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Optical trapping by Laguerre-Gaussian beams: Far-field matching, equilibria, and dynamics
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By using the method of far-field matching we obtain the far-field expressions for the optical (radiation) force
exerted by Laguerre-Gaussian (LG) light beams on a spherical (Mie) particle and study the optical-force-induced
dynamics of the scatterer near the trapping points represented by the equilibrium (zero-force) positions. The
regimes of linearized dynamics are described in terms of the stiffness matrix spectrum and the damping constant
of the ambient medium. Numerical analysis is performed for both nonvortex and optical-vortex LG beams. For
the purely azimuthal LG beams, the dynamics is found to be locally nonconservative and is characterized by
the presence of conditionally stable equilibria (unstable zero-force points that can be stabilized by the ambient
damping). We also discuss effects related to the Mie resonances (maxima of the internal field Mie coefficients)
that under certain conditions manifest themselves as the points changing the trapping properties of the particles.
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I. INTRODUCTION

The idea of a mechanical action of light has been pursued
for hundreds of years. In the 1970s Ashkin demonstrated
the fact that focused laser beams can be used to trap and
control dielectric particles, which also included feedback
cooling [1,2]. Over the past two decades single-beam optical
traps, which were first developed in Ref. [3] and are commonly
known as the optical tweezers, have become an indispensable
tool in numerous fields of science where optical forces are
employed for manipulation, measurements, or for creating and
controlling new states of matter.

Theoretical approaches to modeling optical tweezers are
typically based on the theory of light scattering [4,5] and use
the methods closely related to the problem of light scattering by
spherically shaped particles that dates back to the more-than-
century-old classical exact solution due to Mie [6]. A system-
atic expansion of the electromagnetic field over vector spher-
ical harmonics lies at the heart of Mie-type theories [7–10].

The specific form of the expansions known as the T -matrix
ansatz has been widely used in the related problem of light
scattering by nonspherical [9,11,12] and optically anisotropic
particles [13–17]. Light scattering from arbitrary shaped
laser beams [18–22] has been the key subject of the Mie-
type theory—the so-called generalized Lorenz-Mie theory
(GLMT)—extended to the case of arbitrary incident-beam
scattering [10,23].

In GLMT, illuminating beams are described in terms of
expansions over a set of basis wave functions and the expansion
coefficients are known as beam-shape coefficients [24]. When
the analytical treatment of laser beams uses approximations
such as the well-known paraxial approximation [25], the
key difficulty is that multipole expansions for approximate
solutions of the vector Helmholtz equation (pseudo-fields) rep-
resenting the beams do not exist. Therefore, some remodelling
procedure must be invoked to obtain a real radiation field.
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Typically, remodelling procedures assume that the actual
incident field is equal to the pseudofield on a matching surface
such as a far-field sphere [26], the focal plane [26,27], and
a Gaussian reference sphere representing a lens [28]. Given
the pseudofield distribution on the surface, the beam-shape
coefficients then can be evaluated by using either numerical
integration or the one-point matching method [26].

Alternatively, propagation of a laser beam, which is known
in the paraxial limit, can be analytically described without
recourse to the paraxial approximation. In Refs. [29–33]
this strategy was applied to the important case of Laguerre-
Gaussian (LG) beams using different methods. An analytic
approach to modeling the Mie scattering of focused scalar
fields using the basis of closed-form solutions of the Helmholtz
equation representing nonparaxial counterparts of the LG
beams was recently suggested in Ref. [34].

In recent studies of light scattering by spherical and
spheroidal particles illuminated with LG beams [35,36], the
analytical results of Ref. [31] were used to calculate the beam-
shape coefficients. In our previous paper [37], the far-field
matching method is combined with the results for nonparaxial
propagation of LG beams [32,33] to study near-field structures
such as nanojets and optical vortices. A similar method was
recently used in Ref. [38].

LG beams are important for optical trapping [39]. At
nonzero azimuthal mode number, they represent optical vortex
laser beams exhibiting a helical phase front and carrying a
phase singularity. The topological charge of the phase singu-
larity and associated orbital angular momentum are known to
give rise to a number of distinctive phenomena [40,41]. In
particular, rotation of trapped spheres by vortex beams [42,43]
is a remarkable manifestation of the nonconservative nature of
optical-force-induced dynamics. The latter implies that, owing
to a scattering contribution to optical force fields, the optical
forces cannot generally be derived from an underlying poten-
tial. This has important consequences for stochastic dynamics
of the particles optically trapped by LG beams. In particular,
such particles may not approach thermodynamic equilib-
rium [44–47]. The fundamental problems of nonequilibrium
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statistical physics [48,49] have thus given additional impetus
to the studies of technologically important subjects related to
the dynamics of optical trapping.

In this paper we deal with the radiation-force-induced
dynamics of Mie scatterers. Our goal is to examine the regimes
of the dynamics depending on the parameters characterizing
both the LG beam and the scatterer. For this purpose, we
systematically use the far-field matching method supple-
mented with the symmetry analysis. The effects related to
the nonconservative character of the dynamics and the role of
Mie resonances will be our primary interest.

The layout of the paper is as follows: In Sec. II A, we
outline our theoretical approach. The fundamental properties
of the far-field angular distributions and the analytical results
for the beam-shape coefficients of LG beams are described
in Secs. II B and II C. The far-field expressions for the flux
of the Poynting vector and the optical force are deduced in
Sec. III A. Symmetry analysis for LG beams is performed in
Sec. III B. The optical-force-induced dynamics and stability
of the zero-force points are discussed in Sec. IV A. In the
remaining part of Sec. IV, we present the results of numerical
computations such as the stiffness matrix eigenvalues and
the on-axis position of the equilibria evaluated as a function
of the scatterer-size parameter at different values of the LG
beam radial and azimuthal mode numbers. Technical details on
separating out the gradient-dependent terms in the expression
for the optical force are relegated to Appendix A. Finally,
in Sec. V, we draw our results together and make some
concluding remarks.

II. FAR-FIELD MATCHING

In this section we, follow Ref. [37], introduce all necessary
notations and apply the far-field matching method to evaluate
the beam-shape coefficients. To this end, we introduce the
vector angular distributions characterizing the wave field in
the far-field region. The coefficients are then derived by
matching the far-field distributions for the incident wave and
the corresponding expansions over vector spherical harmonics.

A. Wave functions and T matrix

We consider scattering by a spherical particle of radius
Rp embedded in a uniform isotropic dielectric medium with
dielectric constant εmed and magnetic permeability μmed (the
geometry of light scattering is schematically illustrated in
Fig. 1). The dielectric constant and magnetic permittivity
of the particle are εp and μp, respectively. For a harmonic
electromagnetic wave (time-dependent factor is exp{−iωt}),
the Maxwell equations can be written in the following form:

− ik−1
i ∇ × E = μi

ni

H, (1a)

ik−1
i ∇ × H = ni

μi

E, i =
{

med, r > Rp

p, r < Rp,
(1b)

where nmed = √
εmedμmed is the refractive index outside the

scatterer (in the ambient medium), where r > Rp (i = med)
and ki = kmed ≡ k = nmedkvac (kvac = ω/c = 2π/λ is the free-
space wave number); np = √

εpμp is the refractive index for

FIG. 1. Mie scatterer (spherical particle) is illuminated with a
focused LG beam propagating along the z axis. The displacement
vector rp determines the location of the particle with respect to the
beam waist.

the region inside the spherical particle (scatterer), where r <

Rp (i = p) and ki = kp = npkvac.
The electromagnetic field can always be expanded by using

the vector spherical harmonic basis [50]. There are three
cases of these expansions that are of particular interest. They
correspond to the incident wave, {Einc,Hinc}, the outgoing
scattered wave, {Esca,Hsca}, and the electromagnetic field
inside the scatterer, {Ep,Hp}:

Eα =
∑
jm

[
α

(α)
jmM(α)

jm(ρi,r̂) + β
(α)
jmN(α)

jm(ρi,r̂)
]
,

α ∈ {inc,sca,p}, (2a)

