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One of the most fundamental problems in quantum many-body systems is the identification of a mean field
in spontaneous symmetry breaking which is usually made in a heuristic manner. We propose a systematic
method of finding a mean field based on the Lie algebra and the dynamical symmetry by introducing a class
of symmetry-broken phases which we call μ-symmetry breaking. We show that for μ-symmetry breaking
the quadratic part of an effective Lagrangian of Nambu-Goldstone modes can be block-diagonalized and that
homotopy groups of topological excitations can be calculated systematically.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) has long played
a pivotal role in our understanding of Nature [1]. Examples
include ferromagnetism [2], superconductivity [3], Bose-
Einstein condensation [4,5], chiral symmetry breaking [6,7],
and unification of the fundamental forces [8]. Both static
and dynamic properties of a symmetry-broken phase can be
described by the corresponding mean field, which is usually
found in a heuristic manner. The identification of the mean field
amounts to that of an order parameter or that of an operator
that supports a long-range order (LRO) in quantum field
theory [9].

In this paper, we propose a systematic method of finding
mean fields of quantum many-body systems based on the
Lie algebra and the dynamical symmetry. The dynamical
symmetry has achieved a remarkable success in few-body
systems for finding, e.g., the atomic spectrum of hydrogen
[10,11] and collective excitation spectra of nuclei [12]. Here
we apply the dynamical symmetry to a particular class of
broken symmetry systems in which the mean fields are
described in terms of the weight vector in the representation
of the Lie algebra. Since the weight of the Lie algebra
is often labeled by the Greek letter μ, we refer to such
symmetry breaking as μ-symmetry breaking. We show that
for μ-symmetry breaking the quadratic part of an effective
Lagrangian of Nambu-Goldstone modes (NG modes) can be
block-diagonalized and that homotopy groups of topological
excitations can be calculated systematically. By applying this
method to a U(N )-symmetric system which has recently been
realized in an ultracold atomic gas [13,14], we show that a
large class of symmetry-broken phases can be described in
terms of μ-symmetry breaking.

This paper is organized as follows. In Sec. II, we introduce
the concept of μ-symmetry breaking and identify mean
fields by combining it with the dynamical symmetry. In
Sec. III, mean fields of μ-SB are derived through minimization
of energy functionals constructed from the underlying Lie
algebra. In Sec. IV, we show that the quadratic part of
an effective Lagrangian of Nambu-Goldstone modes can be
block-diagonalized for μ-symmetry breaking. In Sec. V, we
show how to systematically calculate homotopy groups of
topological excitations for μ-symmetry breaking. In Sec. VI,

we apply our method to a U(N )-symmetric system. In Sec. VII,
the cases of higher-dimensional representations are discussed
from the standpoint of μ-symmetry breaking by using the
examples of spin-2 Bose-Einstein condensates (BECs) [15–
17] and spin-1 color superconductors [18,19]. In Sec. VIII, we
conclude this paper. In Appendix, we prove some formulas on
homotopy groups used in Sec. V.

II. μ-SYMMETRY BREAKING

We consider a quantum field theory whose symmetry group
G is described by a finite-dimensional unitary representation
R:

φi �→
∑

j

[
exp

(
i

d∑
a=1

Tata

)]
ij

φj , (1)

where {φi}i is a set of fields of particles, Ta is an element of the
Lie algebra g = {Ta}da=1 constituted from finite-dimensional
Hermitian matrices of the representation R, respectively. Here,
d is the dimension of G and ta’s are real parameters. We denote
the Noether charge associated with the generator Ta by Q̂Ta

.
For the present discussion, we do not need to specify quantum
statistics of particles and the system can be defined either on a
lattice or in continuous space. We assume that the Lie algebra
g of the symmetry group is the direct product of a simple
compact Lie algebra ḡ and u(1) = {xI |x ∈ R}:

g = ḡ ⊕ u(1), (2)

where I is the identity matrix. The particle-number operator
is the Noether charge associated with the generator I .

