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Decoherence of an impurity in a one-dimensional fermionic bath with mass imbalance
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We study the transport, decoherence, and the dissipation of the kinetic energy of a mobile impurity interacting
with a bath of free fermions in a one-dimensional lattice. Numerical simulations are made with the time-evolving
block decimation method, starting from a state where the impurity and bath are decoupled. We introduce a mass
imbalance between the impurity and bath particles and find that the fastest decoherence occurs for a light impurity
in a bath of heavy particles. By contrast, the fastest dissipation of energy occurs when the masses are equal. We
present a simple model for decoherence in the heavy bath limit, and a linear density response description of the
interaction which predicts maximum dissipation for equal masses.
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I. INTRODUCTION

Decoherence is the process through which a quantum
system transitions to a classical one as it interacts and becomes
entangled with an environment. In this process, the quantum
coherence between different states of the system, seen as
interference patterns in measurements, is destroyed and the
superposition state is transformed into a statistical mixture of
pointer states [1,2]. Although preparing a system in a quantum
coherent state typically requires extreme conditions in order
to isolate it from the environment [3–5], quantum coherent
phenomena have also been observed in macroscopic systems at
room temperature. Quantum processes can explain the high en-
ergy transfer efficiency within photosynthetic complexes [6,7];
the quantum transport of excitations in biological systems has
been observed experimentally with electronic spectroscopy
[8,9] and photon echo spectroscopy [10]. An important
question therefore is how the properties of the environment
affect the preservation or decoherence of a quantum state. A
highly controllable and tunable environment is provided by
ultracold atoms trapped with laser beams. For instance, in the
experiments [11–13], the system consists of impurity atoms
or ions which interact, instead of a thermal bath, with an
environment of atoms of a different type. One simple property
of the environment that can be varied in such experiments is
the (effective) mass of the environment particles.

Current experimental setups allow one to control the
internal states of the atoms, their density, and the interactions
between them. In a recent experiment, an immobile impurity
atom was employed as a two-level system to study the
decoherence of a qubit interacting with a Bose-Einstein
condensate (BEC) [13]. In other experiments, atoms confined
to an optical lattice were immersed in a BEC and the
Bogolyubov excitations of the BEC mimicked lattice phonons
[14–16]. The interaction of the impurity with an environment
of ultracold atoms can give rise to polaron behavior [17–19],
which has been predicted in many theoretical works [20–23].
Quantum gas microscopes, first implemented for bosonic
atoms, have made it possible to track the motion of a
single impurity particle in an optical lattice [19]: The
one-dimensional Heisenberg spin model was realized with
rubidium atoms, and the propagation of a spin impurity
showed both coherent transport and polaron behavior in
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different interaction regimes of the bath. Recently, quantum
gas microscopes for fermions, relevant for this study, have
also been implemented [24–28]. The impurity-bath problem
has also been studied theoretically in one dimension [29–36],
where effects beyond the polaron picture can occur [36,37].

In the framework of open quantum systems, the system of
interest is coupled to a large thermal reservoir. The system
decoheres and reaches thermal equilibrium with the reservoir
due to the coupling. The development of exact numerical
techniques for one-dimensional models in particular has led
to the study of nonequilibrium dynamics and thermalization
in closed systems [38–40], which has also been observed
experimentally [41]. In this article, we study the dynamics
of decoherence and kinetic energy dissipation by simulating
the unitary time evolution of a closed system at zero tem-
perature. Here, decoherence refers to the different position
(or equivalently momentum) states of the impurity and not,
e.g., to different internal states. We solve the time evolution
of an impurity atom interacting with environment atoms in
a one-dimensional lattice system using the numerical time-
evolving block decimation method [42,43]. The decoherence
of the impurity is addressed by calculating its reduced density
matrix in position basis. In the following, the words bath and
environment are used interchangeably.

The bath consists of free fermions, and we investigate
the effects of a repulsive on-site interaction, filling of the
bath, and a mass imbalance between the impurity and bath
particles on decoherence. To our knowledge, the dynamical
decoherence of impurities is largely unstudied, and especially
the effect of mass imbalance on decoherence has not been
studied in previous literature. In tilted lattices, the drift of
the center of mass of the impurity can be used as a measure
of dissipation of energy from the impurity to the bath [44].
Here, we use the density changes in the bath and changes
in energy to quantify dissipation. The impurity and bath are
initially decoupled. We find that, on a time scale defined by
the impurity tunneling energy, maximum dissipation occurs
when the impurity and bath particles have equal mass, whereas
maximum decoherence occurs in the limit of a light impurity
and heavy bath particles.

