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We adapt the generalized Hartree-Fock-Bogoliubov (HFB) method to an interacting many-phonon system free
of impurities. The many-phonon system is obtained from applying the Lee-Low-Pine (LLP) transformation to the
Fröhlich model which describes a mobile impurity coupled to noninteracting phonons. We specialize our general
HFB description of the Fröhlich polaron to Bose polarons in quasi-one-dimensional cold-atom mixtures. The
LLP-transformed many-phonon system distinguishes itself with an artificial phonon-phonon interaction which is
very different from the usual two-body interaction. We use the quasi-one-dimensional model, which is free of an
ultraviolet divergence that exists in higher dimensions, to better understand how this unique interaction affects
polaron states and how the density and pair correlations inherent to the HFB method conspire to create a polaron
ground state with an energy in good agreement with and far closer to the prediction from Feynman’s variational
path integral approach than mean-field theory where HFB correlations are absent.
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I. INTRODUCTION

Polarons emerge naturally from cold-atom mixtures with
an extreme population imbalance where minority atoms are so
outnumbered by majority atoms that they may be considered
impurities submerged in a host medium. Polaron studies
have undergone an exciting revival in recent years, sparked
by the experimental realization of polarons in mixtures of
fermionic atoms [1,2], with properties that are in excellent
agreement with theoretical predictions [3,4]. This resurgence,
which originally centered on the Fermi polaron problem where
background atoms are fermions (see [5,6] for a review),
has spread rapidly to its bosonic cousin, where background
atoms are bosons, and has led to recent detailed experimental
studies [7,8]. This so-called Bose polaron problem has been
the subject of theoretical studies using a variety of tools,
including a weak-coupling ansatz [9–11], a strong-coupling
approach [12–14] involving the Landau and Pekar treatment
[15,16], a variational approach [17] based on Feynman’s
path-integral formalism [18], those [19,20] inspired by a
Chevy-type variational ansatz [21], exact numerical simulation
[22] based upon the diagrammatic quantum Monte Carlo
(MC) method [23,24], and a systematic perturbation expansion
[25,26] involving use of the T matrix [27].

Our interest here is with the Fröhlich model [28], a generic
polaron model describing a single mobile impurity interacting
with a bath of bosonic particles. Interest in this model has
remained virtually unabated ever since Landau and Pekar
[15,16] likened a polaron to an impurity dressed in a cloud
of nearby phonons and Fröhlich [29] formulated the problem
in its present form more than half a century ago (see [30] for
a review). The recent upsurge of interest in the Bose polaron
problem has once again brought the Fröhlich polaron to the
forefront, examples of which include those in Refs. [12,17,31]
for large (continuous) polarons and those in Refs. [32–35] for
small (Holstein) polarons.

The present work has been motivated by recent studies
[10,36–38] that applied the well-known Lee, Low, and Pine

(LLP) transformation [39] to convert the Fröhlich model, in
which impurities interact with noninteracting phonons, to the
LLP-Fröhlich model (or LLP model for short), which describes
an interacting phonon system free of impurity degrees of
freedom. When described within mean-field (MF) theory, the
phonon ground state is a direct product of coherent states
at different momentum modes [39]; quantum fluctuations
(correlations), which can be of vital importance to a strongly
interacting system, are notably absent. We are particularly
inspired by recent attempts to overcome this weakness inherent
in the MF product state by Shchadilova et al. [36] using
a correlated Gaussian wave-function (CGW) ansatz [40,41]
and Grusdt et al. [37,38] using a renormalization-group (RG)
approach [42].

We adapt the self-consistent Hartree-Fock-Bogoliubov
(HFB) approach to the interacting phonons in the LLP
model. The HFB-based approach shall be similar, in spirit,
to the CGW ansatz, where various cross-mode correlations
are automatically built in. However, instead of independent
variables housed in a symmetric matrix, we parametrize
quantum fluctuations between various momentum modes
with dependent variables (which will be the density and
pair-correlation functions) housed in a single-particle density
matrix. As a result, instead of an unconstrained minimization
we perform a constrained minimization of energy with respect
to the variational parameters characterizing the quasiparticle
vacuum defined via a generalized Bogoliubov transformation.
This approach allows Fröhlich polarons to be studied self-
consistently without having to introduce additional small
perturbative parameters.

We test our HFB formalism by applying it to Fröhlich
polarons in quasi-one-dimensional (quasi-1D) cold-atom mix-
tures. A remarkable feature of cold-atom systems is that system
parameters, such as dimensionality and coupling strength,
can be tuned precisely [43]. Potential avenues for realizing
Bose polarons include Bose-Fermi mixtures with fermionic
impurities, e.g., 7Li -6Li [44–46], 23Na -6Li [47–49], 87Rb -40K
[50–53], 23Na -40K [54], 87Rb -6Li [55], and 4He -3He [56];
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Bose-Bose mixtures with bosonic impurities, e.g., 85Rb -87Rb
[57], 87Rb -41K [58–60], and 87Rb -133Cs [61,62]; and ion-Bose
mixtures with ionic impurities, e.g., Ba+-87Rb [63]. One-
dimensional systems have the nice property that particle inter-
actions can be resonantly enhanced by confinement-induced
resonance [64,65], in addition to the usual Feshbach resonance
[66]. Bose polarons in quasi-1D cold atoms have recently been
experimentally [60] and theoretically [60,67] investigated. The
importance of HFB-type quantum fluctuations in 1D Bose
polarons has been stressed by Sacha and Timmermans [13] in
connection with impurity self-localization.

An important goal of the present work is to gain clean
insight into how phonon-phonon interactions in the LLP
model affect quantum fluctuations, which in turn affect the
underlying polaron states. In three-dimensional (3D), as well
as two-dimensional (2D) [67], atomic models, computing the
polaron energy involves a momentum integral that contains
an ultraviolet divergence [17]. At the MF level [10,11],
regularization based on the Lippmann-Schwinger equation
[27] can remove this divergence, but such regularization
is unable to stem the log-divergence expected to arise in
more elaborate (e.g., RG and CGW) methods [36,37]. By
contrast, 1D models do not suffer from such a problem. Thus,
testing the HFB theory using 1D models provides us with
a proof-of-principle opportunity, allowing us to interpret our
results in a manner free of complications due to the ultraviolet
divergence.