The key ingredient in the following analysis is the quadratic
Casimir invariant defined by

C
ḡ

2 (v) :=
d̄∑

a=1

(v|Ta|v)2, (3)

where |v) and d̄ = d − 1 are a vector in the representation R
and the dimension of ḡ, respectively. Let {Hb}r̄b=1 be the Cartan
subalgebra of ḡ, i.e., the maximal commutative subalgebra of
ḡ, where r̄ = rank ḡ is the rank of the Cartan subalgebra. Let
|μ) be a weight vector which is a simultaneous eigenstate
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of {Hb}r̄b=1:

Hb|μ) = μb|μ) (b = 1,2, . . . ,r̄), (4)

μ = t (μ1,μ2, . . . ,μr̄ ), (5)

where t denotes the transpose. The highest weight |μH ) is
the weight vector that maximizes the expectation value of the
quadratic Casimir invariant C

ḡ

2 :

C
ḡ

2 (μH ) =
d̄∑

a=1

(μH |Ta|μH )2

= max
φ,(φ|φ)=1

d̄∑
a=1

(φ|Ta|φ)2. (6)

The zero weight |μ0) is the weight vector that has the zero
eigenvalue of Eq. (4) and therefore minimizes the expectation
value of C

ḡ

2 to 0:

C
ḡ

2 (μ0) = 0. (7)

An irreducible representation of ḡ is uniquely determined by
its highest weight μH [20], and we denote a complete set of
weight vectors belonging to μH as W [μH ].

We now introduce the concept of μ-symmetry breaking.
Let 〈φ〉 be an order parameter. If 〈φ〉 transforms in a low-
dimensional representation of the symmetry group G in the
presence of off-diagonal long-range order (ODLRO), 〈φ〉 will
be shown to take either of the following forms:

〈φ〉 = |μH ), (8)

〈φ〉 = |μ0). (9)

If the lattice of space, which we denote by L, is free
from frustration in the presence of diagonal long-range order
(DLRO), the mean-field ground state |GS〉 will be shown to
take either of the following forms:

|GS〉 =
⊗
i∈L

|μH )i , (10)

|GS〉 =
⊗
u∈U

⊗
i∈u

|μi)i , (11)

where |μi)i , u, and U denote a simultaneous eigenstate of
{Hb}r̄b=1 at lattice site i, a unit cell of an ordered state, and
the lattice constituted from the entire set of the unit cells,
respectively. In Eq. (11), the set {μi}i is chosen so that the
expectation value of Ĉ

g

2 within each unit cell vanishes (see
Eq. (32) and the following explanation for detail):

〈
Ĉ

g

2

〉 = d̄∑
a=1

[∑
i∈u

i(μi |Ta|μi)i

]2

= 0. (12)

As is shown in Eq. (32), Eq. (12) implies that the sum of the
weight vectors within each unit cell vanishes.

The derivations of Eqs. (8)–(11) will be shown in the
following section. We call these four types of symmetry
breaking μ-symmetry breaking (μ-SB), which is characterized
by the combination of the highest or zero weight and
ODLRO or DLRO. Prototypical examples of μ-SB include the

TABLE I. Examples of four types of μ-symmetry broken phases.
Here μH and μ0 represent the highest-weight and zero-weight
vectors, respectively. The order parameters for ODLRO are given
by Eqs. (8) and (9) and the ground states for DLRO are given by
Eqs. (10) and (11).

ODLRO DLRO

μH Ferromagnetic spin-1 BEC Ferromagnet
μ0 Polar spin-1 BEC Antiferromagnet

ferromagnetic phase and the polar (antiferromagnetic) phase
of a spin-1 BEC [21,22], classical ferromagnets (FMs), and
classical antiferromagnets (AFMs) (see Table I).

The order parameter of a spin-1 BEC is described by a
three-dimensional complex vector

〈φ〉 =
⎛⎝ 〈φ1〉

〈φ0〉
〈φ−1〉

⎞⎠, (13)

and the symmetry group G is U(1) × SO(3). The Cartan
generator of SO(3) is the Sz-operator defined by

Sz =
⎛⎝1 0 0

0 0 0
0 0 −1

⎞⎠. (14)

The quadratic Casimir invariant of this system is given by

C
so(3)
2 = S · S, (15)

where S = (Sx,Sy,Sz) is the vector of spin operators in the
Cartesian representation. In the ferromagnetic phase, the order
parameter has the form

〈φ〉FM =
⎛⎝1

0
0

⎞⎠. (16)

This is the eigenstate of Sz with eigenvalue 1 and maximizes
the expectation value of Ĉ

so(3)
2 = Ŝ · Ŝ:〈

Ĉ
so(3)
2

〉 = 〈̂S〉 · 〈̂S〉 = 1. (17)

Thus, the ferromagnetic phase of a spin-1 BEC is characterized
by μ-SB with ODLRO and the highest weight μH . In the polar
phase, the order parameter has the form

〈φ〉polar =
⎛⎝0

1
0

⎞⎠. (18)

This is the eigenstate of Sz with eigenvalue 0 and minimizes
the expectation value of Ĉ

so(3)
2 :〈

Ĉ
so(3)
2

〉 = 0. (19)

Thus, the polar phase of a spin-1 BEC is characterized by
μ-SB with ODLRO and the zero weight μ0.