The model and the numerical method are introduced in
Sec. II. We present the numerical results in Secs. III–V, and
give an explanation of some of the characteristics in terms
of linear response theory in Sec. VI. Section III discusses
the transport of the impurity, which can be characterized
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as coherent or incoherent. We show that different mass
imbalances lead to different types of transport, and compare
the coherent case to a single-particle analytic solution. The
decoherence of the impurity is investigated in Sec. IV, where
we calculate the purity of the reduced density matrix of the
impurity as a function of time for different mass imbalances.
The effect of the interaction strength on decoherence is studied
in Sec. IV C. For strong interactions, the impurity can form a
repulsively bound pair with the bath particles. In Sec. IV D, we
minimize the effect of doublon formation by a very low filling
and study the asymptotic decay rate in the limit of infinitely
massive bath particles and strong interactions. A simple model
is presented for the decay of purity. The dissipation of energy
for different mass imbalances is discussed in Sec. V. We find
qualitative agreement between the numerical simulations and
the integrated dynamic structure factor of the bath, which is
discussed in Secs. VI A and VI B. Finally, conclusions are
presented in Sec. VII.

II. MODEL AND THE NUMERICAL METHOD

The impurity and bath are described by the Hubbard
Hamiltonian

H = HJ + HU,

where the kinetic term with tunneling energy J is

HJ = −
∑
jσ

Jσ (c†jσ cj+1σ + H.c.)

and the interaction term with on-site interaction energy U is

HU = U
∑

j

nj↑nj↓.

We denote the bath fermions by spin up (↑) and the impurity
by spin down (↓), so that c

†
j↑ (cj↑) creates (annihilates) a

bath fermion and c
†
j↓ (cj↓) the impurity, and njσ = c

†
jσ cjσ is

the number operator. We introduce a mass imbalance between
the impurity and the bath via different hopping parameters,
J↓ �= J↑. The tunneling energy is inversely proportional to the
mass, so that, for example, a heavy impurity moving in a light
bath corresponds to J↓ < J↑. In an optical lattice, besides the
mass of the atom, the tunneling energy depends on the lattice
potential. To create an effective mass imbalance, one can have
different tunneling energies for the two spin species by adjust-
ing the relative difference in their lattice depths [45] or by mag-
netic field gradient modulation [46]. In the following, we will
refer to the mass imbalance in terms of a light or heavy bath.

Initially, U = 0, the bath is in the ground state and the
impurity is localized at the center of the lattice. At the
beginning of the time evolution, the impurity is released and
the interaction is changed to U > 0. The interaction is fixed
to U = 1J↓ except for Secs. IV C and IV D where varying
interaction strengths are discussed. The time scale 1

J↓
is set by

the impurity tunneling energy. The numerical time-evolving
block decimation (TEBD) method is used for calculating the
ground state of the bath and the time evolution of the system.
We simulate lattices of size L = 50 to L = 100, while the
Schmidt number used in truncation is χ = 100. A comparison
to a higher bond dimension 500 in DMRG simulations shows

differences of order 10−3 in the density matrix elements, which
would not be visible in the results shown here. In the real time
evolution, we use a time step of 0.01 1

J↓
or 0.02 1

J↓
.

III. TRANSPORT CHARACTERISTICS FOR
MASS IMBALANCE

When a particle moves through a medium, the scattering
from the surrounding particles often leads to diffusion and
a mean-squared displacement which grows linearly in time,
〈x2〉 ∝ t . More generally, 〈x2〉 ∝ tα , where α < 1 corresponds
to subdiffusion and 1 < α < 2 to superdiffusion. The case
α = 2 corresponds to the ballistic motion of a freely moving
object. The classical concepts of diffusive and ballistic motion
can also be applied to quantum particles, in which case ballistic
transport, also known as quantum walk [47,48], is quantum
coherent and gives rise to interference effects. Diffusive
transport, on the other hand, is incoherent.

When the propagation of a particle is coherent, interferences
produce density minima and maxima, resulting in the density
wave fronts and interference patterns seen in Figs. 1 and 2.
Similar interference patterns were observed experimentally
for a spin impurity propagating in a Mott insulator bath
[19]. Figure 1 shows the densities of the impurity and the
bath as functions of position and time for two different mass
imbalances. The density profile of the impurity for the same
mass imbalances at time t = 6 1

J↓
is shown in Fig. 2. The filling

here is f = 0.5. For comparison, we show the analytic solution

FIG. 1. Upper row: The density distribution of the impurity
〈ni↓(t)〉 as a function of time. For the light bath J↑ = 10J↓ (left),
the impurity density distribution shows clear wave fronts and an
interference pattern, characteristic of coherent transport. For the
heavy bath J↑ = 0.1J↓ (right), the interference pattern of the impurity
is blurred and there is a maximum of density at the center. Lower row:
the density difference 〈ni↑(t)〉 − 〈ni↑(0)〉 of the bath fermions with
respect to the ground state. A reversed color scale is used to make
the details distinguishable. Density excitations propagate in the bath
with the maximum group velocity of noninteracting particles 2J↑, as
explained in the text. In the right panel, the excitations do not move
from the central site within the simulation time due to the very small
maximum group velocity 0.2J↓. The on-site interaction is U = 1J↓
and filling f = 0.5.
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FIG. 2. The density profile of the impurity 〈ni↓〉 at time t = 6 1
J↓ .