Our paper is organized as follows. In Sec. II we review
and adapt the HFB theory to the generic LLP model. We
construct the energy functional, assuming the system to be in
a generalized Bogoliubov quasiparticle vacuum parameterized
in terms of phonon fields describing a MF coherent state
and density and pair-correlation functions describing quan-
tum fluctuations. We apply the constrained Ritz variational
principle to arrive at a set of HFB equations specific to the
LLP model. In Sec. III we focus on a quasi-1D Bose polaron
in the context of cold-atom physics and solve the problem
using our HFB theory self-consistently. For comparison we
also solve the problem analytically using MF theory and
numerically using Feynman’s variational approach. We discuss
how phonon-phonon interactions can enrich the polaron state
and how quantum fluctuations included in our HFB approach,
which are absent in MF theory, can help lower the polaron
energy to a level in fairly good agreement with Feynman’s
result, even in the regime of relatively light impurity and strong
coupling. We conclude in Sec. V.

II. THEORY: SELF-CONSISTENT HFB FORMULATION
OF FRÖHLICH POLARONS

We begin with the generic Fröhlich Hamiltonian [28]

Ĥ ′ = p̂2

2mI

+
∑

k

�ωkb̂
†
kb̂k +

∑
k

gk√
V

eik·r̂(b̂k + b̂
†
−k), (1)

which describes a single mobile impurity with mass mI ,
momentum operator p̂, and position operator r̂ interacting
with phonons with field operator b̂k for annihilating a phonon
of momentum �k and energy �ωk, where gk is the impurity-

phonon coupling strength and V is the quantization length in
1D, area in 2D, and volume in 3D.

Different systems are characterized with a different set
of ωk and gk. In the solid-state Einstein model (containing
longitudinal optical phonons), ωk is modeled as a constant,
and gk is modeled as inversely proportional to k. In the
solid-state acoustic model, ωk and gk are approximated as
proportional to k and

√
k, respectively [68]. In cold-atom

systems where impurities are immersed in a Bose-Einstein
condensate (BEC) of density nB , phonons are identified
with Bogoliubov quasiparticles arising from BEC density
fluctuations, and ωk and gk are given by

ωk = vBk

√
1 + (ξBk)2 (2)

and

gk = gIB

√
nB�k2/(2mBωk), (3)

where vB = √
nBgBB/mB is the phonon speed, ξB = �/√

4mBnBgBB is the healing length, and gBB = 4π�
2aBB/mB

and gIB = 4π�
2aIB/[mIB ≡ 2mImB/(mI + mB)] are, re-

spectively, boson-boson and boson-fermion interaction
strengths with aBB and aIBs-wave scattering lengths. In this
cold-atom case, Hamiltonian (1) is measured relative to the
bare impurity-condensate interaction energy nBgIB , which
accounts for the interaction of the impurity with the condensed
bosons. In reduced dimensions, nB , aBB , and aIF (hence gBB

and gIB) are their effective versions for the corresponding
dimensions.

In what follows, we adopt a unit convention in which � = 1
(unless keeping � helps elucidate physics).

A. Fröhlich Hamiltonian after Lee-Low-Pine transformation

The LLP transformation [39] is defined by

Ŝ = exp

(
i
∑

k

kb̂
†
kb̂k·r̂

)
(4)

and is a unitary transformation under which the phonon
vacuum is invariant (since any power of b̂

†
kb̂k gives zero

when acting on it). Following [10,36,37], we apply the LLP
transformation to the Hamiltonian in (1), Ĥ = ŜĤ ′Ŝ−1, which
gives

Ĥ =
(

p̂ − ∑
k kb̂

†
kb̂k

)2

2mI

+
∑

k

ωkb̂
†
kb̂k

+ 1√
V

∑
k

gk(b̂k + b̂
†
−k), (5)

where we used Ŝp̂Ŝ−1 = p̂ − ∑
k kb̂

†
kb̂k and Ŝb̂kŜ−1 =

b̂k exp(−ik · r̂t). Since p̂ commutes with Ĥ , it is a constant of
motion and may be replaced with its c-number equivalent p,
allowing Eq. (5) to be written as

Ĥ = p2

2mI

+ 1√
V

∑
k

gk(b̂k + b̂
†
−k)

+
∑

k

(
ωk + k2

2mI

− k · p
mI

)
b̂
†
kb̂k + Ĥint, (6)
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where

Ĥint = 1

2

∑
k,k′

k · k′

mI

b̂
†
kb̂

†
k′ b̂k′ b̂k (7)

is a normal-ordered four-boson interaction term, representing
the phonon-phonon interaction.

The Fröhlich Hamiltonian (1) prior to the LLP transfor-
mation describes an impurity-phonon system where phonons
are noninteracting but are coupled to the impurity via terms
involving eik·r̂, which account for the impurity recoil during
emission and absorption of a phonon.

The LLP transformation moves into a frame moving at a
speed determined by the total phonon momentum,

pph =
∑

k

k〈b̂†kb̂k〉. (8)

This transformation is motivated by the fact that the total
momentum (the impurity momentum plus the total phonon
momentum) is a constant of motion, so that in a moving
frame defined by the total phonon momentum, the impurity
momentum p̂ becomes the total momentum and is thus a
constant of motion, replaceable with a c number.

As promised, the LLP transformation has transformed the
Fröhlich Hamiltonian (1) to Eq. (6), which is free of impurity
degrees of freedom, but at the expense of phonons interacting
via the four-boson interaction in Eq. (7).

B. Generalized Bogoliubov transformation and polaron
energy functional

From this point forward we describe our system as a many-
body phonon system free of impurities. The only indication
of the impurity in the Hamiltonian (6) is p, which we treat
as a parameter (i.e., quantum number). The impurity-phonon
scattering term

∑
k gk(b̂k + b̂

†
−k), being linear in the phonon

field, leads to a nonzero average, 〈b̂k〉 ≡ zk. It is convenient to
move to the shifted phonon field,

ĉk = b̂k − zk, (9)

whose average vanishes, 〈ĉk〉 = 0. The Hamiltonian (6) then
describes phonons in terms of zk and ĉk.

In anticipation of the use of the Ritz variational principle
in the next section, we choose as the trial state |φ〉, the
quasiparticle vacuum state defined by field operator d̂k, i.e.,
d̂k|φ〉 = 0, where d̂k is defined through the generalized Bo-
goliubov transformation, d̂k = ∑

k′(U ∗
kk′ ĉk′ − V ∗

kk′ ĉ
†
k′ ), which

may equivalently be written(
d̂

d̂†

)
= T

(
ĉ

ĉ†

)
, (10)

where

T =
(

U ∗ −V ∗
−V U

)
, T −1 =

(
UT V †

V T U †

)
. (11)

In Eqs. (10) and (11), ĉ (ĉ†) is a column vector with elements
ĉi ≡ ĉki

[ĉ†i ≡ ĉ
†
ki

; a similar definition applies to d̂ (d̂†)], and
U (V ) is a square matrix with matrix elements Uij ≡ Ukikj

(Vij ≡ Vkikj
). The number of elements depends on the number

of k values included in the calculation.