Hα = ni

μi

∑
jm

[
α

(α)
jmN(α)

jm(ρi,r̂) − β
(α)
jmM(α)

jm(ρi,r̂)
]
, (2b)

M(α)
jm(ρi,r̂) = ik−1

i ∇ × N(α)
jm = z

(α)
j (ρi)Y

(m)
jm (r̂), (2c)

N(α)
jm(ρi,r̂) = −ik−1

i ∇ × M(α)
jm =

√
j (j + 1)

ρi

z
(α)
j (ρi)Y

(0)
jm(r̂)

+Dz
(α)
j (ρi)Y

(e)
jm(r̂), (2d)

i =
{

med, α ∈ {inc,sca}
p, α = p,

z
(α)
j (ρi) =

⎧⎨
⎩

jj (ρ), α = inc
h

(1)
j (ρ), α = sca

jj (ρp), α = p,

(2e)

where ρ ≡ ρmed = kmedr , ρp = kpr ≡ nρ, and n =
np/nmed is the ratio of refractive indexes, also known as the
optical contrast; Df (x) ≡ x−1∂x[xf (x)] and ∂x stands for a
derivative with respect to x.
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According to Ref. [14], the spherical harmonics can be con-
veniently expressed in terms of the Wigner D functions [50,51]
as follows:

Y(m)
jm (r̂) = Nj√

2

{
D

j∗
m,−1(r̂)e−1(r̂) − D

j∗
m,1(r̂)e+1(r̂)}

= −ir̂ × Y(e)
jm(r̂), (3a)

Y(e)
jm(r̂) = Nj√

2

{
D

j∗
m,−1(r̂)e−1(r̂) + D

j∗
m,1(r̂)e+1(r̂)

}
= −ir̂ × Y(m)

jm (r̂), (3b)

Y(0)
jm(r̂) = NjD

j∗
m,0(r̂)e0(r̂)

= Yjm(r̂)r̂, Nj = [(2j + 1)/4π ]1/2, (3c)

where Y(m)
jm , Y(e)

jm, and Y(0)
jm are electric, magnetic, and

longitudinal harmonics, respectively; Yjm(r̂) ≡ Yjm(φ,θ )
is the normalized spherical function; e±1(r̂) = ∓[ex(r̂) ±
iey(r̂)]/

√
2; ex(r̂) ≡ eθ (r̂) = (cos θ cos φ, cos θ sin φ,

− sin θ ), ey(r̂) ≡ eφ(r̂) = (− sin φ, cos φ,0) are the
unit vectors tangential to the sphere; φ (θ ) is
the azimuthal (polar) angle of the unit vector
r̂ = r/r = (sin θ cos φ, sin θ sin φ, cos θ ) ≡ e0(r̂) ≡ ez(r̂);
f (r̂) ≡ f (φ,θ ) (hats denote unit vectors and an asterisk
indicates complex conjugation).

Note that, for the irreducible representation of the ro-
tation group with the angular number j , the D functions
D

j
mν(α,β,γ ) = exp(−imα)dj

mμ(β) exp(−iμγ ) give the ele-
ments of the rotation matrix parametrized by the three Euler
angles [50,51]: α, β, and γ . In formulas (3) and throughout
this paper, we assume that γ = 0 and D

j
mν(r̂) ≡ D

j
mν(φ,θ,0).

Owing to the orthogonality relations for D functions [50,51],
a set of vector spherical harmonics is orthonormal:〈

Y(α)∗
jm (r̂) · Y(β)

j ′m′(r̂)
〉
r̂ = δαβδjj ′δmm′ . (4)

where 〈f 〉r̂ ≡ ´ 2π

0 dφ
´ π

0 sin θdθf (r̂).
In the far-field region (ρ 
 1), the asymptotic behav-

ior of the spherical Bessel and Hankel functions, jj (x) =
[π/(2x)]1/2Jj+1/2(x) and h

(1,2)
j (x) = [π/(2x)]1/2H

(1,2)
j+1/2(x),

which enter the expressions for the vector wave functions [see
Eqs. (2c) and (2d)] is known [52]:

ij+1h
(1)
j (ρ), ijDh

(1)
j (ρ) ∼ exp(iρ)/ρ, (5a)

(−i)j+1h
(2)
j (ρ), (−i)jDh

(2)
j (ρ) ∼ exp(−iρ)/ρ, (5b)

ij+1jj (ρ), ij+1Djj+1(ρ) ∼
[exp(iρ) − (−1)j exp(−iρ)]/(2ρ). (5c)

So the spherical Hankel functions of the first kind, h
(1)
j (ρ),

describe the outgoing waves, whereas those of the second
kind, h

(2)
j (ρ), represent the incoming waves. For such waves,

similar to Eqs. (2a) and (2b), the expansions in vector spherical
harmonics can be written in terms of the vector wave functions:
M(1,2)

jm and N(1,2)
jm given in Eqs. (2c) and (2d) with z

(1,2)
j =

h
(1,2)
j . From the asymptotic relations (5a) and (5b), the vector

wave functions of outgoing and incoming waves in the far-field

region are given by

M(out)
jm ≡ M(1)

jm ∼ (−i)j+1 eiρ

ρ
Y(m)

jm ,

(6)

N(out)
jm ≡ N(1)

jm ∼ (−i)j
eiρ

ρ
Y(e)

jm,

M(in)
jm ≡ M(2)

jm ∼ ij+1 e−iρ

ρ
Y(m)

jm ,

N(in)
jm ≡ N(2)

jm ∼ ij
e−iρ

ρ
Y(e)

jm. (7)

Thus outside the scatterer the optical field is a sum of
the incident wave field with z

(inc)
j (ρ) = jj (ρ) = [h(1)

j (ρ) +
h

(2)
j (ρ)]/2 and the scattered waves with z

(sca)
j (ρ) = h

(1)
j (ρ) as

required by the Sommerfeld radiation condition. The incident
field is the field that would exist without a scatterer and
therefore includes both incoming and outgoing parts [see
Eq. (5c)] because, when no scattering, what comes in must go
outward again. As opposed to the spherical Hankel functions
that are singular at the origin, the incident wave field should be
finite everywhere and thus is described by the regular Bessel
functions jj (ρ).

So long as the scattering problem is linear, the coefficients
α

(sca)
jm and β

(sca)
jm can be written as linear combinations of α

(inc)
jm

and β
(inc)
jm :

α
(sca)
jm =

∑
j ′,m′

[
T 11

jm,j ′m′α
(inc)
j ′m′ + T 12

jm,j ′m′β
(inc)
j ′m′

]
,

β
(sca)
jm =

∑
j ′,m′

[
T 21

jm,j ′m′α
(inc)
j ′m′ + T 22

jm,j ′m′β
(inc)
j ′m′

]
. (8)

These formulas define the elements of the T matrix in the most
general case. The T matrix of a spherically symmetric scatterer
is diagonal over the angular momenta and the azimuthal
numbers: T nn′

jj ′,mm′ = δjj ′δmm′T nn′
j . In addition, since the parity

of electric and magnetic harmonics with respect to the spatial
inversion r̂ → −r̂ ({φ,θ} → {φ + π,π − θ}) is different,

Y(m)
jm (−r̂) = (−1)j Y(m)

jm (r̂), Y(e)
jm(−r̂) = (−1)j+1Y(e)

jm(r̂),
(9)

where f (r̂) ≡ f (φ,θ ) and f (−r̂) ≡ f (φ + π,π − θ ), they do
not mix provided the mirror symmetry has not been broken.
In this case the T matrix is diagonal and T 12

j = T 21
j = 0. The

diagonal elements, which are known as the Mie coefficients,
are given by

T 11
j ≡ T

(m)
j = n−1u′

j (x)uj (nx) − μ−1uj (x)u′
j (nx)

μ−1vj (x)u′
j (nx) − n−1v′

j (x)uj (nx)
,

(10)
μ = μp/μmed,

T 22
j ≡ T

(e)
j = μ−1u′

j (x)uj (nx) − n−1uj (x)u′
j (nx)

n−1vj (x)u′
j (nx) − μ−1v′

j (x)uj (nx)
,

(11)
n = np/nmed,
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where x = kmedRp, uj (x) = xjj (x), and vj (x) = xh
(1)
j (x). The

coefficients of the expansion for the wave field inside the
scatterer, α

(p)
jm and α

(p)
jm , are similarly expressed in terms of

the coefficients describing the incident light as follows:

α
(p)
jm = a

(p)
j α

(inc)
jm ,

(12)

a
(p)
j = −i

μ−1vj (x)u′
j (nx) − n−1v′

j (x)uj (nx)
,

β
(p)
jm = b

(p)
j β

(inc)
jm ,

(13)

b
(p)
j = −i

n−1vj (x)u′
j (nx) − μ−1v′

j (x)uj (nx)
,

where a
(p)
j and b

(p)
j are the internal field coefficients.