The light bath and heavy impurity case (J↑ = 10J↓) is almost
identical to the analytic solution for a free particle with higher-density
wave fronts and interference peaks. On the contrary, the density
distribution of a light impurity in a heavy bath [J↑ = 0.1J↓, yellow
(light-gray) line] is peaked at the center.

for a single particle, which is almost identical to the density
distribution of an impurity interacting with a light bath (J↑ =
10J↓). It can therefore be concluded that almost no coherence
is lost when the bath is light with respect to the impurity.

The time evolution of a single particle initially localized
in the lattice can be solved analytically by transforming
the Hamiltonian Hsp = −J

∑
〈i,j〉 c

†
i cj into momentum basis.

Substituting c
†
j = ∑

k ϕ∗
k,j c

†
k , Hsp becomes

Hsp =
∑

k

εkc
†
kck,

where εk = −2J cos(k). The above basis functions ϕk,j =√
2

L+1 sin(kj ) are the energy eigenfunctions of a particle in a
box, for which εk is the same as for the plane wave basis. The
initial state is

|ψ(0)〉 = c
†
j0

|0〉 =
∑

k

ϕ∗
k,j0

|k〉 ,

where |k〉 = c
†
k |0〉. Time dependence is obtained by operating

with the unitary time evolution operator e−iHspt ,

|ψ(t)〉 =
∑

k

e−iεk tϕ∗
k,j0

|k〉 ,

and for the expectation value of the particle density one obtains

〈ψ(t)| nj |ψ(t)〉 =
∣∣∣∣∣

2

L + 1

∑
k

sin(kj0) sin(kj )eiεkt

∣∣∣∣∣
2

.

Diffusive propagation is characterized by a maximum
of the density distribution at the initial location of the
impurity. In Figs. 1 and 2, one can see that the impurity
propagates diffusively in a heavy bath (J↑ = 0.1J↓). Density
excitations propagate in the bath with the maximum group
velocity of noninteracting particles 2J↑. In the light bath
in Fig. 1 (J↑ = 10J↓), the density excitations propagating
at the maximum group velocity can be seen as fast wave
fronts, which reflect from the edges of the lattice due to open
boundary conditions. Some depletion of density is caused
by the impurity, which moves slower. In the heavy bath

FIG. 3. The root-mean-squared displacement
√

〈x2(t)〉 as a func-
tion of time. The analytic result for a free particle (U = 0) grows
linearly. The TEBD simulations for varying mass imbalance show
that for an impurity interacting with a bath with U = 1J↓, the lines
for J↑ = 10J↓ and J↑ = 5J↓ almost overlap with the analytic result,
and the growth decreases from linear for decreasing J↑/J↓ (heavier
bath).

(J↑ = 0.1J↓), the maximum group velocity is very small and
the excitations do not move from the central site within the
simulation time. The change from coherent to incoherent
transport with a decreasing mass ratio J↑/J↓ is seen in the
mean-squared displacement 〈x2(t)〉 = ∑

i〈ni↓(t)〉i2 in Fig. 3.
The analytically calculated root-mean-squared displacement
for the free particle

√
〈x2(t)〉 grows linearly in time, whereas

in the interacting case with U = 1J↓ the growth slows down for
decreasing mass ratio J↑/J↓. In order to study the transition
into diffusive propagation in more detail, we calculate the
reduced density matrix of the impurity and study the purity of
the density matrix in Sec. IV.

IV. DECOHERENCE OF THE IMPURITY

A. The reduced density matrix

The degree of quantum coherence of a system can be
quantified by the purity of its density matrix ρ, which is
the trace of the density matrix squared, Tr(ρ2). The purity
has values between 1 and 1

N
, where N is the dimension of

the density matrix [49]. For a pure (fully coherent) state,
Tr(ρ2) = 1, whereas an almost classical (mixed) state has a
small purity [50]. The impurity-bath system as a whole is in a
pure state, and we simulate the unitary time evolution of this
total state. Unlike in quantum master equation approaches,
the environment here is finite and we simulate it exactly
without limitation to weak system-environment coupling or
approximations on the memory of the environment. The
interaction of the impurity with the bath leads to correlations,
due to which the time evolution of the reduced system of
the impurity or bath alone is in general not unitary. The
reduced density matrix of the impurity is denoted by ρ↓ and
has elements ρi,j↓ = 〈c†i↓cj↓〉. Due to entanglement with the
bath, ρ↓ loses its initial quantum coherence represented by the
off-diagonal elements. A quantum gas microscope has recently
been applied to directly measure the purity of a many-body
state [51,52], as proposed earlier [53–55]. A similar technique
could allow one to monitor the entanglement of an impurity
with the environment particles.
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FIG. 4. The absolute value of the reduced density matrix of the
impurity |ρ↓|, where the matrix elements are ρi,j↓ = 〈c†i↓cj↓〉, at time
t = 6 1

J↓ . In the case of a light bath J↑ = 10J↓ (left), the purity of the

reduced density matrix is high, Tr(ρ2
↓) = 0.99, whereas for the heavy

bath J↑ = 0.1J↓, the purity is low, Tr(ρ2
↓) = 0.31.