For both the classical FM and the classical AFM, the
quadratic Casimir invariant is again the square of a spin S:

C
so(3)
2 = S · S. (20)
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Let S be the spin quantum number. The highest-weight state
|μH ) corresponds to the eigenstate of Sz with the highest
magnetic quantum number mz, i.e., |μH ) = |mz = S). The
mean-field ground state |GS〉FM of the classical FM represents
a uniform alignment of the highest magnetic quantum-number
state |mz = S) on every site of the lattice L:

|GS〉FM =
⊗
i∈L

|mz = S)i . (21)

Therefore, the classical FM is characterized by μ-SB with
DLRO and μH . On the other hand, the mean-field ground
state |GS〉AFM of the classical AFM is described by a uniform
alignment of the highest magnetic quantum-number state
|mz = S) on the sites of one sublattice LA and that of the
lowest magnetic quantum-number state |mz = −S) on the
other sublattice LB :

|GS〉AFM =
⊗
u∈U

(|mz = S)uA
⊗ |mz = −S)uB

)
, (22)

where uA and uB indicate the sites in each unit cell u belonging
to LA and LB , respectively. Within each unit cell, the total
magnetization vanishes. Therefore, this phase is characterized
by μ-SB with DLRO and μ0.

III. DERIVATIONS OF MEAN FIELDS OF μ-SB

In this section, we show that mean fields described
by the highest or zero-weight states are obtained through
the minimization of an energy functional constructed from
Casimir invariants of the underlying Lie algebra ḡ.

We first discuss the case of ODLRO. In this case, the energy
functional can be obtained in a manner similar to the case of
the dynamical symmetry [11,12,23]. However, as shown later,
for μ-SB we can block-diagonalize the quadratic part of an
effective Lagrangian of NG modes and calculate homotopy
groups of topological excitations systematically, neither of
which can be done from the dynamical symmetry alone. For the
case of the lowest-dimensional representation such as a BEC
in degenerate N -component bosons the mean-field energy
functional V (〈φ〉) can be expressed up to the fourth order
in 〈φ〉 as

V (〈φ〉) = −c|〈φ〉|2 + c0|〈φ〉|4, (23)

where c and c0 are real constants. Since any minimizer 〈φ〉
of V (〈φ〉) in the lowest-dimensional representation can be
transformed into |μH ) by an appropriate element of G, the
energy functional is minimized for

〈φ〉 = |μH ). (24)

For the case of the next lowest-dimensional representation
such as a spin-1 BEC [21,22] and an s-wave superfluid in
degenerate N -component fermions [24–27] V (〈φ〉) can be
expressed in terms of |〈φ〉|2 and the quadratic Casimir invariant
as

V (〈φ〉) = −c|〈φ〉|2 + c0|〈φ〉|4 + c1C
ḡ

2 (〈φ〉), (25)

where c, c0, and c1 are real constants. For the case of a
ferromagnetic interaction between condensate particles with
c1 < 0, the energy functional is minimized for

〈φ〉 = |μH ). (26)

For the case of an antiferromagnetic interaction with c1 > 0,
the energy functional is minimized for

〈φ〉 = |μ0), (27)

if the representation includes the zero-weight state |μ0). This
condition is satisfied for low-dimensional Lie algebras such
as su(2) and so(3). The general case of ḡ = su(N ) will be
discussed in Sec. VI. Since the energy functional can be written
in neither form of Eq. (23) nor Eq. (25) in higher-dimensional
representations, the ground states are no longer described by
μ-SB. Such a case will be discussed in Sec. VII.

We next discuss the case of DLRO. We assume that
particles are placed on a lattice L whose geometry is free from
frustration. A prototypical example of DLRO is described by
the Heisenberg-type Hamiltonian

H = −J
∑
〈i,j〉

d̄∑
a=1

Ta,iTa,j , (28)

where 〈i,j 〉 represents a pair of nearest-neighbor sites i and
j , and {Ta,i}d̄a=1 is a set of generators of a simple compact Lie
algebra ḡ on site i. For the case of a ferromagnetic interaction
with J > 0, the ground state |GS〉 is written as

|GS〉 =
⊗
i∈L

|μH )i , (29)

which agrees with Eq. (10). For the case of an antiferromag-
netic interaction with J < 0, it follows from the frustration-
free assumption that the mean-field classical ground state |GS〉
is obtained by a tensor product of the state on site i that
minimizes the interaction energy with its neighboring sites
[28]. Therefore, the mean-field ground state can be written in
terms of a site-factorized wave function as

|GS〉 =
⊗
u∈U

⊗
i∈u

|μi)i , (30)

where |μi)i , u, and U denote a simultaneous eigenstate of
{Hb}r̄b=1 at lattice site i, a unit cell of an ordered state, and
the lattice constituted from the entire set of the unit cells,
respectively. In Eq. (30), two weight vectors μi and μj at
nearest-neighbor sites i and j should satisfy(