B. Beam-shape coefficients

Formulas (10)–(13) describe the wave field both inside
and outside the particle when the expansion for the incident
light beam is known. Our next step is to examine asymptotic
behavior of the total optical field, which is a sum of the incident
and scattered wave fields, in the far-field region, ρ 
 1. The
electric and magnetic fields in this region can be separated into
the incoming and the outgoing parts

Etot = Einc + Esca ∼ E(∞)
tot

= 1

ρ
[exp(iρ)Eout(r̂) + exp(−iρ)Ein(r̂)], (14)

Htot = Hinc + Hsca ∼ H(∞)
tot

= 1

ρ
[exp(iρ)Hout(r̂) + exp(−iρ)Hin(r̂)] (15)

described by the far-field angular distributions: {Ein,Hin} and
{Eout,Hout}. These far-field vector amplitudes are normal to r̂
and their basic properties can be summarized by the following
relations [9]:

μmed

nmed
Hout(r̂) = r̂ × Eout(r̂),

μmed

nmed
Hin(r̂) = −r̂ × Ein(r̂),

(16)

Eout(r̂) = E(inc)
out (r̂) + E(sca)

out (r̂) ⊥ r̂, Ein(r̂) = −E(inc)
out (−r̂).

(17)

Formulas (14)–(17) explicitly show that, in the far-field region,
the incident wave field is defined by the electric-field angular
distribution of the outgoing wave: E(inc)

out (r̂). When the incident
electromagnetic wave is represented by a superposition of
propagating plane waves of the from

Einc(r) ≡Einc(ρ,r̂) = 〈exp(iρk̂ · r̂)Einc(k̂)〉k̂,
(18)

Einc(k̂) =
∑
ν=±1

Eν(k̂)eν(k̂),

where 〈f 〉k̂ ≡ ´ 2π

0 dφk

´ π

0 sin θkdθkf , the distribution E(inc)
out (r̂)

is determined by the vector amplitudes of the plane waves as

follows:

E(inc)
out (r̂) = −2πiEinc(r̂) = E

(out)
θ (r̂)eθ (r̂) + E

(out)
φ (r̂)eφ(r̂),

(19)

whereas the incoming part of the incident wave is described
by the far-field angular distribution E(inc)

in (r̂) = −E(inc)
out (−r̂).

An important consequence of Eqs. (18) and (19) is that,
translation of the wave fields

{Einc(r), Hinc(r)} → {Einc(r + rp), Hinc(r + rp)} (20)

affects the far-field angular distribution (19) by producing the
phase shift

E(inc)
out (r̂) → E(inc)

out (r̂,rp) = E(inc)
out (r̂) exp[ik(rp · r̂)]. (21)

Referring to Fig. 1, the vector −rp will determine location of
the beam waist with respect to the center of the particle.

The far-field distribution of an incident light beam, E(inc)
out (r̂),

can also be found from the expansion over the vector spherical
harmonics (2a). The far-field asymptotics for the vector wave
functions that enter the expansion for the incident wave (2),

M(inc)
jm (ρ,r̂)∼ (−i)j+1

2ρ

[
exp(iρ)Y(m)

jm (r̂)− exp(−iρ)Y(m)
jm (−r̂)

]
,

(22)

N(inc)
jm (ρ,r̂) ∼ (−i)j

2ρ

[
exp(iρ)Y(e)

jm(r̂) − exp(−iρ)Y(e)
jm(−r̂)

]
,

(23)

can be derived from Eqs. (2c)–(2d) with the help of the far-field
relation (5c). Substituting Eqs. (22) and (23) into Eq. (2a) gives
the expansion for the far-field distribution (19)

E(inc)
out (r̂) = 2−1

∑
jm

(−i)j+1
[
α

(inc)
jm Y(m)

jm (r̂) + iβ
(inc)
jm Y(e)

jm(r̂)
]

≡
∑
jm

∑
α∈{e,m}

w
(α)
jmY(α)

jm, (24)

where w
(m)
jm = (−i)j+1α

(inc)
jm /2 and w

(e)
jm = (−i)jβ(inc)

jm /2. Sim-
ilar result for the far-field angular distribution of the scattered
wave, E(sca)

out (r̂), is given by

E(sca)
out (r̂) =

∑
jm

(−i)j+1[α(sca)
jm Y(m)

jm (r̂) + iβ
(sca)
jm Y(e)

jm(r̂)
]

≡
∑
jm

∑
α∈{e,m}

s
(α)
jmY(α)

jm, (25)

where s
(m)
jm = (−i)j+1α

(sca)
jm and s

(e)
jm = (−i)jβ(sca)

jm .
The coefficients of the incident wave can now be easily

found as the Fourier coefficients of the far-field angular distri-
bution, E(inc)

out , expanded using the vector spherical harmonics
basis (3). The final result reads

α
(inc)
jm = 2ij+1

〈
Y(m)∗

jm (r̂) · E(inc)
out (r̂)

〉
r̂

= 2nj i
j

ˆ 2π

0
dφ

ˆ π

0
dθY ∗

jm(φ,θ )

× [
∂θ

(
sin θE

(out)
φ

) − ∂φE
(out)
θ

]
, (26a)

β
(inc)
jm = 2ij

〈
Y(e)∗

jm (r̂) · E(inc)
out (r̂)

〉
r̂
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= −2nj i
j

ˆ 2π

0
dφ

ˆ π

0
dθY ∗

jm(φ,θ )

× [
∂θ

(
sin θE

(out)
θ

) + ∂φE
(out)
φ

]
, (26b)

where nj = [j (j + 1)]−1/2.

C. Reconstructed Laguerre-Gaussian beams

In the paraxial approximation, the LG beams are described
in terms of scalar fields of the form: unm(r) exp(ikz), where
n (m) is the radial (azimuthal) mode number and unm(r)
is the solution of the paraxial Helmholtz equation that can
be conveniently written in the cylindrical coordinate system,
(r⊥,φ,z), as follows:

unm(r⊥,φ,z) = |σ |−1ψnm(
√

2r⊥/w) exp

× { − r2
⊥/

(
w2

0σ
) + imφ − iγnm

}
, (27a)

σ ≡ σ (z) = 1 + iz/zR, w ≡ w(z) = w0|σ |, (27b)

γnm ≡ γnm(z) = (2n + m + 1) arctan(z/zR),

ψnm(x) = x|m|L|m|
n (x2), (27c)

where Lm
n is the generalized Laguerre polynomial given

by [53]

Lm
n (x) = (n!)−1x−m exp(x)∂n

x [xn+m exp(−x)], (28)

w0 is the initial transverse Gaussian half-width (the beam
diameter at waist) zR = kw2

0/2 = [2kf 2]−1 is the Rayleigh
range and f = [kw0]−1 is the focusing parameter.