The reduced density matrix of the impurity is shown in
Fig. 4 for different values of the mass imbalance at time t =
6 1

J↓
. In the case of a light bath, the reduced density matrix has

large off-diagonal elements and the impurity is in a nearly pure
state. The matrix elements differ by approximately 10−3 from
the analytic solution

〈ψ(t)| c†i cj |ψ(t)〉

=
(

2

L + 1

)2 ∑
q,k

eit(εq−εk) sin(qj0) sin(qi) sin(kj0) sin(kj )

for a free particle, which is always in a pure state with Tr(ρ2) =
1. For an impurity in a heavy bath, the largest values are on the
diagonal and the off-diagonal values are small, corresponding
to a mixed state. A comparison of Fig. 1 to Fig. 4 shows
that indeed a density distribution with wave fronts and an
interference pattern indicates a highly coherent state, whereas
a distribution peaked at the center is indicative of lower purity.

B. Purity of the density matrix as a function of time

Figure 4 shows that the mass imbalance between the
impurity and the bath has an effect on the decoherence rate:
in a heavy bath, the purity decays faster than in a light bath.
To study the effect of a mass imbalance on the decoherence
more precisely, the purity Tr(ρ2

↓) is shown as a function of
time in Fig. 5 for varying mass ratios. It can be seen that
for an increasingly light bath, the purity stays close to 1 as

FIG. 5. The purity Tr(ρ2
↓) as a function of time for varying mass

ratio with filling f = 0.5 of the bath (left) and f = 0.2 (right). The
decay is faster for heavier baths (smaller J↑/J↓). The time unit is 1

J↓ ,
and the interaction with respect to the impurity hopping is fixed to
U = 1J↓.

FIG. 6. Left: The density profile of the impurity 〈ni↓〉 at time
t = 6 1

J↓ . The U = 0 case is solved analytically as in Fig. 2, and the
U > 0 cases numerically with a half-filled bath and equal masses
J↑ = J↓. Right: The purity as a function of time in units of 1

J↓ for the
same parameters (U > 0).

a function of time. In the opposite case of a heavy bath, the
decay rate saturates when J↑ < 0.1J↓. The limit J↑/J↓ → 0,
where the decoherence is fastest, is discussed in Sec. IV D.
We also vary the filling of the bath and observe that the
decoherence is slower as f decreases from 0.5. The purity
for filling f = 0.2, shown in the right panel of Fig. 5, is seen
to decay slower than for filling f = 0.5 (left panel) when
J↑ � J↓, which we interpret is due to the impurity interacting
with fewer bath particles. A slightly faster decoherence can be
seen with the lower filling when J↑ = 5J↓ and J↑ = 10J↓. We
have not found an explanation for this small difference, and
understanding it would require further study.

C. Strong interaction

For strong interaction U 
 J↓, the impurity can form a
repulsively bound pair with a bath particle due to energy
conservation. The maximum group velocity of this doublon is
4J 2

U
, given by the superexchange coupling in a mapping to the

Heisenberg Hamiltonian [56]. The effect of doublon formation
can be seen in Fig. 6. For increasing U , the evolution of the
impurity wave packet becomes slower and the wave fronts at
the edges of the distribution reach a shorter distance within a
fixed time. The right panel shows that decoherence is faster
for U = 4J↓ and U = 10J↓ than for U = 1J↓.

We interpret that here, two sources of decoherence play
a role. The decoherence is partly due to entanglement of
the particles forming a doublon, which is larger for stronger
interaction, and partly due to scattering, which has a smaller
probability for stronger interaction since the bound impurity
moves very slowly. A quantum master equation approach
has been used earlier to show that the transport of an
impurity weakly coupled to a BEC changes from coherent to
diffusive with increasing coupling strength [57]. The effect of
interactions on decoherence was also studied experimentally
in a three-dimensional Fermi sea of ultracold 6Li atoms [58]. In
Sec. IV D, we investigate the effect of the interaction strength
on decoherence when the mass of the bath particles approaches
infinity (J↑/J↓ → 0). We use a very low filling, in which case
doublon formation can be neglected.

D. The infinitely heavy bath

This section focuses on the limit of an infinitely heavy
bath J↑/J↓ → 0, where the decoherence of the impurity is
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FIG. 7. The density profile of the impurity 〈ni↓〉 at time t =
6 1

J↓ . The U = 0 case is solved analytically and the U > 0 cases
numerically with filling f = 0.03 of the bath and J↑ = 0.01J↓.

fastest, as seen in Fig. 5. When J↑/J↓ is very small, the
environment particles are effectively fixed in place and the
impurity experiences a superposition of potentials with fixed
barriers of height U . Note that a particle in a single realization
of a random potential would be a one-body problem with no
decoherence, which is quite different from the results we obtain
here. At very low filling, the effects of doublon formation can
be neglected and the decoherence due to scattering can be
analyzed separately. Here we use the lattice size L = 30, and
the number of spin-up fermions is N↑ = 1, which gives a
filling of the bath f = 0.03. We keep here the terminology
of an impurity and a bath even though to gain intuition we
consider a “bath” of only one particle. Figure 7 shows that the
wave fronts at the edges of the impurity density distribution
reach the same distance at time t = 6 1

J↓
for U = 10J↓ as

for the noninteracting particle. Unlike in Fig. 6, the slower
propagation of the wave fronts characteristic of doublon
formation does not occur here. Instead, the density distribution
for U = 10J↓ is spread out but has a maximum at the center,
which is characteristic of diffusive transport due to scattering.