Defining

η =
(

I 0
0 −I

)
, γ =

(
0 I

I 0

)
, (12)

we note that for T in the form given in Eq. (11), γT γ =
T ∗ holds automatically and the only requirement for the
Bogoliubov transformation (10) to remain canonical is

T ηT †η = 1, (13)

which, together with Eq. (11), amounts to requiring U and V

to obey

UU † − V V † = I, UV T − V UT = 0, (14a)

U †U − V T V ∗ = I, UT V ∗ − V †U = 0. (14b)

Let zi ≡ zki
, ωi ≡ ωki

, gi ≡ gki
, and

∑
i ≡ ∑

ki
. The

average of the Hamiltonian in the quasiparticle vacuum,
Ep ≡ 〈φ|Ĥ |φ〉, then reads

Ep = p2

2mI

+
∑

i

(
ωi − ki ·p

mI

+ k2
i

2mI

)
|zi |2

+
∑

i

gi√
V

(zi + z∗
i ) +

∑
i,j

ki · kj

2mI

|zi |2|zj |2

+
∑

i

⎛
⎝ωi − ki ·p

mI

+ k2
i

2mI

+ ki

mI

·
∑

j

|zj |2
⎞
⎠ρii

+
∑
ij

ki · kj

2mI

(z∗
i z

∗
j κij + zizj κ

∗
ij + z∗

i zjρij + ziz
∗
j ρ

∗
ij )

+
∑
ij

ki · kj

2mI

(κ∗
ij κij + ρ∗

ij ρij + ρiiρjj ), (15)

where we have introduced the single-particle density matrix
ρ and single-particle pair matrix κ of state |φ〉, whose matrix
elements are defined, respectively, as

ρij = ρ
†
ij = 〈φ|ĉ†j ĉi |φ〉, (16a)

κij = κT
ij = 〈φ|ĉj ĉi |φ〉, (16b)

which become, with the help of the generalized Bogoliubov
transformation (10),

ρij = (V †V )ij =
∑

n

V ∗
niVnj , (17a)

κij = (V †U )ij =
∑

n

V ∗
niUnj . (17b)

The first line in Eq. (15) follows from the part of the
Hamiltonian that is independent of the field operators (ĉk,ĉ

†
k),

the second line follows from the part quadratic in field
operators (ĉk,ĉ

†
k), and the last line represents the average of

the four-boson term ĉ
†
kĉ

†
k′ ĉk′ ĉk, which can be computed using

Wick’s theorem [27].
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C. Ritz variational principle and self-consistent HFB equations

The self-consistent HFB method is typically employed to
solve many-body problems with a fixed (average) number of
particles in nuclear and condensed-matter physics [69,70]. In
comparison, the average number of phonons in our system
is not given a priori; it depends on the impurity and phonon
interaction and is therefore unknown and must be determined
self-consistently. We thus use a canonical, instead of grand-
canonical, Hamiltonian, which explains the absence of a
chemical potential in the energy functional (15) compared to
the usual HFB formulation.

Minimizing the energy in Eq. (15) with respect to (zk,z∗
k),

we arrive at a matrix equation,(
C D

D∗ C∗

)(
z

z∗

)
= − 1√

V

(
g

g

)
, (18)

where C = C† and D = DT are matrices defined as

Cij = Ciδi,j + ki · kj

mI

ρij , (19a)

Dij = ki · kj

mI

κij . (19b)

Here,

Ci = ωi − ki · (p − pph)

mI

+ k2
i

2mI

, (20)

which is the only surviving term in the MF theory when density
and pair-correlation functions ρ and κ are neglected, and

pph =
∑

j

kj (|zj |2 + ρjj ) (21)

is the expectation value of the total phonon momentum
[Eq. (8)] with respect to the quasiparticle vacuum |φ〉.

The next step would normally be to minimize the energy
with respect to ρ and κ , but a word of caution is in order:
ρ and κ cannot be treated as independent variables. This is
because ρ and κ are made up of U and V [Eq. (17)], which
are not independent [Eq. (14)]. This may be contrasted with
the correlated Gaussian wave-function approach [36], where
the energy functional is parameterized in terms of a symmetric
matrix with independent parameters. The restrictions imposed
on ρ and κ can be understood, perhaps most conveniently, with
the help of the generalized density matrix [70]

R = 〈φ|
(

ĉ
†
j ĉi ĉj ĉi

ĉ
†
j ĉ

†
i ĉj ĉ

†
i

)
|φ〉 =

(
ρ κ

κ∗ 1 + ρ∗

)
(22)

for field ĉk and

R′ = 〈φ|
(

d̂
†
j d̂i d̂j d̂i

d̂
†
j d̂

†
i d̂j d̂

†
i

)
|φ〉 =

(
0 0
0 1

)
(23)

for quasiparticle field d̂k. By virtue of the Bogoliubov
transformation in Eq. (10), R′ is linked to R according to

R′ = T RT †, (24)

which, together with Eq. (13), means that

(ηR)2 = −ηR. (25)

Equation (25) encapsulates all relations among ρ and κ .
We now minimize the total energy Ep in Eq. (15) with

respect to R (or, equivalently, ρ and κ) subject to condition
(25), i.e.,

δ(Ep − Tr{�[(ηR)2 + ηR]}) = 0, (26)

where � is a matrix of Lagrangian multipliers implementing
constraint (25). By carrying out the variation explicitly and
then eliminating �, we arrive at the HFB equation

[ηM,Rη] = 0, (27)

where

M =
(

A B

B∗ A∗

)
(28)

and A = A† and B = BT are matrices defined below in
Eq. (34).

At this point, we observe that the matrices in Eqs. (19)
and (34) are local in the sense that a matrix element in the
ith row and j th column is determined by the matrix elements
of ρ and κ in the same row and same column; for example,
Cij depends on ρij but not on ρi ′ �=i,j ′ �=j . This local property is
unique to the four-boson term in Eq. (7) as we now explain. If
particles were to interact via, for example, the usual two-body
s-wave potential, the four-boson term would be in the form∑

k,k′,q b̂
†
k+qb̂

†
k′−qb̂k′ b̂k, in which momentum q is exchanged

in each scattering event. The local property would then not
hold; for example, Cij would depend not only on ρij but
also on ρi ′ �=i,j ′ �=j . The four-boson term in Eq. (7) is, however,
of a very different origin, arising artificially from the LLP
transformation: in the “boosted” LLP frame, phonons appear
to interact without momentum exchange, i.e., q = 0. It is this
lack of momentum exchange that is responsible for the local
property, and it allows us to formulate a much simplified HFB
description of the Fröhlich model compared to if the model
had the usual two-body interaction.