The problem studied in Refs. [30,32,33] deals with the exact
propagation of the optical field in the half space, z > 0, when
its transverse components at the initial (source) plane, z = 0,
are known. In Ref. [32], the results describing asymptotic
behavior of the linearly polarized field,

E(r⊥,φ,0) =unm(r⊥,φ,0)x̂ = ψnm(
√

2r⊥/w0)

× exp
{ − r2

⊥/w2
0 + imφ

}
x̂, (29)

were derived by using the angular spectrum representation
(Debye integrals) and comply with both the results of
rigorous mathematical analysis performed in Ref. [54] and
those obtained by using the vectorial Rayleigh-Sommerfeld
integrals [30,33]. The resulting expression for the far-field
angular distribution can be written in the following form:

E(LG)
out (φ,θ ) = Enm(f −1 sin θ/

√
2) exp(imφ)eout, (30a)

eout = cos φeθ (r̂) − cos θ sin φeφ(r̂)

= cos θ x̂ − sin θ cos φẑ, (30b)

Enm(x) = xm

i2n+m+12f 2
Lm

n (x2) exp(−x2/2). (30c)

The beam-shape coefficients for the LG beams can now be
computed from formulas (26) where the far-field distribution
E(inc)

out is defined in Eq. (30a). We can also combine the
relations (19) and (18) with the outgoing part of the far-field
distribution (30a) to deduce the expression for the electric field

of the reconstructed LG beam:

E(LG)
inc (ρ⊥,φ,ρz) =E(LG)

x (ρ⊥,φ,ρz)x̂ + E(LG)
z (ρ⊥,φ,ρz)ẑ

= i

2π

〈
exp[i(ρ⊥ sin θk cos(φ − φk)

+ ρz cos θk)]E(LG)
out (k̂)

〉
k̂, (31)

where ρ⊥ = kr⊥ and ρz = kz.

III. OPTICAL FORCE AND SYMMETRIES

The electric-field far-field distributions for the incident and
the scattered waves [see Eqs. (24) and (25), respectively] are
found to play a major part in the method of far-field matching.
In particular, they determine the beam-shape coefficients (26)
and incorporate dependence on the particle position [see
Eq. (21)]. In this section, we derive a useful far-field expression
for the optical force and discuss some symmetry properties of
the LG beams.

A. Maxwell’s stress tensor and optical force

It is not difficult to obtain the far-field expression for the
time-averaged Poynting vector of the total wave field given in
Eqs. (14)–(16), Stot = c

(8π) Re(Etot × H∗
tot):

Stot(ρ,r̂) ∼ S(∞)
tot (ρ,r̂) = cnmed

8πμmedρ2
{|Eout(r̂)|2 − |Ein(r̂)|2}r̂,

(32)

where |Eα(r̂)|2 = [Eα(r̂) · E∗
α(r̂)], and use the relations (17)

to evaluate the flux of the Poynting vector (32) through the
far-field sphere Sf of the radius Rf .

The result can be written in the following well-known form:
‹

Sf

(
S(∞)

tot · ds
) = R2

f

〈[
S(∞)

tot (kRf ,r̂) · r̂
]〉

r̂

≡ −Wabs = Wsca − Wext, (33)

Wsca = cnmed

8πμmedk2

〈∣∣E(sca)
out (r̂)

∣∣2〉
r̂,

Wext = − cnmed

4πμmedk2
Re

〈[
E(sca)

out (r̂) · [
E(inc)

out (r̂)
]∗]〉

r̂, (34)

where Wsca is the energy scattering rate (the rate at which the
scattered energy crosses the sphere in the outward direction),
Wabs is the energy absorption rate, and Wext = Wsca + Wabs is
the extinction rate. When the scatterer and the surrounding
medium are both nonabsorbing, the energy absorption rate
vanishes, Wabs = 0, and Eq. (33) yields unitarity relations for
the T matrix [9] [see also Eq. (A3) in Appendix A]. In our
spherically symmetric case, these are |2T 11

j + 1|2 = |2T 22
j +

1|2 = 1.
According to Ref. [43], the total power of the incident

laser beam, Winc, can be computed by integrating the Poynting
vector for the outgoing part of the incident field. In our case,
this part expressed in terms of the beam-shape coefficients is
given in Eq. (24) and the total power of the incident beam can
be written in the form of a sum:

Winc = cnmed

8πμmedk2

〈∣∣E(inc)
out (r̂)

∣∣2〉
r̂ =

∑
j

{
W

(m)
j + W

(e)
j

}
, (35)
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where W
(m)
j (W (e)

j ) is the power of magnetic (electric) modes
with the angular momentum j given by

W
(m)
j = cnmed

32πμmedk2

j∑
m=−j

∣∣α(inc)
jm

∣∣2
,

W
(e)
j = cnmed

32πμmedk2

j∑
m=−j

∣∣β(inc)
jm

∣∣2
. (36)

The far-field angular distributions, E(sca)
out (r̂) and E(inc)

out (r̂),
also determine the time-averaged optical force F acting on
the particle. This force can be expressed in terms of the time-
average of Maxwell stress tensor TM :

TM = 1

8π
Re{εmedE ⊗ E∗ + μmedH ⊗ H∗

− I(εmed|E|2 + μmed|H|2)/2}, (37)

where I is the unit dyadic, as follows:

F =
‹

Sf

(
T(∞)

M · ds
)
, (38)

where T(∞)
M is the Maxwell stress tensor (37) in the far-field

region. Substituting Eqs. (14)–(16) into the stress tensor (37)
gives the following expression for the dot product:(

T(∞)
M · r̂

) = − εmed

8πρ2
{|Eout(r̂)|2 + |Ein(r̂)|2}r̂, (39)

which enters the integrand on the right-hand side of Eq. (38).
The resulting expression for the optical force is

F(rp) = − εmed

8πk2

{〈
r̂
∣∣E(sca)

out (r̂,rp)
∣∣2〉

r̂

+ 2 Re
〈
r̂
[[

E(inc)
out (r̂,rp)

]∗ · E(sca)
out (r̂,rp)

]〉
r̂

}
, (40)

where we have indicated that the net force exerted on the
particle depends on the displacement vector rp describing
position of the scatterer with respect to the focal plane (see
Fig. 1).

In the special case of plane-wave illumination, the far-field
expression for the optical force was derived in Ref. [55]. In
Appendix A we show that formula (40) can alternatively be
recast into the form [see Eq. (A9)] where the terms containing
derivatives with respect to coordinates of the displacement
vector rp (the gradient terms) are explicitly separated out.

In the spherical basis, ê± = ∓(x̂ ± iŷ)/
√

2 and ê0 = ẑ, the
components of the optical force can be expressed in terms of

the coefficients that enter the expansions for the incident and
scattered waves [see Eqs. (24) and (25)] as follows:

Fν = (F · ê∗
ν) = − εmed

8πk2

∑
jm

∑
j ′m′

{
p

jj ′
mm′P

jj ′1
mm′ν + q

jj ′
mm′Q

jj ′1
mm′ν

}
,

(41)

p
jj ′
mm′ =

∑
α

{
s

(α)
jms

(α)∗
j ′m′ + s

(α)
jmw

(α)∗
j ′m′ + w

(α)
jms

(α)∗
j ′m′

}
, (42)

q
jj ′
mm′ =

∑
α,β

(1 − δαβ)
{
s

(α)
jms

(β)∗
j ′m′ + s

(α)
jmw

(β)∗
j ′m′ + w

(α)
jms

(β)∗
j ′m′

}
,

(43)

P
jj ′1
mm′ν =NjNj ′/2

∑
μ=±1

〈
Dj∗

mμ(r̂)Dj ′
m′μ(r̂)D1

ν0(r̂)
〉
r̂

= 1

8

√
2j ′ + 1

2j + 1
C

1 j ′ j

νm′m

∑
μ=±1

C
1j ′j
0μμ, (44)

Q
jj ′1
mm′ν = −NjNj ′/2

∑
μ=±1

μ
〈
Dj∗

mμ(r̂)Dj ′
m′μ(r̂)D1

ν0(r̂)
〉
r̂

= −1

8

√
2j ′ + 1

2j + 1
C

1 j ′ j

νm′m

∑
μ=±1

μC
1j ′j
0μμ, (45)

where ν ∈ {±1,0} and C
1 j ′ j

νm′m denotes the Clebsch-Gordon
(Wigner) coefficient. Derivation of formula (41) involves the
following steps: (a) substituting expansions (24) and (25) into
the expression for the optical force; (b) using the components
of the vector r̂ expressed in terms of D functions: (r̂ · ê∗

