calculated by TDSE
(b) and the associated higher-order weak-field fit (e). Bottom row:
third-harmonic generation (calculated without third-harmonic seed
pulse) obtained by solving TDSE (c) and the associated higher-order
weak-field fit (f). In order to highlight the impact of HOKE, all the
data are normalized to their expected peak field dependence, i.e.,
the dependence that should follow the nonlinear polarization without
higher-order processes.

both the intensity and the temporal dependencies of the
nonlinear polarization. Indeed, far from resonances, it is
known that the third-harmonic field amplitude induced by
THG behaves as the third power of the fundamental field
amplitude. On the contrary, in the present situation, THG
does not follow this trend, as it can be seen in Fig. 3(c).
Instead, the nonlinear polarization relative to THG PNL,THG

saturates as the fundamental intensity increases, becomes
negative beyond 20 TW/cm2, and increases again beyond
40 TW/cm2 up to recovering positive values. This behavior is
in fact the manifestation of higher-order nonlinear processes.
Note that there is no contribution of ionization to the nonlinear
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polarization oscillating at 3ω0 in the case of a fundamental field
exciting the atom alone, discarding this effect to be responsible
for the observed behavior. More particularly, following a
weak-field development, it is found that susceptibilities up
to χ (13) have to be considered for an appropriate fit of the
nonlinear polarization associated to THG up to 90 TW/cm2

[see Fig. 3(f)]. Indeed, not only the process ω0 + ω0 + ω0 →
3ω0 is close to a resonance but higher-order processes of
kind ω0 + ω0 + ω0 + N (ω0 − ω0) → 3ω0 (N being a positive
integer) as well. The vicinity of the resonance then exalts
higher-order processes.

B. Cross-phase modulation and recombination

Cross-phase modulation and recombination processes con-
tribute to the nonlinear polarization as soon as a fundamental
field and its third-harmonic interact together with the atom
[see Figs. 1(e) and 1(f)]. Their relative contributions to the
nonlinear polarization can be distinguished by noticing that
the recombination process depends on the relative phase �φ

between the fields while XPM does not. More particularly,
the contribution of recombination to the third-order nonlinear
polarization PR(�φ) follows PR(π ) = −PR(0). Since this is
the only weak-field contribution to the nonlinear polarization
that depends on the relative phase, it can be isolated as follows:

PR = 1
2 (PNL(�φ = 0) − PNL(�φ = π )), (3)

while the contribution of XPM to the nonlinear polarization
PXPM can be extracted after substraction of the previously
evaluated SPM contribution as

PXPM = 1
2 (PNL(�φ = 0) + PNL(�φ = π )) − PSPM. (4)

A first set of calculations have been performed at low
fundamental intensity (I0 = 1 TW/cm2) as a function of the
third-harmonic field amplitude. It is found that cross-phase
modulation (recombination) well follows the expected linear
dependence with respect to the third-harmonic intensity (field
amplitude). Moreover, the two processes are almost (but
not exactly) instantaneous and approximatively follow their
expected temporal dependencies. After fitting the nonlin-
ear polarizations, the associated nonlinear refractive indices
are found to be n2XPM = −1.07×10−5 cm2/TW and n2R =
1.82×10−6 cm2/TW, respectively. The first observation is
that n2XPM is negative and about 30 times higher in amplitude
than n2SPM . This is because the XPM process takes place
at the vicinity of the (4p-5p) and (4p-6p) two-photon
resonances. The immediate consequence is that while krypton
is conventionally a focusing medium for the fundamental field,
it becomes defocusing because of XPM if about 1.5% of
third-harmonic copropagates together with it. In other words,
if enough third-harmonic is generated during the filamentation
process in krypton, XPM can be the main physical mechanism
arresting the collapse, in place of ionization. Then, XPM and
recombination have been evaluated with TDSE as a function of
the fundamental intensity, keeping constant the third-harmonic
field amplitude. Figures 3(a) and 3(b) show the obtained
temporal dependence of PXPM and PR as a function of the
fundamental intensity. Both contributions to the nonlinear po-
larization do not follow the expected dependence with respect
to the fundamental field amplitude. Indeed, far from resonance,

the polarization relative to XPM normally behaves as A0, while
those relative to recombination as A2

0. Here, because of the
vicinity of a two-color resonance, higher-order susceptibilities
manifest themselves, modifying the dependence with respect
to the field amplitude. As far as XPM is concerned, its
contribution to the nonlinear polarization has to be expanded
at higher order with terms mixing fundamental and third-
harmonic intensities. Following a weak-field expansion with
respect to the field, two kinds of higher-order terms participate
in the recombination process (denoted hereafter R1 and R2,
respectively). The first (second) kind of higher-order nonlinear
polarization PR1 (PR2 ) behaves as |A0|2kA∗2

0 A3 (|A0|2kA4
0A

∗
3).