μi |μj

) = min{(μk|μl)|μk,μl ∈ W [μH ]} (31)

to minimize the nearest-neighbor interaction energy∑d̄
a=1 Ta,iTa,j . We note that we do not impose Eq. (12) on

Eq. (30) so far. Since the expectation value (μi |Ta|μi) vanishes
for any off-diagonal matrix Ta , which is nothing but the
raising or lowering operator of the Cartan canonical form (see
Sec. IV A), the expectation value of Ĉ

ḡ

2 within each unit cell
u can be calculated from Eqs. (4) and (30) by considering the
contribution from the Cartan generators {Hb}r̄b=1 alone. We
thus obtain

〈
Ĉ

ḡ

2

〉 = r̄∑
b=1

[∑
i∈u

i(μi |Hb|μi)i

]2

=
r̄∑

b=1

[∑
i∈u

(μi)b

]2

=
∥∥∥∥∥∑

i∈u

μi

∥∥∥∥∥
2

, (32)
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FIG. 1. (a) Weight vectors of the two-dimensional representation
of the su(2)-Lie algebra. The weight vectors are two one-dimensional
vectors ν1 = 1/

√
2 and ν2 = −1/

√
2, which have opposite directions

with the same magnitude 1/
√

2. In this representation, a pair of the
weight vectors that satisfy Eq. (31) is uniquely determined to be
(ν1,ν2). (b) Weight vectors of the three-dimensional representation of
the su(3)-Lie algebra. The weight vectors are three two-dimensional
vectors ν1 = (1/

√
2,1/

√
6), ν2 = (−1/

√
2,1/

√
6), and ν3 = (0,

−√
2/3) from the origin to each of the three apexes of the equilateral

triangle. The sum of these three weight vectors vanishes. Three pairs
of the weight vectors, (ν1,ν2), (ν2,ν3), and (ν3,ν1), satisfy Eq. (31).
In both (a) and (b), the weight vectors are normalized so as to satisfy
Eq. (108).

where ‖x‖ denotes the magnitude of the vector x. If there exist
a pair of weight vectors with opposite directions such as the
case of SU(2) [see Fig. 1(a)], Eq. (31) is satisfied and the sum
of the weight vectors in Eq. (32) vanishes within each unit
cell. Thus, the ground-state wave function satisfies Eq. (12).
However, in a larger group such as SU(3), it is known that there
do not exist two weight vectors with opposite directions and
that there is more than one pair of weight vectors that satisfy
Eq. (31) [see Fig. 1(b)] [20]. For such cases, the mean-field
ground states represented by Eq. (30) are degenerate [29].
Therefore, we have to consider higher-order contributions
arising from quantum fluctuations to determine the ground
state. This can be done by using the flavor-wave theory
[29–32]. The Hamiltonian Hfw of quantum fluctuations is given
as [31,32]

Hfw =
∑
〈i,j〉

A
†
ijAij , (33)

where

Aij = bμi ,j + b
†
μj ,i

, (34)

and bμi ,j is the annihilation operator of a boson with with
weight vector μi at site j . The expectation value of Hfw is
minimized when

〈GS|A†
ijAij |GS〉 = 0 ⇔ Aij |GS〉 = 0 for ∀ i,j. (35)

Let i,j and j,k be pairs of nearest-neighbor sites. Then, i and
k share the common nearest-neighbor site j . It follows from
Eq. (35) that

0 = [Aij ,Ajk]|GS〉 = [
bμi ,j ,b

†
μk ,j

]|GS〉
= δμi ,μk

|GS〉, (36)

and hence we have

μi = μk (37)

for any pair of sites i and k that have a common nearest-
neighbor site j . Thus, the ground state must satisfy both
Eqs. (31) and (37). Equation (31) implies that two weight
vectors, μi and μj , must give the minimum value of the inner
product (μi |μj ) for any pair of nearest-neighbor sites i and j .
Equation (37) implies that two weight vectors, μi and μk , must
be different for any pair of sites i and k that share a common
nearest-neighbor site. As a consequence, the sum of the weight
vectors within each unit cell in Eq. (32) tend to cancel with
each other and an ordered state with the vanishing expectation
value of Ĉ

ḡ

2 within each unit cell is favored. Thus, the ordered
state is characterized by μ-SB with μ0.