ν) =
D1

ν0(r̂); (c) using Eq. (3) to compute dot products of the
vector spherical functions (Y(α)

jm · Y(β)∗
j ′m′), and (d) using the

relation [50]

〈
Dj∗

mμ(r̂)Dj ′
m′μ(r̂)D1

ν0(r̂)
〉
r̂ = π

2j + 1
C

1 j ′ j

νm′mC
1j ′j
0μμ (46)

to perform the integrals.
The result (41) can be further simplified by using the

permutation symmetry relations

p
j ′j
m′m = [

p
jj ′
mm′

]∗
, q

j ′j
m′m = [

q
jj ′
mm′

]∗
, (47)

P
j ′j1
m′mν = (−1)νP jj ′1

mm′−ν, Q
j ′j1
m′mν = (−1)νQjj ′1

mm′−ν (48)

and the explicit expressions for the coefficients

P
jj1
mm′ν = 0, Q

jj1
mm′ν = − δm′,m−ν

4j (j + 1)

{
m, ν = 0
[(j + νm)(j − νm + 1)/2]1/2, ν = ±1,

(49)

Q
j−1j1
mm′ν = 0, P

j−1j1
mm′ν = δm′,m−ν

4j

√
j 2 − 1

4j 2 − 1

{
[j 2 − m2]1/2, ν = 0
[(j − νm)(j − νm + 1)/2]1/2, ν = ±1

(50)

derived with the help of formulas for the Clebsch-Gordon coefficients (see, e.g., the table on p. 635 of Ref. [50]).
The final result for the components of the optical force (40) reads

Fν = − εmed

8πk2

∑
jm

{
q

jj
mm−νQ

jj1
mm−νν + [

q
jj
mm−ν

]∗
(−1)νQjj1

mm+ν−ν + p
j−1j
mm−νP

j−1j1
mm−νν + [

p
j−1j
mm−ν

]∗
(−1)νP j−1j1

mm+ν−ν

}
. (51)
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Note that it is often useful to rescale the force by introducing
the dimensionless force efficiency [4]

Feff = F/Fscl, Fscl = nmedWinc/c, (52)

where Fscl is the force scale factor proportional to the power
of the incident beam Winc given by Eq. (35).

B. Symmetries of laser beams and stiffness matrix

In Sec. III A, we show that the scattering characteristics
such as the cross sections and the radiation force can be
expressed in terms of the far-field angular distributions that
can be regarded as vector fields on a sphere. Under the action
of the orthogonal transformation M: r̂ �→ r̂′ = M r̂ such fields
transform as follows:

Eout(r̂) �→ E′
out = MEout

(
M−1r̂

)
. (53)

From Eqs. (18) and (40) we derive the relations

Einc(r) �→E′
inc = MEinc(M−1r),

(54)
F[Eout] �→F[E′

out] = MF[Eout],

which define transformations of the incident wave and the
optical force.

The symmetry transformation Ms for the far-field angular
distribution of the incident wave may generally be defined
through the symmetry relation

MsE
(inc)
out

(
M−1

s r̂
) = psE

(inc)
out (r̂), (55)

where ps ≡ exp(iψs) is the phase factor. At |rp| �= 0, we can
use Eq. (21) combined with the orthogonality relation: (r̂ ·
rp) = (M−1

s r̂ · M−1
s rp) to recast the symmetry condition (55)

in the form

psE
(inc)
out (r̂,rp) = MsE

(inc)
out

(
M−1

s r̂,M−1
s rp

)
. (56)

As a direct consequence of the generalized symmetry rela-
tion (56) for the optical force, we have

F(rp) = MsF(M−1
s rp), K(rp) = MsK(M−1

s rp)M−1
s , (57)

where the elements of the stiffness (force) matrix K(rp) are
given by

Kij (rp) = ∂jFi(rp). (58)

At equilibria, the force vanishes [F(req) = 0] and the stiffness
matrix Keq = K(req) is known to govern the regime of
linearized dynamics of the particle [45].

For the LG beams with angular distribution (30a), it can be
easily checked that the direction of propagation (the z axis)
is the axis of twofold rotational symmetry C2 with C2 : φ �→
φ + π and C2 = diag(−1, − 1,1). From Eq. (30a), we have

C2E(LG)
out (C2r̂) = C2E(LG)

out (φ + π,θ ) = (−1)m+1E(LG)
out (r̂).

(59)

When rp ‖ ẑ and C2rp = rp, Eq. (57) for the twofold
symmetry implies that the optical force is directed along the
symmetry axis, F ‖ ẑ, and the stiffness matrix is of the form

K =
⎛
⎝Kxx Kxy 0

Kyx Kyy 0
0 0 Kzz

⎞
⎠. (60)

Since C2Y(e,m)
jm (C2r̂) = (−1)mY(e,m)

jm (r̂), for C2-symmetric LG
beams, the azimuthal numbers of nonvanishing beam-shape
coefficients are of the same parity (m are either all odd or all
even).

We conclude this section with a remark on the special case
of nonvortex LG beams with the vanishing azimuthal mode
number. At m = 0, the angular distribution (30a) is invariant
under the reflection

σxzE
(LG)
out (σxzr̂) = σxzE

(LG)
out (−φ,θ ) = E(LG)

out (r̂), (61)

where σxz = diag(1, − 1,1). This mirror-plane symmetry
places additional constraints on the elements of the stiffness
matrix at rd = σxzrd . From Eq. (57), it can be inferred that
the nondiagonal elements Kxy and Kyx should be equal to
zero. So, for nonvortex beams with m = 0, the matrix (60) is
diagonal,

K = diag(Kxx,Kyy,Kzz). (62)

IV. RESULTS

In this section, we present the results of numerical com-
putations of the radiation force (40) for the case where
the incident wave is represented by the reconstructed LG
beams (31) with the radial mode number n = nLG ∈ {0,1} and
the azimuthal number, m = mLG ∈ {0,1,2}. Substitution of the
far-field distribution (30) into Eq. (26) gives the beam-shape
coefficients of these beams in the form that agrees with our
symmetry analysis:

α
(inc)
jm = α

(+)
j,mLG

δm,mLG+1 + α
(−)
j,mLG

δm,mLG−1, (63a)

β
(inc)
jm = β

(+)
j,mLG

δm,mLG+1 + β
(−)
j,mLG

δm,mLG−1. (63b)

Then the coefficients of expansions (2) describing a
scattered wave and the electromagnetic field inside the
scatterer can be evaluated from formulas (11) and (12).
These coefficients enter the expression for the components of
the optical force (51). The optical-force-induced dynamics of
the particle will be our primary concern.

A. Linearized dynamics and stability of equilibria

We consider the case where the thermal noise can be
neglected and dynamics of the particle is governed by the
equation of motion

d2rp

dt2
+ 2γ

drp

dt
= m−1

p F(rp), (64)

where F(rp) is the optical force given in Eq. (40), γ is the
damping constant of the ambient medium, and mp is the mass
of the particle.

When the particle is trapped, it is localized in the vicinity
of a stable equilibrium (steady state) req, which is the zero-
force position where F(req) = 0. Stability of the equilibrium
can be studied in the linear approximation where Eq. (64) is
approximated by the first-order (linearized) dynamic equations

0 = dv
dt

+ 2γ v + L0x,
dx
dt

= v, (65)

L0 ≡ −m−1
p Keq, (66)
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where x = rp − req is the displacement vector and Keq =
K(req) is the stiffness matrix given in Eq. (58).