The decoherence rate is related to the transition probabili-
ties in the scattering events. In the perturbative limit of small
U , one can relate the decoherence rate to the Fermi golden rule
for transition rates between eigenstates, which are proportional
to the square of the transition matrix element. We find that for
U � 0.5J↓, the decay of Tr(ρ2

↓) is roughly linear within the
time interval studied here, as shown in Fig. 8. This would be

FIG. 8. Left: A linear fit f (t) = 1 − γ t is made to the purity for
U < J↓. Right: The decay coefficient γ extracted from the fits as a
function of U 2. A linear fit to these points shows that γ ∝ U 2.

FIG. 9. The purity as a function of time for f = 0.03 and J↑ =
0.01J↓. The function g(t) derived in Appendix A agrees well with
the simulations.

expected in the short-time limit of an exponential decay. By
making a linear fit to the purity, one sees that the decoherence
rate γ in f (t) = 1 − γ t is proportional to U 2, as could be
expected from the Fermi golden rule.

Figure 9 shows the purity for larger U . The decoherence is
faster for increasing U and the curves saturate for U � 5J↓.
In the large U limit, the decoherence process for two particles
can reasonably well be described by a simple model where the
impurity propagates as a wave packet with constant velocity
and “measures” the state of the bath at the lattice site that
it reaches. This is a simplification since in reality the time
evolution is more complicated, as can be seen from the density
profiles above. We find, however, that this simple model agrees
well with the numerical simulations within the time interval
shown in Fig. 9. The details of the model are described in
Appendix A.

V. DISSIPATION

A. Density changes

In addition to decoherence, the interaction of the impurity
with the environment leads to the dissipation of energy.
In an experiment where impurity atoms moved through a
Tonks-Girardeau gas, the dissipation of energy was seen in
the widening of the impurity wave packet [59]. In general,
decoherence can occur without dissipation, but dissipation or
relaxation is always accompanied by decoherence [49]. The
dissipation of energy from the impurity to the bath particles
can be seen as changes in the bath density profile in Fig. 1.
Figure 10 shows the integrated absolute value of the density
change as a function of time,

∑L
i=1 |〈ni↑(t)〉 − 〈ni↑(0)〉|. We

find similar results for filling fractions f = 0.5, f = 0.3 (not
shown), and f = 0.2. The density change oscillates unevenly
and grows at different rates for different tunneling energies of
the bath, reflecting the time scale of the displacement of the
bath particles and the probability of excitations. The largest
density changes occur for masses close to each other J↑ ≈ J↓.
The dependence of the probability of creating excitations on
mass imbalance is discussed in Secs. VI A and VI B in terms
of linear response.
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FIG. 10. The change in the bath density with respect to the ground
state as a function of time,

∑L

i=1 |〈ni↑(t)〉 − 〈ni↑(0)〉|, after the quench
U = 0 → 1J↓. The mass imbalance varies from J↑ = 0.1J↓ (heavy
bath, dash-dotted line) to J↑ = 10J↓ [light bath, thin green (gray)
line] and the filling is f = 0.5 (left) and f = 0.2 (right).

B. Dissipated energy

In order to quantify the dissipation of energy, we show in
Fig. 11 the expectation value of the kinetic energy

〈HJσ
(t)〉 = −Jσ

∑
〈i,j〉

〈ψ(t)| c†iσ cjσ |ψ(t)〉

as a function of time. The largest increase in the kinetic energy
of the bath 〈HJ↑ (t)〉 and the largest decrease in the kinetic
energy of the impurity 〈HJ↓ (t)〉 occur with equal masses, as
for the density changes in the bath. The interaction energy
shown in Fig. 12 is proportional to the total number of doubly
occupied sites,

〈HU (t)〉 = U
∑

i

〈ψ(t)| ni↑ni↓ |ψ(t)〉 .

FIG. 11. The expectation values of the kinetic terms of the
Hamiltonian. For the bath (upper row), 〈HJ↑ (t)〉 grows fastest for
equal masses, J↑ = J↓ [thick yellow (light-gray) line], and for the
impurity (lower row), 〈HJ↓ (t)〉 decreases fastest for equal masses.
The initial value at the first time step after the quench U = 0 → 1J↓
is subtracted in order to compare the changes in energy between
different mass imbalances instead of the absolute energies. The filling
is f = 0.5 on the left and f = 0.2 on the right.