IV. EFFECTIVE LAGRANGIAN OF NG MODES FOR μ-SB

A. Cartan canonical form and the generalized magnetization

The analyses of NG modes and topological excitations in
μ-SB can be done conveniently in terms of a special basis of
the Lie algebra ḡ known as the Cartan canonical form [20],

ḡ = {{Hb}r̄b=1,
{
ER

α ,EI
α

}
α∈R+

}
, (38)

where R and I indicate the real and imaginary parts of the
raising operators E±α of the Cartan canonical form:

ER
α := Eα + E−α√

2
, EI

α := Eα − E−α√
2i

. (39)

The Cartan canonical form (38) is a generalization of the basis
of the su(2) Lie algebra {Sz,{Sx,Sy}}, which decomposes the
generators into the diagonal matrices {Hb}r̄b=1 and the off-
diagonal ones {ER

α ,EI
α}α∈R+ , where α is an r̄-dimensional real

vector known as a positive root and R+ denotes the set of all
the positive roots. Here the positive roots distinguish different
su(2)-subalgebras of ḡ. Defining Hα for α ∈ Rr̄ by

Hα :=
r̄∑

b=1

αbHb, (40)

where

α = t (α1,α2, . . . ,αr̄ ), (41)

we obtain a triad Sα for a positive root α as

Sα = (
ER

α ,EI
α,Hα

)
. (42)

The triad Sα forms an su(2) subalgebra of ḡ analogous
to the su(2) spin algebra. In fact, it satisfies the following
commutation relations:[

ER
α ,EI

α

] = i(α,α)Hα for ∀ α ∈ R+, (43)[
EI

α,Hα

] = i(α,α)ER
α for ∀ α ∈ R+, (44)[

Hα,ER
α

] = i(α,α)EI
α for ∀ α ∈ R+, (45)[

Hα,Hα′
] = 0 for ∀ α,∀ α′ ∈ R+. (46)

We refer to Sα as a generalized magnetization in analogy
with the su(2) spin S. As shown later, the textures of NG
modes and topological excitations are described in terms of
the generalized magnetization Sα .
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B. Broken generators for μ-SB

To determine the quadratic part of an effective Lagrangian
of NG modes, we first prove the following theorem on the
spaces of broken generators g/h, where h is the Lie algebra of
the remaining (unbroken) symmetry of the state.

Theorem 1. Consider μ-SB phases and define the sets of
positive root vectors RH, ROD

0 , and RD
0 by

RH := {α ∈ R+|(α,μH ) = 0}, (47)

RD
0 :=

⋃
i∈u

{α ∈ R+||μi − α) ∈ W [μH ]}, (48)

ROD
0 := {α ∈ R+||μ0 − α) ∈ W [μH ]}. (49)

Then the bases of the space of broken generators g/h are given
by

basis(g/h)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
ER

α ,EI
α

∣∣α ∈ RH

}
for DLRO and μH ,{

ER
α ,EI

α

∣∣α ∈ RD
0

}
for DLRO and μ0,{

ER
α ,EI

α

∣∣α ∈ RH

} ∪ {I } for ODLRO and μH ,{
ER

α ,EI
α|α ∈ ROD

0

} ∪ {I } for ODLRO and μ0.

(50)

Proof. First, we consider the DLRO with μH . From the
mean-field ground state in Eq. (10), unitary transformations
generated by ER,I

α leave the ground state unchanged up to a
global phase if and only if

ER,I
α |μH ) = 0

⇔ E+α|μH ) = E−α|μH ) = 0. (51)

Since μH is the highest weight, E+α|μH ) always vanishes
[20], so that Eq. (51) is equivalent to

E−α|μH ) = 0 ⇔ |μH − α) /∈ W [μH ], (52)

which, in turn, is equivalent to

α /∈ RH . (53)

This equivalence can be shown as follows. From Eq. (52), we
obtain

0 = [
ER

α ,EI
α

]|μH ) = i(α,α)Hα|μH )

= i(α,α)(μH ,α)|μH ). (54)

Since (α,α) = 0 and |μH ) = 0, we obtain (μH ,α) = 0 and
hence Eq. (53) from the definition of RH . Conversely, we can
derive Eq. (52) by assuming Eq. (53). The Weyl reflection [20]
of μH + α with respect to α is

(μH + α) − 2
(μH + α,α)

(α,α)
α = μH − α. (55)

Since |μH ) is the highest weight, |μH + α) is not a weight
vector, nor is |μH − α). Thus, Eq. (52) is obtained. Unitary
transformations generated by {Hb}r̄b=1 and I change the ground
state |GS〉 only by a global phase factor. Therefore, these
generators are not broken ones, which completes the proof
of the first row of Eq. (50).