Returning to Eq. (27), the fact that ηM and Rη commute
means that solving forR from Eq. (27) amounts to finding a set
of simultaneous eigenstates of ηM and Rη. Consider first the
eigenstates of ηM, which, because γMγ = M∗, are grouped
into pairs with eigenvalues ±wn; for each eigenstate |w+

n 〉 with
a positive (real) eigenvalue, wn > 0, there exists an eigenstate
|w−

n 〉 = γ |w+
n 〉∗ with the negative of that eigenvalue, −wn:

ηM|w+
n 〉 = wn|w+

n 〉, ηM|w−
n 〉 = −wn|w−

n 〉. (29)

The set of states |w±
n 〉 is complete in the sense that they obey

orthonormality conditions with metric η:

〈w±
n |η|w±

m〉 = ±δn,m, 〈w+
n |η|w−

m〉 = 0. (30)

Next, consider the eigenstates ofRη. From Eq. (25) we have
(Rη)2 = −Rη, which allows us to divide the eigenstates into
two groups, one group with eigenvalue 0 and the other group
with eigenvalue −1. R, the solution to the HFB equation (27),
must then take the form

R =
∑

n

|w−
n 〉〈w−

n | =
∑

n

γ |w+
n 〉∗〈w+

n |∗γ (31)
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in the space spanned by {|w±
n 〉}, from which we easily find that

|w±
n 〉 are also eigenstates of Rη:

Rη|w+
n 〉 = 0|w+

n 〉, Rη|w−
n 〉 = −1|w−

n 〉. (32)

We have now defined two expressions forR, one in Eq. (31)
in terms of the eigenstates of ηM [Eq. (29)] and the other
earlier in Eq. (22) in terms of the U and V matrices [Eq. (17)].
Self-consistency requires that they be equivalent, which can
be accomplished by making the nth row of matrices U and
V in Eq. (11) equal to the nth eigenstate |w+

n 〉 = (Un,Vn)T of
Eq. (29) or by explicitly constructing U and V from those states
with positive eigenvalues in Eq. (29), which in matrix form is

(
A B

−B∗ −A∗

)(
U

V

)
= w

(
U

V

)
, (33)

where A = A† and B = BT are defined as

Aij = Ciδi,j + ki · kj

mI

(ρij + ziz
∗
j ), (34a)

Bij = ki · kj

mI

(zizj + κ∗
ij ), (34b)

with (ρij ,κij ) and Ci already given in Eqs. (17) and (20),
respectively.

In summary, following the generalized HFB approach
[69,70], we have arrived at the closed set of equations (17),
(18), (21), and (33), which constitutes our HFB formulation
of Fröhlich polarons. Although we apply these equations to
cold-atom systems in the next section, we stress that they were
derived generally, and we have in mind their widespread use
for the many applications of the Fröhlich model.

III. APPLICATION: QUASI-1D BOSE POLARONS

This section is devoted to the study of a Bose polaron in a 1D
cold-atom mixture where atoms are confined, by sufficiently
high harmonic trap potentials along the transverse dimensions,
to a 1D waveguide where the transverse degrees of freedom
are “frozen” to the zero-point oscillation. This problem has
been investigated by Casteels et al. [67] at finite temperature
using Feynman’s variational method [18]. In the present work,
we focus exclusively on the zero-temperature limit.

We will explore various polaron properties in terms of the
polaronic coupling constant α(1) [defined below in Eq. (37)]

and the boson-impurity mass ratio mB/mI . The former can
be tuned via a combination of Feshbach resonance and
confinement-induced resonance [64,65], while the latter can
be treated practically as a tunable parameter owing to the rich
existence of atomic elements and their isotopes in nature. The
Fröhlich Hamiltonian omits a quartic interaction term (which
is quadratic in both the impurity and the BEC operators).
This term describes scattering between the impurity and a
Bogoliubov mode and is essential to correctly describe strong
interactions near a Feshbach resonance between the impurity
and BEC. The absence of this term places an upper bound on
the impurity-BEC coupling strength. A thorough analysis of
3D Bose polarons in cold atomic systems [37,38] indicates
that an intermediate-coupling regime is accessible to current
technology involving interspecies Feshbach resonance. As in
other studies of strongly interacting Bose polarons (see, e.g.,
[12,17,31,36–38]), we extend our theory into the strongly
interacting regime with the understanding that such results
have only qualitative meaning.

A. Polaron states

Before presenting the full HFB description, we first con-
sider the MF description of polarons, which is described by zk ,
governed by Eq. (18), in the MF limit where all correlations
vanish (i.e., κ = ρ = 0):

zk = − 1√
V

gk

ωk + k2

2mI
− k(p−pph)

mI

, (35)

where k ranges from −∞ to +∞. The only unknown in
Eq. (35) is pph, which is given by Eq. (21). If we can solve
for pph, zk is completely determined. Inserting Eq. (35) into
Eq. (21) and moving to an integral in terms of the scaled quan-
tities (k̄,p̄,p̄ph) = (k,p,pph)ξB and m̄B = mB/mI , we obtain

p̄ph = 4α(1)m̄B(1 + m̄B)2(p̄ − p̄ph)
∫ ∞

0
dk̄

× 1 + m̄Bk̄/
√

1 + k̄2[
(
√

1 + k̄2 + m̄Bk̄)2 − 4m̄2
B(p̄ − p̄ph)2

]2 , (36)

where

α(1) = a2
BI ξB/aBB (37)

is the 1D dimensionless polaron coupling constant.1

Evaluating the integral (36), we find that pph corresponds to
the root of the following transcendental equation:

1The 1D coupling constant used by Casteels et al. [67] (also labeled
α(1)) equals 2

√
2πα(1).

p̄ph = α(1)(1 + m̄B)2

{
b̄m̄B

(1−b̄2)r̄ + b̄

r̄
√|r̄|

(
tanh−1 1+m̄B+b̄√|r̄| − 2 tanh−1 m̄B√|r̄| + tanh−1 1+m̄B−b̄√|r̄|

)
if r̄ > 0,

b̄m̄B

(1−b̄2)r̄ − b̄

r̄
√|r̄|

(
tan−1 1+m̄B+b̄√|r̄| − 2 tan−1 m̄B√|r̄| + tan−1 1+m̄B−b̄√|r̄|

)
if r̄ < 0,

(38)

which changes smoothly across r̄ = 0 at which
p̄ph = α(1)(1 + m̄B)22b̄/(3m̄3

B) and where b̄ and r̄ are
functions of pph given by

b̄ = 2m̄B(p̄ − p̄ph), 0 < b̄ < 1, (39)

r̄ = m̄2
B + 4m̄2

B(p̄ − p̄ph)2 − 1. (40)
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FIG. 1. The phonon momentum density kz2
k , the density correla-

tion ρk,k′ , and the pair correlation κk,k′ characterizing a many-phonon
system. The first column is for the polaron ground state (p = 0),
and the second column is for a polaron state at finite momentum
pξB = 1.5. Both columns have mB/mI = 1 and α(1) = 2.