FIG. 12. The interaction energy 〈HU 〉 for f = 0.5 (left) and f =
0.2 (right).

For the heavy J↑ = 0.1J↓ and light J↑ = 10J↓ baths, the
number of doubly occupied sites stays close to the initial value
〈N↑↓(0)〉 = f , as the density distribution of the bath atoms is
close to uniform. The largest change in the number of doublons
occurs for J↑ ≈ J↓, when there are the largest changes in
the bath density distribution. The numerical error in the total
energy is shown in Appendix C. It is of the order 10−3J↓
within the time interval shown here. It is interesting to note
that maximal decoherence of the impurity occurs at the limit
of immobile bath particles J↑/J↓ → 0 where the dissipation
of energy approaches zero, illustrating that decoherence does
not require dissipation.

VI. LINEAR DENSITY RESPONSE

A. Dynamic structure factor

The numerical results on dissipation and density changes
in the bath can be understood qualitatively by considering
the dynamic structure factor of the bath. The impurity can be
viewed as a potential perturbation V (x,t) in the Hamiltonian
H = H0 + ∫

V (x,t)n(x)dx, where H0 is the unperturbed
Hamiltonian of the noninteracting bath of fermionic atoms.
The linear response in density to the potential V (x,t) is of
the form 〈n(x,t)〉 = ∫

χ (x ′,x; t ′,t)V (r ′,t ′)dx ′dt ′, where the
susceptibility χ is the density-density correlation function in
the ground state of H0,

χ (x ′,x; t,t ′) = −iθ (t − t ′)〈[n(x,t),n(x ′,t ′)]〉0.

In momentum and frequency space, the susceptibility is [60]

χ (k,ω) =
∫ π

−π

dp

2π

np(1 − np+k)

�ω + εp − εp+k + iη

−
∫ π

−π

dp

2π

np+k(1 − np)

�ω + εp − εp+k − iη
.

The first term corresponds to the particle-hole bubble in
Fig. 13 and the second term is the time-reversed process. At
zero temperature, the occupation number is a step function
nk = θ (kF − k). The dispersion of the bath particles is εk =
−2J↑ cos(k), and η is a small imaginary part that acts as a
convergence parameter. Physically, η describes the lifetime of
particle-hole excitations in the bath. Here we use a fixed value
η = 0.05 J↓.

The dynamic structure factor S(k,ω) = 2Imχ (k,ω) gives
the spectral weight of particle-hole excitations with momen-
tum k and frequency ω. Here, k is the momentum imparted by
the impurity atom on the bath and �ω is the energy transferred
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FIG. 13. Left: A particle-hole bubble describing the density
fluctuations of the bath. Right: The integrated dynamic structure
factor I as a function of the mass ratio has a peak at equal masses
J↑ = J↓, which indicates the largest density response at this value.

in the elastic scattering process. Since the impurity is initially
localized in space, and thus occupies all momentum states q,
the transferred momentum k and energy �ω are not uniquely
defined. Instead, the impurity probes an average quantity, the
integrated dynamic structure factor

I =
∫ π

−π

dq

2π

∫ π

−π

dk

2π
S
(
k,

(
εimp
q − ε

imp
q−k

)
/�

)
,

where q is the initial momentum of the impurity, k is the
transferred momentum, and ε

imp
q − ε

imp
q−k is the energy change

of the impurity in the elastic scattering process.
Since this simplified description of the impurity-bath

interactions only includes single-particle excitations, it does
not take into account processes such as doublon formation,
which are relevant particularly at short times. Furthermore,
the description of the impurity as a time-dependent perturbing
potential is not very accurate, since also the dynamics of
the impurity itself is in general changed by the scattering
event. Particularly, the long time limit where the impurity
scatters multiple times from different bath atoms cannot be
described with a linear response. We find, however, that the
integrated dynamic structure factor, shown in Fig. 13, yields
good qualitative agreement with some of the phenomena found
in the numerical simulations, as will be discussed below.

B. Overlap of the impurity transitions with the bath
excitation spectrum

The largest integrated density changes, observed at equal
masses J↑ = J↓ in Fig. 10, coincide with the peaks in the inte-
grated structure factor. The difference between density changes
in the J↑ = J↓ and J↑ �= J↓ cases is also larger for half-filling
than for f = 0.2, similar to Fig. 13. These results can be
interpreted by a simple physical picture where the impurity
scatters from bath atoms and creates particle-hole excitations.
In particular, in the case J↑ ≈ J↓, the particle-hole excitation
spectrum of the bath, provided by the dynamic structure factor,
overlaps most strongly with the possible transitions of the
impurity. This results in the largest density response.