In the presence of a resonance, their relative contributions are
a priori different because the frequencies involved in their
respective nonlinear susceptibilities are not the same. It is then
desirable to fit them independently, which can be done by
noting their different periodicity with respect to the relative
phase �φ. More particularly, PR1 and PR2 can be isolated as
follows:

PR1 = 1
2 {PNL(�φ = 0) − PNL(�φ = π )

− i[PNL(�φ = π/2) − PNL(�φ = −π/2)]},
PR2 = 1

2 {PNL(�φ = 0) − PNL(�φ = π )

+ i[PNL(�φ = π/2) − PNL(�φ = −π/2)]}.

C. Noninstantaneous nonlinear processes

Close to a multiphoton resonance, nonlinear susceptibilities
become highly frequency dependent. This translates to a
noninstantaneous interaction with respect to the exciting
field so that the polarization exhibits a delayed component.
This is evidenced not only in Fig. 3(c) where the temporal
shape of the real part of the nonlinear polarization turns
out to be asymmetric (while the exciting field is temporally
symmetric), but also by noting that the imaginary part of
the nonlinear polarization envelope [see Fig. 4(c)] is in good
approximation an odd function of time, at least at low field. The
temporal shape of the imaginary component of the nonlinear
polarization at low field then indicates that the atomic optical
response at 3ω0 is temporally delayed and also that optical
losses are very weak. The medium absorbs energy during the
rising edge of the pulse and gives it back completely to the
field during the falling edge. The energy is then redistributed
in time without any net losses. In a mathematical point of
view, this can be understood if one expresses the evolution
of the intensity I of a field having a complex envelope A

as a function of the propagation distance z in a medium that
generates a polarization P:

∂zI (t,z) ∝ −Im[P(t)A∗(t)]. (5)

Since the fluence F of the field reads∫ ∞

−∞
I (t,z)dt, (6)

one obtains the evolution of F along the propagation distance:

∂zF ∝ −
∫ ∞

−∞
Im[P(t)A∗(t)]dt. (7)
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FIG. 4. Contribution of the different processes to the imaginary
part of the nonlinear polarization envelope as a function of time
and fundamental pulse intensity. Top row: cross-phase modulation
induced by a 0.15 TW/cm2 third-harmonic field calculated by TDSE
(a) and the associated higher-order weak-field fit (d). Middle row:
recombination induced by a 0.15 TW/cm2 third-harmonic field
calculated by TDSE (b) and the associated higher-order weak-field
fit (e). Bottom row: third-harmonic generation (calculated without
third-harmonic seed pulse) obtained by solving TDSE (c) and the
associated higher-order weak-field fit (f). In order to highlight the
impact of HOKE, all the data are normalized to their expected peak
field dependence, i.e., the dependence that should follow the nonlinear
polarization without higher-order processes.

Without any loss of generality, one can write the function
Im(P) as the sum of an even and an odd function of time:

Im[P(t)] = Im[Podd(t)] + Im[Peven(t)], (8)

with

Im[Podd(−t)] = −Im[Podd(t)],

Im[Peven(−t)] = Im[Peven(t)]. (9)

Since A(t) is an even real function of time in all calculations
presented here, one obtains in this case

∂zF =
∫ ∞

−∞
Im[Peven(t)]A(t)dt. (10)

As a consequence, only the even part of the polarization
induces optical losses.

While the interaction occurs with negligible optical losses
at low field, this is not the case anymore as the fundamental
field increases. As it can be noticed in Fig. 4(c), for intensities
higher than 20 TW/cm2, the imaginary part of the nonlinear
polarization envelope is not an odd function of time anymore.
This qualitative change of temporal shape consequently indi-
cates that strong optical losses take place, which is confirmed
on the atomic side by the strong increase at high intensity of
the populations left in the excited states of the atom after the
interaction.