We now consider the HFB description encoded in zk and
correlation functions ρkk′ and κkk′ . We solve for them using the
above MF solution as the initial guess in a self-consistent loop
which iteratively updates zk , ρkk′ , and κkk′ by solving Eqs. (18)
and (33), in conjunction with Eqs. (17) and (21), until values
of a prescribed accuracy are reached.

The first column in Fig. 1 displays an example with p = 0,
mB/mI = 1, and α = 2. Interesting details emerge from the
2D contour plots of ρkk′ and κkk′ in Figs. 1(b) and 1(c). First,
the vertical and horizontal lines at k = 0 and k′ = 0 are the
zero contour lines along which the correlation functions vanish
or are “transparent.” This “transparency” occurs because the
effective phonon interaction in momentum space is given by
kk′/mI [Eq. (7)] and thus vanishes when k = 0 or k′ = 0.
Second, the k = 0 and k′ = 0 lines divide each contour
plot into two regions, one with kk′ > 0 (the first and third
quadrants) and the other with kk′ < 0 (the second and fourth
quadrants). Each correlation is seen to have opposite signs
in these two regions. Third, correlations develop peaks near
but not at the origin, along the positive diagonal (k = k′) and
negative diagonal (k = −k′), but decrease rapidly towards zero
as momentum increases. This can be explained as follows.
As k and k′ increase, phonons interact more strongly but are
tuned farther away from resonance, owing to an increase in the
effective single-phonon energy Ci [Eq. (20)] in the diagonal
elements of matrix A in Eq. (34). In the limit of large k and

k′, being tuned away from resonance dominates, and ρkk′ and
κkk′ become diminishingly small. The peaks at intermediate
momenta are the outcome of the competition between these
two opposing factors.

The second column in Fig. 1 is the same as the first
column except p = 1.5ξ−1

B , e.g., a polaronic system prepared
adiabatically from one in which the impurity has a momentum
p = 1.5ξ−1

B . In contrast to the p = 0 case, where pph = 0
and all diagrams [Figs. 1(a), 1(b), and 1(c)] are symmetric,
nonzero p leads to nonzero pph, and an asymmetry develops:
the k > 0 peak has a larger magnitude than the k < 0 peak
for kz2

k in Fig. 1(d), with similar scenarios for the peaks
along the diagonal elements of the correlation functions, ρkk

and κkk in Figs. 1(e) and 1(f). This is consistent with the
expectation that for nonzero p, a moving impurity drags a
phonon cloud with it, leading to nonzero phonon momentum
pph. However, nonzero p does not affect the symmetry of
correlations between opposite momenta, ρk,−k and κk,−k , as
can be seen in Figs. 1(e) and 1(f). The reason is that ρ and κ

are symmetric matrices, and therefore, ρk,−k and κk,−k must
be even functions of k, independent of p.

In order to better understand the phonon cloud, such as
the statistical character of the quantum fluctuations, we follow
[36] and examine

g
(2)
kk′ = 〈b̂†kb̂†k′ b̂k′ b̂k〉

〈b̂†kb̂k〉〈b̂†k′ b̂k′ 〉
, (41)

which is the multimode generalization of the single-mode
second-order correlation g

(2)
kk , popular in the study of quantum

optics [71], where 〈b̂†kb̂k′ 〉 = zkzk′ + ρkk′ and 〈b̂†kb̂†k′ b̂k′ b̂k〉 =
(zkzk′ + κkk′)2 + z2

kρk′k′ + z2
k′ρkk + 2zkzk′ρkk′ +ρ2

kk′ +ρkkρk′k′ ,
which are valid when quantities are real. In Fig. 2, the thick
black lines passing through the origin indicate the g

(2)
kk′ = 1

plane (not shown), which is the value of g
(2)
kk′ if phonons are

prepared in a MF coherent state. The region kk′ < 0 exhibits
phonon bunching, g

(2)
kk′ > 1, while the region kk′ > 0 exhibits

phonon antibunching, g
(2)
kk′ < 1. In particular, g

(2)
k,−k decreases

from 1 and saturates at a value less than 1, while g
(2)
k,k increases

from 1 and saturates at a value larger than 1, a phenomenon
first observed in an analogous 3D model [36] and believed to
be accessible by noise correlation analysis in time-of-flight
experiments [72–74]. A qualitative explanation may be that

FIG. 2. Two perspectives for the second-order correlation func-
tion g

(2)
k,k′ as a function of k and k′ for the example in the first column

of Fig. 1.
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in the region kk′ < 0, the phonon interaction is attractive and
thus tends to cause phonons to cluster, leading to phonon
bunching, while in the region kk′ > 0, the phonon interaction
is repulsive and thus tends to cause phonons to spread, leading
to phonon antibunching.

B. Polaron energy

Having discussed the variables parameterizing the polaron,
we now investigate the polaron energy for a system with total
momentum p. The polaron energy was given in Eq. (15), which
may be simplified, with the help of Eqs. (21) and (18), to

Ep = p2

2mI

+ 1√
V

∑
i

g
i
zi − p2

ph

2mI

+
∑

i

Ciρii + 1

2mI

∑
i,j

(kikj )
(
κ2

ij + ρ2
ij

)
, (42)

which is valid in equilibrium, where all variables are real.
As in the previous section, we begin with the MF limit

where the trial state is chosen as a product of coherent states
parameterized by only zk . In this limit, the polaron energy
(42) may be evaluated analytically and gives (where Ēp ≡
Ep/[�2/(mBξ 2

B)])

Ēp = m̄B

2
p̄2 − m̄B

2
p̄2

ph − α(1)

2

m̄2
B√|r̄|

(
1 + 1

m̄B

)2

×
{

coth−1 1+m̄B+b̄√|r̄| + coth−1 1+m̄B−b̄√|r̄| if r̄ > 0,

cot−1 1+m̄B+b̄√|r̄| + cot−1 1+m̄B−b̄√|r̄| if r̄ < 0,

(43)

which changes smoothly across r̄ = 0 at which Ēp =
m̄B[p̄2 − p̄2

ph − α(1)(1 + m̄−1
B )2]/2. The polaron energy Ēp

depends on the total momentum p. However, it has been long
established [75] that the ground state, where the polaron energy
is lowest, occurs at p = 0. This is a general statement and is
thus true for both the HFB and MF descriptions. For the MF
description, the ground-state polaron energy is then obtained
from Eq. (43) by setting p = 0:

Ē0 = −α(1) (1 + m̄B)2√∣∣m̄2
B − 1

∣∣
⎧⎨
⎩

coth−1 1+m̄B√
|m̄2

B−1| if m̄B > 1,

cot−1 1+m̄B√
|m̄2

B−1| if m̄B < 1,

(44)
and Ē0 = −2α(1) when m̄B = 1.