Second, we consider the DLRO with μ0. From the
mean-field ground state in Eq. (11), unitary transformations
generated by ER,I

α leave |GS〉 invariant if and only if

ER,I
α |μi) = 0 for ∀ i ∈ u. (56)

This condition is equivalent to α /∈ ROD
0 . From the discussions

similar to the case of DLRO and μH , all of the Cartan
generators are not broken ones, which completes the proof
of the second row of Eq. (50).

Third, we consider the ODLRO with the highest weight, i.e.,
〈φ〉 = |μH ). Unitary transformations generated by ER,I

α leave
|GS〉 invariant if and only if Eq. (52) is satisfied. From above
discussion, this condition is equivalent to α /∈ RH . Unitary
transformations generated by {Hb}r̄b=1 and I change |μH ) only
by a phase factor. This phase shift can be eliminated by taking
a linear combination of {Hb}r̄b=1 and I except for the direction
of I , which completes the proof of the third row of Eq. (50).
The proof of the fourth row can be given similarly by replacing
μH by μ0 and using Eq. (52). Thus, the proof of Theorem 1 is
completed.

C. Effective Lagrangian of NG modes

We now derive the quadratic part of an effective Lagrangian
of NG modes. We note that in nonrelativistic systems the type-2
NG mode with a quadratic dispersion is allowed, in contrast
to relativistic systems where only the type-1 NG mode with
a linear dispersion is allowed [33]. Let NB := dim(G/H ) be
the number of the broken generators. It has been shown that
the numbers of type-1 and type-2 NG modes, n1 and n2, can
be determined only from the ground state |GS〉 and the set of
the Noether charges associated with the broken generators of
the symmetry group {T̂a′ }NB

a′=1 as follows (the prime indicates
that the generators are broken ones) [34,35]:{

n1 + 2n2 = dim(G/H ),
n2 = 1

2 rankρ,
(57)

ρa′b′ = −i〈GS|[Q̂Ta′ ,Q̂Tb′
]|GS〉, (58)

where ρ = {ρa′b′ }NB

a′,b′=1 is a Kostant-Kirillov symplectic form
(K-K form) [36–38] which is employed in Ref. [39] in the
context of NG modes. The basis of the Lie algebra that
block-diagonalizes Eq. (58) is constituted from a set of
canonically conjugate pairs and generates type-2 NG modes
[34,35]. While the types and the numbers of NG modes can
be found from Eqs. (57) and (58), the dynamics and the
corresponding broken generator of the NG mode cannot be
determined from them since the quadratic part of an effective
Lagrangian is not diagonalized in Refs. [34,35]. Here, we
show that for μ-SB, the K-K form and the quadratic part
of an effective Lagrangian in the fields of NG modes can
be simultaneously block-diagonalized in terms of the Cartan
canonical form. Moreover, NG modes are classified into three
categories according to their dynamics. In fact, we can prove
the following theorem.

Theorem 2. Consider a μ-SB in a nonrelativistic system.
Let πR

α , πI
α and πI be the fields of the NG mode generated by

the broken generators ER
α , EI

α , and the identity operator I and
define �α by �α := πR

α + iπI
α . Then, the quadratic parts of
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effective Lagrangians Leff can be block-diagonalized in terms
of �α and πI as follows:

Leff =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
α∈RH

Lα
pre for DLRO and μH ,∑

α∈RD
0
Lα

osc for DLRO and μ0,

Lpha +∑
α∈RH

Lα
pre for ODLRO and μH ,

Lpha +∑
α∈ROD

0
Lα

osc for ODLRO and μ0,

(59)

Lα
pre = ρα(�α∂t�

∗
α − �∗

α∂t�α) + bα|∇�α|2, (60)

Lα
osc = bα|∇�α|2 + b̄α|∂t�α|2, (61)

Lpha = gI (∇πI )2 + ḡI (∂tπI )2, (62)

where ρα,bα,b̄α,gI ,ḡI are real constants.
Proof. Consider the quadratic part of an effective La-

grangian in the fields of NG modes in a nonrelativistic system.
Then, the most general form of it can be written as [34]