The general solution of the system (65) written in the form(
x(t)
v(t)

)
= U(t − t0)

(
x(t0)
v(t0)

)
(67)

describes how the position and the velocity of the particle
evolve in time by using the evolution operator U(t) given by

U(t) =e−γ t

(
cos

√
Lt

√
L−1 sin

√
Lt

−√
L sin

√
Lt cos

√
Lt

)
,

(68)
L =L0 − γ 2I3,

where I3 is the 3 × 3 identity matrix.
If the evolution operator (68) contains terms that are

unbounded functions of time for t ∈ [0,∞), the equilibrium
req is unstable [56] and the particle cannot be trapped at such
a fixed point. Stability of the equilibrium thus requires the
norm of the matrix exponentials exp[−γ I3 ± i

√
L]t to be a

bounded function of time and is determined by the spectrum
of the matrix L. More specifically, for the zero-force point to
be stable, the eigenvalues of the matrix L0 must satisfy the
inequality

| Im(
√

�i − γ 2)| � γ, (69)

where �i is the eigenvalue of the matrix L0. After some rather
straightforward algebraic manipulations, we can conveniently
render the stability condition (70) into the form of the
constraint

4γ 2 Re �i � [Im �i]
2 (70)

imposed on the value of the damping constant γ .
Inequality (70) suggests that the eigenvalues may generally

be divided into three groups:
(a) At Re �i < 0, the point is unstable and cannot be

stabilized by introducing energy losses caused by the ambient
medium.

(b) At Re �i > 0 and Im �i = 0, the point is stable even
if γ = 0 (the case of vacuum).

(c) At Re �i > 0 and Im �i �= 0, the point is conditionally
stable (stabilizable), meaning that, even though the point is
unstable at γ = 0, it can be stabilized provided the particle
is embedded into the medium with sufficiently large damping
constant γ .

Note that an eigenvalue of L0 with Re �i = 0 may
present different cases depending on its imaginary part. More
precisely, the point being conditionally stable at Im �i = 0
would be unstable otherwise.

Another remark concerns the non-generic case when the
matrix L0 is not diagonalizable and its Jordan normal form
contains a Jordan block. This may happen only if there
are repeated eigenvalues of L0 whose geometric multiplicity
is strictly less then the algebraic one. As opposed to the
case of a diagonalizable matrix, at the boundary of the
stability region where | Im(

√
�i − γ 2)| = γ , the exponentials

exp[−γ I3 ± i
√

L]t will diverge at t → ∞ and the zero-force
point is unstable.

FIG. 2. Intensity distributions of the incident wave field in (a) the
x-z plane and (b) the y-z plane for the LG00 (Gaussian) beam with
nLG = mLG = 0 and f = 0.3. The z axis is directed from the top
down.

Now, similar to the force efficiency (52), we introduce the
dimensionless effective stiffness matrix

Leff = L0/Lscl, Lscl = Fscl/(λmp), (71)

where the force scale factor Fscl is given in Eq. (52), and present
the results of our numerical analysis for the technologically
important case of fixed points located on the laser beam axis
(the z axis), req = (0,0,zeq). All the calculations are performed
by assuming that nmed = μmed = 1 and np = 1.33.

B. Nonvortex beams with mLG = 0

We begin with the results for nonvortex LG beams charac-
terized by the vanishing azimuthal mode number mLG = 0.
The well-known example of such beams is the Gaussian
beam LG00, where the radial mode number is also equal
to zero. Figure 2 shows the two-dimensional (2D) intensity
distributions in the x-z and y-z plane for the LG00 beam with
the focusing parameter f = 0.3. Multipolar decomposition
representing the total power of the incident LG00 beam
resolved into the contributions from the electric and magnetic
modes with different angular-momentum number j [see
Eq. (35)] is presented in Fig. 3.

From our symmetry analysis performed in Sec. III B, for
the nonvortex beams, the stiffness matrix is diagonal [see

FIG. 3. Histogram of multipolar decomposition of the incident
LG00 (Gaussian) beam with f = 0.3. Height of the bars represents
relative contribution of the modes, W

(m)
j /Winc and W

(e)
j /Winc [see

Eqs. (35) and (36)] to the total power of the incident beam depending
on the angular-momentum number j .
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FIG. 4. Eigenvalues of the effective stiffness matrix Leff [see
Eqs. (71) and (72)], �α/Lscl, as a function of the size parameter,
Dp/λ = 2Rp/λ, for the LG00 beam with f = 0.3. The scale factor
is Lscl = Winc/(cλmp) [see Eq. (71)] and the optical contrast is
n = np = 1.33.

Eq. (62)]. Thus, the matrix (66) takes the diagonal form

L0 = −m−1
p diag

(
K (eq)

xx ,K (eq)
yy ,K (eq)

zz

) ≡ diag(�x,�y,�z),
(72)

where the eigenvalues are equal to the real-valued diagonal
elements of L0.

In the linear approximation, these eigenvalues dictate the
dynamical regime of the particle motion along the coordi-
nate axes. In particular, the longitudinal mode governed by
the eigenvalue

�z = −m−1
p K (eq)

zz (73)

determine the axial stability of the zero-force point. In what
follows we confine our analysis to the case of the axially
stable equilibrium points with �z � 0. The results for these
points are shown in Figs. 4 and 5. Referring to Fig. 4, the
transverse eigenvalues �x and �y being close to each other
are considerably greater than the longitudinal one: �x ≈ �y >

�z. So, it turned out that all the axially stable equilibria are
the trapping points (stable zero-force points). The coordinate
of the trapping point plotted in relation to the size parameter
of the particle, Dp/λ = 2Rp/λ, is depicted in Fig. 5.

In Figs. 4 and 5, differently shaped marks are used
to indicate the Mie resonance values of the scatterer size
parameter for various modes. Such resonances, also known
as morphology-dependent resonances (whispering-gallery
modes), reveal themselves in nonmonotonic oscillating be-
havior of the magnitude of the internal-field coefficients given
by Eqs. (12) and (13). For the enhancement factors defined
as the square of the modulus of the internal-field coefficients,
Aj = |a(p)

j |2 and Bj = |b(p)
j |2, with j = 1, such oscillations

can be seen in Fig. 6. Open and filled squares are used to mark

FIG. 5. On-axis coordinate of axially stable zero-force points zeq

as a function of the size parameter for the Gaussian beam.

FIG. 6. Enhancement factors, Aj = |a(p)
j |2 and Bj = |b(p)

j |2, ex-
pressed in terms of the internal field coefficients [see Eqs. (12)
and (13)] as a function of the size parameter at j = 1.

the values of the size parameter Dp/λ corresponding to local
maxima of the enhancement factors A1 and B1, respectively.

The LG10 beam characterized by the intensity distributions
and the multipolar decomposition shown in Figs. 7 and 8,
respectively, presents the case of a nonvortex incident beam
with nonzero radial mode number. In contrast to the case of
the Gaussian beams, as is seen from Fig. 9, the longitudinal
eigenvalue �z and the transverse stiffness coefficients �x and
�y are of the same order.

Referring to Fig. 9, for the LG10 beam, stability of equilibria
is determined by the sign of the transverse eigenvalue �x

whereas, for the Gaussian beam, the stability governing factor
is the sign of �z. In addition, the size-parameter dependence of
the zero-force point coordinate shown in Fig. 10 demonstrates
the presence of several branches of axially stable equilibria in
the region of subwavelength scatterers.

C. Optical vortex beams: effects of non-conservative dynamics

It should be stressed that, for the case discussed above of
nonvortex beams is characterized by the symmetric stiffness
matrix and the dynamics of the particle is thus locally
conservative.

Since all eigenvalues of such matrices are real, there are no
conditionally stable equilibria and the stability of all the zero-
force points turned out to be essentially independent of ambient
damping. For the laser beams carrying a phase singularity
known as the vortex the latter is no longer the case.

FIG. 7. Intensity distributions of the incident wave field in (a) the
x-z plane and (b) the y-z plane for the nonvortex LG10 beam with
f = 0.3. The z axis is directed from the top down.
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FIG. 8. Histogram of multipolar decomposition of the incident
LG10 beam with f = 0.3. Height of the bars represents relative
contribution of the modes, W

(m)
j /Winc and W

(e)
j /Winc [see Eqs. (35)

and (36)] to the total power of the incident beam depending on the
angular-momentum number j .