We benchmark our HFB model by comparing its prediction
for the ground-state polaron energy with the predictions from
MF theory (44) and Feynman’s path-integral formalism, which
was regarded as a superior all-coupling approximation [17].
Feynman’s method amounts to applying the Feynman-Jensen
inequality on a variational action describing two (classical)
particles coupled via a harmonic force, where one is the
impurity and the other is a fictitious particle. Steps involved in
integrating out the degrees of freedom for the fictitious particle
leading to an effective variational action for the impurity are
highlighted in Appendix A.

The first column in Fig. 3 displays the ground-state
polaron energy Ē0 as a function of the coupling constant
α(1) for various boson-impurity mass ratios, m̄B = mB/mI .

FIG. 3. The first column displays the ground-state polaron energy
E0 in units of �

2/(mBξ 2
B ) as a function of the dimensionless polaronic

coupling constant α(1) when (a) mB/mI = 0.5, (b) 1, and (c) 5. The
second column shows the polaron energy divided by α(1), E0/α

(1),
in units of �

2/(mBξ 2
B ) as a function of the boson-impurity mass ratio

mB/mI when (d) α(1) = 0.5, (e) 1, and (f) 5. In each plot the solid
black curve is our HFB result, the dashed blue curve is the MF result,
and the dash-dotted red curve is Feynman’s path-integral result.

The dashed blue curves are obtained from the MF theory
[Eq. (44)], the solid black curves are obtained from our HFB
theory, and the dash-dotted red curves are from Feynman’s
path-integral formalism. The MF variational ansatz for finite
m̄B is motivated by the observation that the MF theory becomes
exact in the limit of heavy impurity m̄B → 0, where Ĥint

in Eq. (6) is negligible and the shifting operation (9) with
zk = −(gk/ωk)/

√
V alone can diagonalize Eq. (6). Indeed,

results from all three approaches, although not shown, would
be plotted virtually atop one another for roughly m̄B < 0.2.
As the impurity becomes increasingly less massive, i.e., m̄B

increases, Figs. 3(a), 3(b), and 3(c) illustrate that the MF results
become increasingly larger than Feynman’s, in sharp contrast
to the HFB results which match nicely with Feynman’s,
demonstrating that correlations, which are excluded from the
MF theory, are an important part of the ground polaron state
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The second column in Fig. 3 displays Ē0/α
(1) as a function

of the mass ratio m̄B for various values of the coupling constant
α(1). Equation (44) tells us the MF Ē0 is proportional to α(1) and
thus Ē0/α

(1) is independent of α(1), as illustrated by identical
dashed curves in the second column. In the limit of heavy-
impurity mass, Eq. (44) asymptotes to

Ē0/α
(1) ≈ −π

4
+ 1

2
m̄B − 5π

8
m̄2

B + · · · , (45)

where, as explained above, the MF result becomes an exact
solution. As can be seen from the second column, the HFB
and Feynman results agree very well with the MF results in
this limit. In the limit of light impurity, Eq. (44) asymptotes to

Ē0

α(1)
≈ − ln(2m̄B)

(
m̄B

2
+ 1

)
+ 1 − 6 ln(2m̄B)

8m̄B

+ · · · .

(46)
In this case we do not expect the MF result to be accurate,
and we find again that the HFB and Feynman results disagree
strongly with the MF results but agree well with each other,
indicating as before that neglecting quantum fluctuations in the
light-impurity limit can lead to significant errors. The HFB and
Feynman energies are seen to decrease rapidly with decreasing
impurity mass (increasing m̄B), while the MF energy changes
slowly due to the existence of a logarithmic function in the
leading term in Eq. (46).

C. Effective polaron mass

Finally, we turn our attention to the effective polaron mass
m∗

I defined by

m∗
I =

(
∂2Ep

∂p2

∣∣∣∣
p=0

)−1

, (47)

which follows from expansion of the polaron energy through
second order in the total momentum p, Ep ≈ E0 + p2/2m∗

I ,
where E0 is the ground-state polaron energy studied in Fig. 3.
m∗

I emerges naturally from Landau’s concept of a mobile
polaron, in which an impurity drags with it a cloud of
nearby background particles, leading to an effective mass m∗

I

heavier than its bare mass mI . This picture together with the
conservation of momentum means the impurity momentum
pI equals the total momentum minus the momentum of the
phonon cloud pph: pI = p − pph, leading to the formula [10]

1

m∗
I

= 1

mI

− 1

mI

lim
p→0

pph

p
, (48)

which is consistent with Eq. (47).
Figure 4 displays the effective polaron mass m∗

I . We show
m̄∗

I as a function of α(1) for various values of m̄B in the first
column and as a function of m̄B for various values of α(1) in
the second column. In both columns the solid black curves are
from our HFB method, and the dashed blue curves are from the
MF theory, which, as in the previous section, can be computed

FIG. 4. A comparison of effective polaron masses according to
MF theory (dashed blue curves), our HFB theory (solid black curves),
and Feynman’s variational method (dash-dotted red curves). In the
first column, m∗

I /mI − 1 is plotted as a function of α(1) for (a) mB =
0.5, (b) 1.0, and (c) 2.0. In the second column, (m∗

I /mI − 1)/α(1) is
plotted as a function of mB/mI for (d) α(1) = 0.5, (e) 1.0, and (f) 2.0.

analytically:

m̄∗
I =1 + 2α(1)m̄2

B(1 + m̄B)

m̄B − 1
+ 4α(1)m̄B(1 + m̄B)

(m̄B − 1)
√

|m̄2
B − 1|

×
⎧⎨
⎩

tanh−1 1+m̄B√
|m̄2

B−1| − tanh−1 m̄B√
|m̄2

B−1| if m̄B > 1,

− tan−1 1+m̄B√
|m̄2

B−1| + tan−1 m̄B√
|m̄2

B−1| if m̄B < 1,

(49)

and m̄∗
I = 1 + 16

3 α(1) if m̄B = 1. Figure 4 also includes the
effective mass obtained from Feynman’s approach using
Eq. (A10) in Appendix A (see the dash-dotted red curves).
Figure 4 demonstrates that the HFB theory consistently gives
a heavier effective mass than the MF theory and that it can be
significantly heavier for small m̄B or large α(1). The effective
mass using Feynman’s method, while consistently heavier than
in both methods, is much closer to our HFB result, once again
demonstrating the nonclassical nature of the phonon cloud,
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inside of which phonons are highly correlated. A difference
between Feynman’s and our HFB masses is expected since
Feynman’s approach cannot compute the polaron energy at
finite p and hence defines the effective mass differently from
Eq. (47).