Leff =
NB∑

a′,b′=1

(
ρa′b′πa′∂tπb′ + 1

2
ḡa′b′∂tπa′∂tπb′

+1

2
ga′b′∇πa′ · ∇πb′

)
, (63)

where ρ is the K-K form defined in Eq. (58), {πa′ }NB

a′=1 is the set
of the fields of NG modes associated with the set of the broken
generators {Ta′ }NB

a′=1, and ḡa′b′ and ga′b′ are real constants.
We first block-diagonalize the quadratic part of an effective

Lagrangian. Here we consider the case of ODLRO and μH .
The proof for the other cases can be made in a similar manner.
The quadratic forms constructed from πI , �∗

α , and �α are the
following six terms:

(πI )2, πI�
∗
α, πI�α,

�α�β , �∗
α�∗

β, �α�β . (64)

Let {H ′
b}r̄−1

b=1 be a basis of (r̄ − 1)-dimensional subspace that is
orthogonal to μH . Under the unitary transformation generated
by

Hs :=
r̄−1∑
b=1

saH
′
b + sr̄

|μH |
(
HμH

− I |μH |2) ∈ h, (65)

πI is invariant since the generator I commutes with Hs. Using
the commutation relations of the Cartan canonical form[

ER
α ,Hs

] = −i(α,s)EI
α, (66)[

EI
α,Hs

] = i(α,s)ER
α , (67)

we have

e−iHs
(
ER

α + iEI
α

)
eiHs = e−i(s,α)

(
ER

α + iEI
α

)
, (68)

e−iHs
(
ER

α − iEI
α

)
eiHs = ei(s,α)

(
ER

α − iEI
α

)
. (69)

Therefore, the corresponding fields �α and �∗
α transform

under the same unitary transformation into �αei(s,α) and
�∗

αe−i(s,α), respectively. Among the quadratic forms in
Eq. (64), only (πI )2 and �∗

α�α are invariant under the
transformations generated by Hs for any s ∈ Rr̄ . Thus, Leff

in Eq. (63) can be written as

Leff = ρIπI ∂tπI + gI (∇πI )2 + ḡI (∂tπI )2

+
∑
α∈RH

(ρα�α∂t�
∗
α + ρ ′

α�∗
α∂t�α

+ bα|∇�α|2 + b̄α|∂t�α|2). (70)

where ρα, ρ ′
α, bα , and b̄α are real constants. The first, fourth,

and fifth terms correspond to the first term in Eq. (63) and
hence to the K-K form in Eq. (58). From Eq. (58), we have

ρI = −i〈[Q̂I ,Q̂I ]〉 = 0, (71)

ρα = −i
〈[
Q̂ER

α
+ iQ̂EI

α
,Q̂ER

α
− iQ̂EI

α

]〉
= −2i

〈
Q̂Hα

〉
, (72)

ρ ′
α = −i

〈[
Q̂ER

α
− iQ̂EI

α
,Q̂ER

α
+ iQ̂EI

α

]〉
= −ρα. (73)

Thus, we obtain the block-diagonalized form of the quadratic
part of an effective Lagrangian in �∗

α,πI :

Leff = gI (∇πI )2 + ḡI (∂tπI )2

+
∑
α∈RH

[ρα(�α∂t�
∗
α − �∗

α∂t�α)

+ bα|∇�α|2 + b̄α|∂t�α|2], (74)

ρα = −2i
〈
Q̂Hα

〉
. (75)

Here RH represents the set of the positive root α vectors
associated with the broken generators. For the ODLRO
(DLRO) with μ0, the quadratic part of an effective Lagrangian
is obtained by replacing RH into ROD

0 (RD
0 ).

Next, we calculate 〈Q̂Hα
〉 in Eq. (75). For μ-SB with

μ0, 〈Q̂Hα
〉 vanishes for any positive root vector α because the

expectation value of any generator also vanishes. Therefore,
the term ρα(�α∂t�

∗
α − �∗

α∂t�α) in Eq. (74) vanishes and
hence we obtain the fourth row of Eq. (59). On the other
hand, it follows from the definition of μ-SB for μH in Eqs. (8)
and (9) that〈

Q̂Hα

〉 = NC(μH ,α) = 0 for α ∈ RH, (76)

where NC is the number of particles that contribute to the LRO.
The term b̄α|∂t�α|2 in Eq. (74) is much smaller than the term
ρα(�α∂t�

∗
α − �∗

α∂t�α) at low energy because the former is
the second order in ∂t while the latter is the first order in ∂t .
Therefore, the term b̄α|∂t�α|2 can be ignored and hence we
obtain the third row of Eq. (59). For the case of DLRO, the
terms involving πI are absent since I is not a broken generator
from Theorem 1. Therefore, we obtain the first and second
rows of Eq. (59), which completes the proof of Theorem 2.