A convenient way to reproduce the temporal shape of
the real and imaginary parts of the nonlinear polarization
consists in developing the nonlinear susceptibilities as a
Taylor development with respect to the frequencies involved
in the process. This technique has been already applied in
the case where SPM process takes place close to a two-
photon resonance [21]. For instance, the third-order nonlinear
susceptibility χ (3)(ω1 + ω2 + ω3; ω1,ω2,ω3) responsible for
THG can be expanded close to ω1 + ω2 + ω3 = 3ω0 as

χ (3)
ω1,ω2,ω3

� χ (3)
ω0,ω0,ω0

+
3∑

j=1

∂ωj
χ (3)

ω0,ω0,ω0
(ωj − ω0)

+ 1/2
3∑

j=1

∂2
ω2

j

χ (3)
ω0,ω0,ω0

(ωj − ω0)2

+
∑
j 
=k

∂2
ωj ,ωk

χ (3)
ω0,ω0,ω0

(ωj − ω0)(ωk − ω0) + · · · .

(11)

Supposing that all partial derivatives of the same order are
equal, one obtains

χ (3)
ω1,ω2,ω3

�
∑

k

χ
(3)
k

k!
(ω1 + ω2 + ω3 − 3ω0)k, (12)

where χ
(3)
k = ∂k

ωkχ
(3)
ω0,ω0,ω0

. Remembering that the nonlinear
polarization reads in the frequency domain

P̃
(3)
NL(ω)

ε0
=

∫∫
χ

(3)
ω1,ω2,ω−(ω1+ω2)Ẽ(ω1)

× Ẽ(ω2)Ẽ(ω − (ω1 + ω2))dω1dω2, (13)

the third-order Taylor expansion of the third-order nonlinear
polarization temporal envelope responsible for third-harmonic
generation is written as

P (3)
NL,THG(t) = ε0

8

∑
k=0

ik

k!
χ

(3)
k

∂kA0(t)3

∂tk
, (14)

where A0 is the complex envelope of the fundamental field
expressed in V/m. Each term in the development then
modifies the temporal shape of the nonlinear polarization in a
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different way, the kth Taylor coefficient being responsible for
a contribution to the nonlinear polarization, whose temporal
shape follows the kth temporal derivative of the process
if supposed instantaneous. This difference in the temporal
dependence of each terms of the development then facilitates
the retrieval of their relative contributions to the polarization.
Note that the coefficients χ

(3)
k are a priori complex quantities.

As it is the case for SPM and THG, XPM, and recombination
are not exactly instantaneous. For an appropriate fit result,
all processes have been expanded as a Taylor series with
respect to the frequency. The perturbative development has
been truncated after the third order except for the self-phase
modulation term. This is because the latter takes place for
frequencies further shifted from resonance than the other
terms, as it can be noticed in Fig. 1. As a consequence, the
spectral dispersion of the SPM susceptibility is lower (i.e.,
the process is less delayed in the temporal domain) and a
Taylor development to the second order is far sufficient to
reproduce the nonlinear polarization related to SPM. The fitted
real and imaginary parts of the nonlinear polarizations relative
to XPM and recombination are shown in Figs. 3(d), 3(e)
and 4(d), 4(e), respectively, and are in excellent agreement
with the TDSE results. Finally, note that this mathematical
method consisting in developing the nonlinear polarization as
a Taylor development with respect to the frequency remains
valid as long as the nonlinear polarization behaves smoothly
with respect to the frequency, i.e., when the process does
not take place at the exact atomic resonance, which is
the case in this parametric study. As shown above, this
treatment leads to express the nonlinear polarization as a sum
of terms proportional to successive temporal derivatives of
the field. On the contrary, in the case where the nonlinear
polarization oscillates at the exact atomic resonance frequency,
a more appropriate treatment would consist in considering
the full spectral dependence of the nonlinear susceptibility.
It would lead one to express the nonlinear polarization as a
convolution between the field and the temporal response of the
medium expressed as the Fourier transform of the nonlinear
susceptibility.

IV. IMPACT OF THE RESONANCE ON
THE FILAMENTATION DYNAMICS

The first question arising after this microscopic study is
the impact of the exhibited HOKE on the propagation of a
400 nm pulse in krypton, in particular, in the filamentation
regime. As already mentioned above, if only 1.5% of third
harmonic is generated during the filamentation process, cross-
phase modulation could actively participate and could even
become the predominant effect to the intensity clamping of the
filament, in place of ionization. In order to elucidate the role of
HOKE in the filamentation dynamics, nonlinear propagation
simulations have been performed. More particularly, two
scenarios have been compared. The first one is the classical
scenario of filamentation based on two ingredients: Kerr
effect and ionization. The HOKE mechanisms are discarded
and the Kerr effect is considered as perfectly instantaneous.
As a result, the third-order nonlinear susceptibility becomes
frequency independent so that n2XPM = n2R = n2THG = n2SPM .
This scenario is compared to the one that takes into account the