We conclude this section by noting that in the heavy-
impurity limit, Eq. (A10) is found numerically to agree with
the MF result

m̄∗
I ≈ 1 + α(1)πm̄B + α(1)(2π − 4)m̄2

B + · · · , (50)

while the variational mass M is found to depart significantly
from the above MF result. Thus, in Feynman’s method, M does
not agree with the effective polaron mass formula in Eq. (A10),
and we must use Eq. (A10) to compute the effective polaron
mass.

IV. CONCLUSION

We considered the Fröhlich model in a moving frame de-
fined by the LLP transformation, where the original impurity-
phonon system is transformed to an interacting many-phonon
system free of impurities. This LLP model distinguishes itself
with the four-boson interaction term in Eq. (7), where an
interaction between two phonons with momentum k and k′
does not involve any momentum exchange and is facilitated by
a “potential” that depends on k · k′. In the spirit of generalized
HFB theory, we formulated a field-theoretical description of
the LLP model where phonons are subject to this unique
phonon-phonon interaction. As an application, we applied
our theory to Bose polarons in quasi-1D cold-atom mixtures
and investigated polaron properties such as energy and mass
by solving the HFB equations self-consistently and the HFB
equations in the MF limit analytically.

We found in the regime of relatively light impurity and
strong coupling, our HFB results were significantly closer
to those from Feynman’s method than predictions from
MF theory. The agreement between our HFB approach and
Feynman’s method on the polaron energy was particularly
impressive. We found in the strongly interacting region that the
polaron ground state contains highly correlated phonon pairs.
In any many-body system at (or close to) zero temperature,
the exact nature of the ground state depends crucially on how
particles interact with each other. We attributed the existence
of both repulsive (in the region kk′ > 0) and attractive (in
the region kk′ < 0) phonon-phonon interactions to the rich
structure exhibited in various correlation functions and to
bunching and antibunching statistics exhibited in the second-
order correlation function.

We expect the 3D polaron to behave differently than our
1D polaron since their densities of states differ. Nevertheless,
it is worth pointing out that for the 3D polaron, as the polaron
coupling constant increases, the ground-state energy first rises
above the impurity-condensate interaction energy and then
decreases below it, while in our 1D case the ground-state
energy is always below it and decreases monotonically with
increasing α(1). This difference may be traced to the fact
that the 3D case suffers from an ultraviolet divergence, a
complication that does not occur in our 1D model. As a result,
the 1D system has allowed us to focus our attention on our
main purpose: gaining clean insight into the role the effective

phonon-phonon interaction and quantum fluctuations play in
polaronic states.

Finally, we comment that the recent upsurge of interest in
Bose polarons has been largely spurred by the prospect that the
rich toolbox and the flexibility of cold-atom systems may allow
polaron theories to be tested, to great precision, in cold-atom
experiments. However, many observables, which occur as
correlation functions involving various field operators, are
inaccessible to Feynman’s method. Our HFB theory, however,
can cast these observables into forms which are, at least
in principle, amenable to numerical analysis. As a concrete
example, in Appendix B we express, in terms of the variational
parameters of polarons, a time-dependent overlap function that
lies at the heart of rf spectroscopy, which has emerged as a
powerful tool in the study of cold-atom physics in general and
polaron physics in particular.
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APPENDIX A: FEYNMAN’S VARIATIONAL APPROACH

In this Appendix, we outline Feynman’s variational ap-
proach to the polaron [18], beginning with the partition
function, Z = Tr(e−βĤ ′

), where Ĥ ′ is given by Eq. (1) and
kBβ equals the inverse temperature. Tracing out the bosonic
degrees of freedom gives rise to an effective action for the
impurity,

S =
∫ β

0
dτ

1

2
mI ṙ2(τ ) − 1

2V
∑

k

g2
k

×
∫ β

0

∫ β

0
dτdσG(ωk,|τ − σ |)eik·[r(τ )−r(σ )], (A1)

where

G(x,u) = cosh[x(u − β/2)]/ sinh(βx/2), (A2)

with ωk and gk given in Eqs. (2) and (3), respectively.
To compute the ground-state free energy F of the Fröhlich

Hamiltonian Ĥ ′ in Eq. (1) [hence the action in Eq. (A1)],
Feynman introduces a novel variational approach based on the
Feynman-Jensen inequality,

F � Fvar − 〈S − Svar〉Svar , (A3)

where Fvar is the free energy of a variational system and
the average in 〈S − Svar〉Svar is performed with respect to the
variational system’s ground state. Minimizing the right-hand
side of Eq. (A3) gives the strongest bound on F , which we take
to be our estimate of F . As a variational system, Feynman
uses the impurity interacting with a fictitious particle via a
harmonic potential. Integrating out the fictitious particle yields
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the variational action for the impurity:

Svar =
∫ β

0
dτ

1

2
mI ṙ2(τ ) + MW 3

8

×
∫ β

0

∫ β

0
dτdσG(W,|τ − σ |)[r(τ ) − r(σ )]2, (A4)

where M , the mass of the fictitious particle, and W , the
frequency of the harmonic potential, are the variational
parameters. A straightforward but lengthy calculation gives
for the inequality (A3) [17,67]

F � d

β

[
ln sinh

(
β�

2

)
− ln sinh

(
β�

2
√

1 + M/mI

)]

− d

2β
ln

mI + M

mI

− d

2β

M

mI + M

[
β�

2
coth

β�

2
− 1

]

−
∑

k

g2
k

∫ β/2

0
duG(ωk,u)MM,�(k,u), (A5)

where d is the dimension, W is replaced in favor of the more
convenient � = W

√
1 + (M/mI ), and

MM,�(k,u) = exp

{
− k2

2(mI + M)