A finite integrated dynamic structure factor I in the limit
of an infinitely massive bath J↑/J↓ → 0 indicates that a
finite number of excitations can be created in this limit. This
prediction is explained by the fact that creating excitations
does not require energy as the bandwidth of the bath, and
thus the range of possible excitation energies, approaches
zero. The impurity occupies all momentum states, and it

can create all the possible particle-hole excitations in the
bath by backscattering. In this process, the impurity is
transferred from momentum q to −q and the bath particle
gains momentum 2q. The integrated dynamic structure factor
becomes I = ∫ π

−π
dq S(2q,0). These excitations have very

little energy, which is in agreement with the decrease in
dissipated energy for decreasing J↑ seen in Fig. 11.

In the opposite limit of a light bath, J↑/J↓ → ∞, the
integrated structure factor decays asymptotically as 1/J 2

↑ and
predicts a vanishing response, in agreement with Figs. 10
and 11. This is due to the reduced overlap of the excitation
spectra of the impurity and the bath: The range of energies
that the impurity can impart on the bath atoms is limited by
the impurity bandwidth 4J↓, and the spectral weight of the
possible particle-hole excitations in the bath with energy below
4J↓ decreases rapidly as the bath hopping J↑ increases. The
impurity now has a very small probability of scattering, which
is consistent with the coherent transport seen in Figs. 1–3 and
high purity in Fig. 5.

VII. CONCLUSIONS

We have investigated the transport characteristics, decoher-
ence, and energy dissipation of an impurity propagating in a
bath of free fermions. These properties are affected by the mass
imbalance between the impurity and bath particles, the strength
of impurity-bath interaction, and the filling fraction of the bath.
We find, for a fixed interaction strength equal to the impurity
tunneling energy, that the transport of the impurity changes
from coherent to diffusive as the mass of the bath particles
changes from light to heavy with respect to the impurity.
To analyze the coherence of the impurity more carefully, we
calculate the purity of its reduced density matrix. Similarly to
the transport properties, the purity decays faster for increasing
mass of the bath particles. A simple model is presented for
the case where maximum decoherence occurs, in the limit of
infinitely massive bath atoms and strong interactions.

The dynamics studied here could be realized in an experi-
ment with ultracold atoms. The atoms are typically confined
by a harmonic trap, and the nonuniform density profile of
the bath as well as scattering from the trapping potential could
cause effects which are not present in our model. We, however,
expect that the short-time dynamics would show the same
essential phenomena. In recent experiments with quantum gas
microscopes, sufficiently low temperatures have been achieved
to distinguish entanglement entropy, related to the purity, from
classical entropy [51,52]. Even though the measured purity of
the many-body state is less than 1, it is possible to distinguish
the entanglement between subsystems by comparing their
purity to that of the total system. The entanglement entropies
of subsystems were measured as a function of time [51,52],
which gives a promising perspective for the detection of the
time-dependent entanglement and decoherence of an impurity
particle.

The maximum of dissipation and density changes in the
bath is found for equal masses. These results agree with the
linear density response, which provides a physical explanation
in terms of the overlap of the particle-hole excitation spectrum
of the bath with the possible transitions of the impurity. The
mass ratio with maximum dissipation could change if there
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were interactions between the bath atoms. One would expect
collective sound mode excitations to become more important
in this case, particularly in the case of a superfluid bath.

Interestingly, we find that maximum decoherence occurs
at a different mass ratio than the maximum density response.
Dissipation is strongest at the largest overlap of the excitation
spectra where the maximal amount of energy can be transferred
from the impurity to the bath. Maximum decoherence, on the
other hand, occurs at the limit of infinitely heavy bath atoms
where, due to backscattering, the state of the impurity changes
the most even when energy is not transferred. In this case, there
is maximal entanglement—the heavy bath acts like a massive
measurement apparatus.
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APPENDIX A: MODEL FOR THE INFINITELY MASSIVE
BATH LIMIT

An expression for the purity of the reduced density matrix
of the bath can be derived by considering a simple model for
the decoherence process. For a pure state partitioned into two
subsystems, the purities of the reduced density matrices of the
subsystems are equal, as shown in Appendix B. Therefore, the
same formula also gives the purity of the spin-down fermion.

When the bath consists of one particle, its ground state can
be written as

|ψ↑(t = 0)〉 =
∑

j

aj |↑〉j ,

where aj =
√

2
L

sin( π
L
j ) and |↑〉i denotes a state where site i is

occupied by the spin-up fermion and the other sites are empty.
The density matrix ρ↑(0) = |ψ↑(0)〉 〈ψ↑(0)| can be written in

matrix form as

ρ↑(0) =

⎛
⎜⎜⎝

b1,1 b1,2 · · · b1,L

b2,1 b2,2
...

. . .
bL,1 bL,L

⎞
⎟⎟⎠,

where bi,j = aiaj . The impurity is initially in a superposition
of all momentum states, which in the time evolution interfere
with each other producing an interference pattern in the density
distributions. In a simplified picture, we model the impurity
as a delta function wave packet propagating with constant
velocity. The group velocity is given by the dispersion relation

vg(k) =
∣∣∣∣dε(k)

dk

∣∣∣∣ = 2J↓| sin(k)|,
and we use here the average velocity

v̄ = 2J↓
1

π

∫ π

0
sin(k)dk ≈ 1.27J↓,

as the velocity of the impurity wave packet.
The initial state of the impurity is |ψ↓(0)〉 = |↓〉j0

, and for
a noninteracting impurity, the time-dependent state would in
our model be a superposition of wave packets moving to the
left and to the right,

|ψ↓(t)〉 = 1√
2

(|↓〉j0−v̄t + |↓〉j0+v̄t ).