two-color resonance and its underlying HOKE. Accordingly,
the nonlinear polarization can be evaluated in the two different
cases and then injected in the unidirectional pulse propagation
equation [27] that drives the propagation dynamics of the
filament. Both models also embed a phase-dependent two-
color ionization rate directly derived from the TDSE results.
Both simulations have been conducted in the case of a 500 μJ,
20 fs, and 400 nm pulse with a 1 mm beam radius (FWHM)
focused with a 1 m focal lens in 0.1 bar of krypton. Note that
the initial pulse duration chosen in this case is longer than the
one used for the parametric study performed to fit the different
nonlinear refractive indices. It then ensures that the delayed
nature of the nonlinear optical response is well reproduced
by the Taylor developments of the nonlinear susceptibilities
with respect to the frequency, at least at the beginning of
the propagation. During the filamentation process, however,
it is known that supercontinuum generation leads to a spectral
broadening. This could potentially lead to the generation
of frequencies potentially resonant with multiphoton atomic
transitions, making our model more questionable. In fact,
in the filamentation simulations shown below, the spectral
broadening of the pulses is sufficiently limited to ensure that
the conclusion of our filamentation simulations remains valid.

As shown in Fig. 5, the characteristics of the filament
strongly differ depending on the model. The full HOKE model
predicts a three times lower intense and two times wider
filament than the classical counterpart. On the contrary, the
two models predict similar maximal electron density and linear
electron density. The difference between the two models is
mainly due to two distinct mechanisms. First, the generation
of third harmonic is far more efficient in the HOKE model
because of the vicinity of the (4p-5s) three-photon resonance.
The impact of the third-harmonic radiation on the fundamental
field during the filamentation process is then de facto enhanced
because more third harmonic is generated. Since the nonlinear
refractive index related to XPM is highly negative in the HOKE
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FIG. 5. On-axis intensity (a), FWHM beam radius (b), electrons
density (c), and linear density (d) as a function of the propagation
distance. The lines in dashed blue (solid red) are obtained with the
classical (full HOKE) model.
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scenario, the third-harmonic beam defocuses the fundamental
one, which lowers the clamping intensity. Secondly, even if
the fundamental pulse intensity predicted by the HOKE model
is lower, the ionization yield is still comparable to the one
predicted by the classical scenario. This is because ionization
is greatly enhanced in the presence of third-harmonic radiation.
Indeed, as recently demonstrated [17–19], when a fundamental
field is accompanied by its third-harmonic, quantum inter-
ferences between different ionization channels occur, which
results in a very strong enhancement of the ionization rate.
As a consequence, ionization still actively participates in the
intensity clamping of the filament. Nevertheless, contrary to
the usual scenario of filamentation, in which the plasma is
the only mechanism that stabilizes the filament, it is found
that the defocusing cross-phase modulation induced by the
third-harmonic field also plays a major role in the filamentation
clamping.

V. CONCLUSION

As a conclusion, the atomic optical response of a gas
has been studied in the case where a two-photon transition
involving a fundamental field and its third harmonic is close
to an atomic resonance. In this situation, the cross-phase
modulation, recombination, and third-harmonic generation
are strongly enhanced. Moreover, it is shown that higher-
order nonlinearities are also strongly boosted and have to
be considered for an accurate representation of the nonlinear
polarization. Higher-order nonlinear refractive indices have
been extracted from TDSE results in the case of krypton for

a 400 nm pulse. Finally, the mechanism of filamentation has
been studied in this configuration. It is found that the presence
of the two-photon resonance strongly modifies the propagation
dynamics of the filament as compared to the general case, i.e.,
far from any resonance. More particularly, it has been shown
that the defocusing cross-phase modulation induced by the
third-harmonic field on the fundamental one actively partici-
pates to the intensity clamping of the filament together with
ionization. This highlights the role of the excited bound states
in the propagation of ultraviolet filaments. Studied in krypton,
the exhibited process should occur in any gas but at different
wavelengths (mainly in the UV range) because of the resonant
nature of the process. For instance, it is anticipated that a sim-
ilar trend could occur at 266 nm in argon. Finally, note that the
same kind of processes could also take place with higher-order
harmonics of visible and near-infrared fields. In particular,
giant defocusing cross-phase modulation induced by an odd
harmonic as exhibited in the present work can be put in the per-
spective of the debate concerning the existence of higher-order
Kerr effect for 800 nm pulses. Accordingly, one can wonder if
the cross-phase modulation induced by higher-order harmon-
ics could have participated in the observations reported in [2].
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