[
u−u2

β
+ M

mI�
(· · · )

]}
,

(A6)

with (· · · ) being defined as

(· · · ) = cosh(β�/2) − cosh[�(β/2 − u)]

sinh(β�/2)
. (A7)

As discussed in the main body of the paper, our interest lies
in the zero-temperature limit, which simplifies Eq. (A5) to

E0 ��d

2
− �d

2
√

1 + M/mI

− M�d

4(mI + M)

− 1

V
∑

k

g2
k

∫ ∞

0
due−uωk lim

β→∞
MM,�(k,u), (A8)

where we have changed the free energy F to the polaron
ground-state energy E0 and

lim
β→∞

MM,�(k,u)

= exp

{
− k2

2(mI + M)

[
u + M(1 − e−u�)

mI�

]}
. (A9)

At zero temperature, Feynman [18] derived from the asymp-
totic form of the partition function a formula for the effective
polaron mass,

m∗
I = mI + 1

dV
∑

k

k2g2
k

×
∫ ∞

0
due−uωku2 lim

β→∞
MM,�(k,u). (A10)

The positive M and � that minimize the right-hand side
of Eq. (A8) for d = 1 are fed back into the left-hand side
of Eq. (A8) to give the polaron energy E0 which we display
in Fig. 3. These same values of M and � are then used in
Eq. (A10) for d = 1 to compute the effective mass which we
display in Fig. 4.

APPENDIX B: THE RF SPECTRUM

In this Appendix, we establish a framework for calculating
the impurity rf spectra [1,76,77] in our HFB model. In rf
spectroscopy, an rf field of amplitude FL and frequency ωL is
applied to promote the impurity from an initial state |g〉 to a
final state |e〉, which are internal states, e.g., hyperfine states.
The two states differ by energy ωeg , and the process is de-
scribed by the Hamiltonian H̃rf = (FLe−iωLt |e〉〈g| + H.c.)/2.
The total Hamiltonian H̃ for this two-state impurity-BEC
system is

H̃ = ωeg|e〉〈e| + Ĥgg|g〉〈g| + Ĥee|e〉〈e| + H̃rf , (B1)

where Ĥgg and Ĥee describe impurity-phonon subsystems
containing |g〉-type and |e〉-type impurities, respectively.
The polarization of such a system is expected to oscillate
periodically at rf frequency ωL, and the rf (or probe absorption)
spectrum is then expected to be proportional to the following
expectation value:

Re[i〈|g〉〈e|〉eiωLt/FL]. (B2)

Let |ig〉 be the ground state of Ĥgg with energy Eig and
|fe〉 be any eigenstate of Ĥee with energy Ef e. Let |ig,g〉
and |fe,e〉 be the initial and final (impurity-phonon) states
of the total system described by H̃ in Eq. (B1). Evaluating
Eq. (B2), within the framework of linear response theory,
yields, straightforwardly, the rf spectrum (Fermi’s golden
rule),

Ip(ω) =
∑
fe

|〈fe,e|e〉〈g|ig,g〉|2δ[ω − (Ef e − Eig)], (B3)

where the subscript p on the left-hand side (which we suppress
on the right-hand side to reduce clutter) represents the total
momentum [first introduced in Eq. (6)] and the frequency
ω ≡ ωL − ωeg is measured relative to the |e〉 ←→ |g〉 atomic
transition. A standard manipulation transforms Eq. (B3) into
an integral [78]

Ip(ω) = Re
1

π

∫ ∞

0
dteiωtAp(t), (B4)

involving an overlap function in the time domain defined as

Ap(t) = eiEig t 〈ig|e−iĤeet |ig〉. (B5)

In the (direct) rf measurement, the rf field excites impurities
in state |g〉, which interact with the BEC via s-wave scattering,
to state |e〉, where they do not interact with the BEC. In this
case, Ĥgg is the interacting phonon Hamiltonian in Eq. (6), Ĥee

is the free-phonon Hamiltonian Ĥee = ∑
k ωkb̂

†
kb̂k [10], Eig is

the polaron energy Ep in Eq. (15), and |ig〉 is the polaron state
|φ〉 introduced in Sec. II.

To facilitate the evaluation of Eq. (B5), we express the
polaron state |φ〉 in terms of the phonon vacuum |0〉 [70],

|φ〉 = exp 1
2

∑
kk′ ĉ

†
k[G∗

kk′ ≡ (U ∗−1V ∗)kk′]ĉ†k′

[det(U †U )]1/4
|0〉, (B6)
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and at the same time organize exp(−iĤeet) into an antinormal
ordered form [79],

exp(−iĤeet) =
∏

k

∞∑
m=0

[1 − exp(iωkt)]m

m!

× exp(iωkt)(zk + ĉk)m(z∗
k + ĉ

†
k)m. (B7)

Let |ck〉 be the coherent state of ĉk, i.e., ĉk|ck〉 = ck|ck〉,
normalized according to 〈ck|0〉 = 1. In the coherent-state
space defined by the completeness relation∏

k

∫
dc∗

kdck

2πi
e−ckc∗

k |ck〉〈ck| = I, (B8)

we can cast the overlap function, Ap(t) = eiEpt 〈φ|e−iĤeet |φ〉,
into a Gaussian integral

Ap(t) = exp
∑

k

[iωkt + (1 − eiωkt )|zk|2]

× eiEpt√
det(U †U )

∏
k

∫
dc∗

kdck

2πi
eh, (B9)

where

h = −c∗Kc + 1
2cGc + 1

2c∗G∗c∗ + xc + y∗c∗, (B10)

or, explicitly,

Ap(t) = eiEpt exp
∑

k[iωkt + (1 − eiωkt )|zk|2]√
det(U †U )

×
exp

{
1
2 (x,y∗)

(
K G∗
G K

)−1(y∗
x

)}
√

det
(
K G∗
G K

) , (B11)

where K is a diagonal matrix defined as

Kij = exp(iωki
t)δi,j (B12)

and x and y are vectors defined as

xi = [1 − exp(iωki
t)]z∗

ki
, (B13)

yi = [1 − exp(−iωki
t)]z∗

ki
. (B14)

Equation (B11) is the main result of this appendix,
which expresses the overlap function (B5) and hence the rf
spectrum (B4) in terms of the variables that parametrize the
HFB variational polaron state. This may be extended, using
the time-dependent HFB variational principle, to inverse rf
spectroscopy [10,80], where the rf field transfers impurities
in state |g〉, which do not interact with the BEC, to state |e〉,
where they do interact with the BEC. We leave this as a possible
future research project.
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