When the impurity interacts with the bath particle, the total
time-dependent state becomes

|ψ(t)〉 = 1√
2

(|ψL(t)〉 + |ψR(t)〉),

where |ψL(t)〉 is the state in the case where the impurity
propagates to the left from j0 and |ψR(t)〉 is the state with
the impurity propagating to the right. The reduced density
matrix of the bath is now

ρ↑(t) = Tr↓[ρ(t)] = 1
2 [ρ↑L(t) + ρ↑R(t)], (A1)

where ρ↑L(t) is the reduced density matrix of the bath particle
in the case where the impurity propagates left and ρ↑R(t) the
reduced density matrix with the impurity propagating right.
In the limit of a strong on-site interaction, we assume that
the propagating impurity measures the state of the lattice site
that it reaches (or one can equally well think that the bath
measures the impurity) so that the state at these sites becomes
completely entangled. The state is assumed to be unmodified
at the sites that the impurity has not reached.

In matrix form, ρ↑L is written as

ρ↑L(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1 · · · b1,jL−1 0 · · · 0 b1,j0+1 · · · b1,L
...

...
...

bjL−1,1 · · · bjL−1,jL−1 0 · · · 0 bjL−1,j0+1 · · · bjL−1,L

0 · · · 0 bjL,jL 0 0 · · · 0
...

. . .
0 · · · 0 0 bj0,j0 0 · · · 0

bj0+1,1 · · · bj0+1,jL−1 0 · · · 0 bj0+1,j0+1 · · · bj0+1,L
...

...
...

bL,1 · · · bL,jL−1 0 · · · 0 bL,j0+1 · · · bL,L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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FIG. 14. The reduced density matrices of the spin-up (left) and
spin-down (right) particles at time t = 5/J↓ for U = 20J↓.

where jL(t) = j0 − v̄t . For ρ↑R(t), the section corresponding
to indices j0, . . . ,j0 + v̄t is diagonal. The matrices ρ↑L(t) and
ρ↑R(t) are now divided into coherent and incoherent (diagonal)
blocks as the part of the density matrix corresponding to the
sites the impurity has reached becomes diagonal. The function

g(t) = Tr[ρ2
↑(t)], (A2)

where ρ↑(t) is given by Eq. (A1), is drawn in Fig. 9. Since
v̄t is a continuous variable, we have used a discretization of
position that is smaller than the lattice spacing in order to make
g(t) continuous in the figure.

The left panel of Fig. 14 shows a similar feature of lower
off-diagonal values corresponding to the central sites. The
reduced density matrix of the spin-down fermion has the
largest value at the center, corresponding to the peak in the
density distribution of Fig. 7. A system with weak interactions
would not be well described by this model since the particles
would be less entangled and there would not be such a nearly
diagonal section in the density matrix of the bath. For more
bath particles N↑ > 1, the reduced density matrix of the bath
would have larger dimensions and would be more complicated
to analyze. We, however, expect the same underlying effect
to be present at low filling fractions. We do not expect this
description to hold for strong interactions and large filling
since doublon formation is not taken into account here.

APPENDIX B: PURITIES OF THE REDUCED DENSITY
MATRICES OF TWO SUBSYSTEMS

By the Schmidt decomposition, a pure state |ψ〉 of a
bipartite system with subsystems A and B can be written

|ψ〉 =
∑

i

ci |φi〉 |χi〉 ,

FIG. 15. The total energy after the quench U = 0 → 1J↓ as a
function of time, for f = 0.5 (left) and f = 0.2 (right). Here, U =
1J↓.

where |φi〉 and |χi〉 are orthonormal bases of A and B,
respectively. The reduced density matrix of A is

ρA = TrB(ρ) =
∑

i

〈χi | (|ψ〉 〈ψ |) |χi〉

=
∑

i

〈χi |
⎛
⎝∑

j

cj |φj 〉 |χj 〉
∑

l

c∗
l 〈χl| 〈φl|

⎞
⎠ |χj 〉

=
∑

i

|ci |2 |φi〉 〈φi | ,

and the reduced density matrix of B is similarly ρB =∑
i |ci |2 |χi〉 〈χi |. The reduced density matrices are thus

diagonal in these bases and the purities are given by

Tr(ρA
2) = Tr(ρB

2) =
∑

i

|ci |4.

APPENDIX C: NUMERICAL ERROR IN THE
TOTAL ENERGY

Figure 15 shows the change in total energy after the first
step in the time evolution. As energy is conserved, this quantity
should be zero and it now serves as a check for the errors of
the numerical method. The small deviations from zero result
from the truncation of the state and the discretization of time
into finite steps.
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