The topological charge characterizing the phase singularity
and associated orbital angular momentum are known to
produce a rich variety of phenomena [41], such as rotation
of trapped spheres by vortex beams [42,43]. The latter is a
remarkable manifestation of the nonconservative nature of
optical-force-induced dynamics, meaning that optical forces
cannot generally be derived from an underlying potential.
The optical force field includes a scattering contribution, and
asymmetric couplings will occur between coordinates that will
lead to asymmetric stiffness matrices [45,57].

In this section, we consider purely azimuthal LG beams [58]
with nLG = 0 and mLG �= 0 that represent optical vortex beams.
Symmetry of such beams has been discussed in Sec. III B
leading to the conclusion that the linearized dynamics is
governed by the nonsymmetric stiffness matrix of the form

L0 = −m−1
p

⎛
⎜⎝K

(eq)
xx K

(eq)
xy 0

K
(eq)
yx K

(eq)
yy 0

0 0 K
(eq)
zz

⎞
⎟⎠ = diag(Lt ,�z), (74)

Lt =
(

L11 L12

L21 L22

)
= −m−1

p

(
K

(eq)
xx K

(eq)
xy

K
(eq)
yx K

(eq)
yy

)
. (75)

Formula (74) shows that, similar to the case of nonvortex
beams, the eigenvalue �z given by Eq. (73) controls axial
stability of the equilibria whereas the eigenvalues of the
matrix (75) (the transverse eigenvalues),

�± = L+ ±
√

L2− + L12L21, L± = (L11 ± L22)/2, (76)

FIG. 9. Eigenvalues of the effective stiffness matrix Leff [see
Eqs. (71) and (72)], �α/Lscl, as a function of the size parameter for
the LG10 beam with f = 0.3. The scale factor is Lscl = Winc/(cλmp)
[see Eq. (71)].

FIG. 10. On-axis coordinate of axially stable zero-force points
zeq as a function of the size parameter for the LG10 beam.

dictate the dynamics in the transverse plane (the x-y plane)
and govern the radial (transverse) stability of the zero-force
points.

Figures 11 and 12 present the intensity distributions and the
mode decomposition for the focused LG01 beam reconstructed
by using the focusing parameter f = 0.3. The eigenvalues and
the coordinate of the axially stable zero-force point computed
as a function of the size parameters are shown in Figs. 13
and 14, respectively.

From the plots depicted in Fig. 13, the zero-force point is
axially unstable in the two intervals whose upper boundary
points appear to be close to the size ratio Dp/λ corresponding
the local maxima (the Mie resonances) of the enhancement
factors B2 (Dp/λ ≈ 1.25 and Dp/λ ≈ 2.0) and B1 (Dp/λ ≈
1.65). In the remaining part of the size-parameter region,
stability is determined by the transverse eigenvalues (76).

Referring to Fig. 13, the interval separating the regions of
axial instability, represent the conditionally unstable points
with Re �+ = Re �− > 0 and Im �± �= 0. By contrast, in the
region of small particles, the equilibrium points are mainly
unstable except for the small interval of stable points (Re �+ >

Re �− > 0 and Im �± = 0) located below the Mie resonance
point at Dp/λ ≈ 1.25.

For larger particles, at Dp/λ > 1.65, the �± curves
indicate the presence of both stable and conditionally sta-
ble trapping points. This is the region where, as can be
seen from Fig. 14, the size dependence of the equilibrium
coordinate zeq shows increasingly oscillating behavior with

FIG. 11. Intensity distributions of the incident wave field in (a) the
x-z plane and (b) the y-z plane for the LG01 beam with f = 0.3. The
z axis is directed from the top down.
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FIG. 12. Histogram of multipolar decomposition of the incident
LG01 beam with f = 0.3. Height of the bars represents relative
contribution of the modes W

(m)
j /Winc and W

(e)
j /Winc [see Eqs. (35)

and (36)] to the total power of the incident beam depending on the
angular-momentum number j .

minima located near certain Mie-resonance values of the size
parameter.

Note that, in the 2D distributions for the beams with
mLG = 1 shown in Fig. 11, the intensity is clearly nonzero on
the z axis in the near-field region localized inside the scatterer.
According to Ref. [37], the near-field contributions to the
electric field that are linearly polarized along the propagation
axis are responsible for destroying the vortex. Interestingly,
from the results of Ref. [59] it can be inferred that such
contributions are closely related to the so-called spin-orbit
interaction in nonparaxial light fields (see, e.g., Refs. [60,61])
and depend on the state of the polarization of the LG
beam.

As is evident from the intensity distributions presented in
Fig. 15, there are no such effects for the LG02 beams with
mLG = 2. For such beams, the results for the eigenvalues of
the stiffness matrix plotted in Fig. 16 indicate that, similar
to the LG10 beams (see Fig. 9), all the zero-force points
are axially stable. It can also be seen that the endpoints
of the instability and conditional stability intervals correlate
well with the Mie resonances. As in the case of the LG01

beams, in the large particle region with Dp/λ > 3, the size
dependence of the equilibrium coordinate shown in Fig. 17
reveals the oscillating regime with minima related to the
resonances. Another effect shared by all the non-
Gaussian beams under consideration is the presence
of additional branches of axially stable equilibria pro-
vided the size of the particle is sufficiently small
(see Figs. 10, 14, and 17). These branches, how-
ever, predominantly represent radially unstable equilibria
and we have omitted the corresponding results for the
eigenvalues.

FIG. 13. Eigenvalues of the effective stiffness matrix Leff [see
Eqs. (71) and (74)], �α/Lscl, as a function of the size parameter for
the LG01 beam with f = 0.3.

FIG. 14. On-axis coordinate of axially stable zero-force points
zeq as a function of the size parameter for the LG01 beam.

V. CONCLUSIONS

In this paper, we studied the optical-force-induced dynam-
ics of Mie particles illuminated with LG beams. For this
purpose, we used a T -matrix approach in the form described
in Refs. [14,37]. Our approach also uses the remodeling
procedure in which the far-field matching method is combined
with the results for nonparaxial propagation of LG beams.
Scattering of such beams is thus described in terms of the
far-field angular distributions E(inc)

out and E(sca)
out , which determine

the outgoing parts of the incident and scattered waves [see
Eqs. (24) and (25)]. The far-field distributions play the central
part in the method giving, in particular, the differential cross
sections [see Eqs. (33) and (34)] and the optical (radiation)
force acting upon the Mie scatterer [see Eq. (40)].

The symmetry analysis performed in Sec. III for the LG
beams with the far-field distribution given by Eq. (30a) have
shown that, owing to the twofold rotational symmetry [see
Eq. (59)], the stiffness matrix (58) is generally nonsymmetric
and nondiagonal [see Eq. (60)] provided the LG beam carries
the optical vortex with the topological charge characterized
by the azimuthal number mLG. By contrast, for the nonvortex
LG beams with mLG = 0, the stiffness matrix is diagonal [see
Eq. (62)]. The form of the beam-shape coefficients (63) is also
dictated by the twofold rotational symmetry of the LG beam.

The analytical results for the optical force and the stiffness
matrix are employed to perform numerical analysis of the
dynamics of the particle embedded into the viscous medium
characterized by the damping constant γ [the equation of

FIG. 15. Intensity distributions of the incident-wave field in
(a) the x-z plane and (b) the y-z plane for the LG02 beam with
f = 0.3. The z axis is directed from the top down.
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FIG. 16. Eigenvalues of the effective stiffness matrix Leff [see
Eqs. (71) and (74)], �α/Lscl, as a function of the size parameter for
the LG02 beam with f = 0.3.

motion is given by Eq. (64)]. In this analysis, we examined
the stability of the zero-force axial points and the associated
regimes of the linearized dynamics governed by Eq. (65).
These regimes are shown to be dictated by the eigenvalues of
the stiffness matrix (66) that enter the stability condition (69).
From this condition, the steady-state points are found to fall
into the three following categories: (a) the unstable points with
Re �i < 0; (b) the stable points with Re �i = �i > 0 (these
are the trapping points that remain stable even if γ = 0);
and (c) the conditionally stable (stabilizable) points with
Re �i �= �i > 0 (such points being unstable at γ = 0 can be
stabilized provided the damping constant is sufficiently large).

Figures 2–10 present the results for incident nonvortex LG
beams with vanishing azimuthal number, mLG = 0, and the
focusing parameter f = 0.3 (2πf = λ/w0). The Gaussian
(LG00) and non-Gaussian (LG10) beams (the intensity dis-
tributions are shown in Figs. 2 and 7, respectively) are both
characterized by the diagonal stiffness matrix (72) and stability
of the equilibria is thus independent of the ambient medium.
The longitudinal eigenvalue �z given by Eq. (73) controls the
axial stability of the equilibrium points and all our results for
the eigenvalues and the location of equilibria are limited to the
case of axially stable points with �z > 0.

Referring to Figs. 4 and 5, this is the axial stability that
determines stability of the trapping points depending on the
size parameter Dp/λ of the particle illuminated with the
Gaussian beam. By contrast, the results for the non-Gaussian
LG10 beam shown in Figs. 9 and 10 indicate that all points
are axially stable and their stability is governed by the size
dependence of the transverse eigenvalue �x .

The principal characteristic feature of the conservative
radiation-force-induced dynamics illustrated by the nonvortex
LG beams is that the stiffness matrix is symmetric and its
eigenvalues are real valued. Therefore, such dynamics is
characterized by the absence of conditionally stable points
with Im �i �= 0.

FIG. 17. On-axis coordinate of axially stable zero-force points
zeq as a function of the size parameter for the LG02 beam.

We found that, for purely azimuthal LG beams with
vanishing radial number, nLG = 0, and the nonzero azimuthal
mode number mLG ∈ {1,2}, the latter is no longer the case.
Such beams (the intensity distributions for the LG01 and LG02

beams are shown in Figs. 11 and 15, respectively) represent the
case of optical vortex LG beams carrying a phase singularity
and exhibiting a helical phase front.

Equation (76) gives the transverse eigenvalues of the stiff-
ness matrix (74) for the optical vortex beams. The eigenvalues
computed as a function of the size parameter for the LG01

and LG02 beams are plotted in Figs. 13 and 16, respectively.
These figures clearly indicate the intervals of the size parameter
where the equilibrium points are conditionally stable with
Im �± �= 0 and Re �+ = Re �− > 0. In both cases, at small
values of the size parameter, the transverse eigenvalues play the
role of the destabilizing factor. For the LG01 beam, similar to
the Gaussian beam, stability of the equilibria outside the region
of small scatterers is controlled by the longitudinal eigenvalue
�z. When mLG = 2, the zero-force points are axially stable
and, similar to the case of the LG10 beam, stability is
determined by the transverse eigenvalues, �+ and �−.

In figures showing the curves for the eigenvalues and the
equilibrium coordinate zeq, we have used differently shaped
symbols to mark the values of the size parameter Dp/λ

corresponding to local maxima of the enhancement factors
Aj = |a(p)

j |2 and Bj = |b(p)
j |2, where a

(p)
j and b

(p)
j are the

internal field coefficients. For non-Gaussian LG beams, the
endpoints of the instability and conditional stability intervals
are found to be close to certain Mie-resonance points. A similar
remark applies to the minima characterizing the oscillating
behavior of the size dependence of zeq in the large-size
region. The resonances in the Mie coefficients and the related
interference effects are thus found to play the role of the factor
changing the trapping properties of the particles. Similarly,
the results of Ref. [62] show that the Mie resonances have
a profound effect on the trapping characteristics of high-
refractive-index particles where the interference effects are
expected to be strongest.

In conclusion, we note that our symmetry considerations
tacitly assume that the incident beam is solely responsible
for breaking the spherical symmetry of the optically isotropic
dielectric scatterer. The symmetry can additionally be reduced
by the optical anisotropy [14,63] that may thus significantly
affect the regimes of the radiation-force-induced dynamics
of the particle. Despite some recent results on the radiation
force exerted on uniaxially anisotropic spheres [64,65], the
optical-anisotropy-related effects are still far from being well
understood.
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APPENDIX: GRADIENT TERMS IN FAR-FIELD EXPRESSION FOR OPTICAL FORCE

In this appendix we consider the case of nonabsorbing scatterer and show how to rearrange the far-field expression for the
optical force (40) so as to separate out the gradient part of the force. For this purpose, we begin with the far-field distribution of
the scattered wave (25) rewritten in the following form:

E(sca)
out (r̂,rp) ≡ E(sca)

out =
∑
jm

∑
α∈{e,m}

s
(α)
jm(rp)Y(α)

jm(r̂) = 2
∑
jm

∑
α∈{e,m}

T
(α)
j w

(α)
jm(rp)Y(α)

jm(r̂)

= 2〈T (r̂,r̂′)E(inc)
out (r̂′,rp)〉r̂′ ≡ 2T E(inc)

out , (A1)

T (r̂,r̂′) =
∑
jm

∑
α∈{e,m}

T
(α)
j Y(α)

jm(r̂) ⊗ [
Y(α)

jm(r̂′)
]∗

, (A2)

where T (r̂,r̂′) is the kernel of the T -matrix operator T , and T
(m)
j = T 11

j and T
(e)
j = T 22

j are the Mie coefficients given by Eqs. (10)
and (11), respectively. For nonabsorbing particles, the energy absorption rate (33) vanishes and the T -matrix operator satisfies
the unitarity relation

2T †T + T † + T = 0. (A3)

The optical force then can be recast into the operator form

F = − εmed

4πk2

〈([
E(inc)

out

]∗ · FE(inc)
out

)〉
r̂, (A4)

F = 2T †r̂T + r̂T + T †r̂ = [r̂,T ] + 2T †r̂T − 2T †T r̂ = [T †,r̂] + 2T †r̂T − 2r̂T †T , (A5)

where we have used the unitarity relation (A3) to transform the expression for the operator F and [A,B] = AB − BA stands for
the commutator of operators A and B. From Eq. (21), it can readily be seen that multiplication of the far-field vector amplitude
E(inc)

out (r̂,rp) by the unit vector r̂ can be replaced with the following differential (gradient) operation:

r̂E(inc)
out = ∇̃pE(inc)

out , ∇̃p = −ik−1∇p = −ik−1

(
∂

∂xp

,
∂

∂yp

,
∂

∂zp

)
. (A6)

Our next step is to derive the relations

−〈([
E(inc)

out

]∗ · [r̂,T ]E(inc)
out

)〉
r̂ = ∇̃p

〈([
E(inc)

out

]∗ · T E(inc)
out

)〉
r̂ = ∇̃p

〈([
E(inc)

out

]∗ · E(sca)
out

)〉
r̂, (A7)〈([

E(inc)
out

]∗ · T †T r̂E(inc)
out

)〉
r̂ = 〈([

E(sca)
out

]∗ · ∇̃pE(sca)
out

)〉
r̂ (A8)

that immediately follow from Eq. (A6) since the T -matrix operator and the Mie coefficients are both independent of the
displacement vector rp.

Relations (A7) and (A8) and equation (A5) can now be substituted into formula (A4) to obtain the result in the final form:

F = εmed

4πk2

{−2
〈
r̂
([

E(sca)
out

]∗ · E(sca)
out

)〉
r̂ + k−1 Im

[∇p

〈([
E(inc)

out

]∗ · E(sca)
out

)〉
r̂ + 2

〈([
E(sca)

out

]∗ · ∇pE(sca)
out

)〉
r̂

]}
, (A9)

where the last two terms on the right-hand side of Eq. (A9) represent a derivative-dependent (gradient) contribution to the
radiation force. It should be emphasized that the last term being generally nonconservative will contribute to the asymmetry of
the stiffness matrix.
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[18] G. Gréhan, B. Maheu, and G. Gouesbet, Scattering of laser
beams by Mie scatter centers: numerical results using a localized
approximation, Appl. Opt. 25, 3539 (1986).

[19] G. Gouesbet, B. Maheu, and G. Gréhan, Light scattering from a
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