D. Three types of NG modes in μ-SB

From Theorem 2, we find that three types of NG modes
arise in μ-SB described by πI and �α for μ0, and �α for μH ,
which we call the phason, the oscillaton, and the precesson,
respectively (see Table II). The dynamics of these three NG
modes are similar to those of the phonon in the scalar BEC, the
magnon in the AFM, and the magnon in the FM, respectively.
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TABLE II. Three types of NG modes in μ-SB in a nonrelativistic system. The second column shows the classification of μ-SB. The third,
fourth, fifth, and sixth columns show the generators, fields, dynamics, and dispersion relations of the NG modes, respectively, where πI is the
field of the NG mode generated by the broken generators I (the identity operator), �α is defined as �α := πR

α + iπI
α with πR

α and πR
α being the

fields of NG modes generated by the broken generators ER
α and EI

α , respectively, and Sα is the generalized magnetization defined in Eq. (42).
The last column shows a pair of the NG modes into which each of three types of NG modes, πI , �α(α ∈ R0) and �α(α ∈ RH ) decay through
the interaction Lagrangians in Eqs. (82) and (83).

Name Classification Generator Field Dynamics Dispersion Decay processes

Phason ODLRO with μH I πI Density Linear Two phasons πI

ODLRO with μ0 fluctuation Two oscillatons �α(α ∈ R0)
Two precessons �α(α ∈ RH )

Oscillaton DLRO with μ0 ER
α and EI

α �α Oscillation of Linear One phason πI and one oscillaton �α

ODLRO with μ0 (α ∈ R0) (α ∈ R0) Sα [Eq. (78)] Two oscillatons �β and �γ (α = β + γ )

Precesson DLRO with μH ER
α and EI

α �α Precession of Quadratic One phason πI and one precesson �α

ODLRO with μH (α ∈ RH ) (α ∈ RH ) Sα [Eq. (80)] Two precessons �β and �γ (α = β + γ )

The phason is the type-1 NG mode which arises from the
generator I (the identity operator) and similar to the phonon in
the scalar BEC which describes density fluctuations. Although
both the oscillaton and the precesson arise from the real and
imaginary parts, ER

α and EI
α , of the raising operators E±α , they

are different in their dispersion relations and the dynamics.
These differences arise from the expectation value of the
Noether charge 〈Q̂Hα

〉 associated with the generator Hα . For
μ0, both the expectation value 〈Q̂Hα

〉 and the first-order term
in ∂t in the quadratic part of an effective Lagrangian in Eq. (63)
vanish. The quadratic part of the effective Lagrangian of the
oscillaton associated with the generator ER,I

α can be given
from Eq. (61) as

Lα
osc = bα|∇�α|2 + b̄α|∂t�α|2

= bα

(∇πR
α

)2 + b̄α

(
∂tπ

R
α

)2 + bα

(∇πI
α

)2 + b̄α

(
∂tπ

I
α

)2
.

(77)

From the effective Lagrangian, two fields πR
α and πI

α associated
with the generators ER

α and EI
α are decoupled, producing

two independent harmonic oscillations of the generalized
magnetization Sα ,

Sα(x) =
⎛⎝sin[	 sin(k · x)] cos φ

sin[	 sin(k · x)] sin φ

cos[	 sin(k · x)]

⎞⎠ for φ = 0 or
π

2
, (78)

where 	 (�1) represents the amplitude of the oscillatons, k is
the wave number of the oscillatons, and x is the coordinate in
space. These modes are reminiscent of magnons in the AFM,
where two magnons representing harmonic oscillations of the
magnetization appear. On the other hand, for μH , neither the
expectation value 〈Q̂Hα

〉 nor the first-order term in ∂t in
the quadratic part of the effective Lagrangian in Eq. (63)
vanish. The quadratic part of effective Lagrangian of the
precesson associated with the generator ER,I

α is given from
Eq. (60) as

Lα
pre = ρα(�α∂t�

∗
α − �∗

α∂t�α) + bα|∇�α|2

= 2iρα

(
πI

α∂tπ
R
α − πR

α ∂tπ
I
α

)+ bα

(∇πR
α

)2 + bα

(∇πI
α

)2
.

(79)

From the effective Lagrangian, we find that two fields πR
α and

πI
α associated with the generators ER

α and EI
α form a canonical

conjugate pair, producing a precession mode of the generalized
magnetization Sα ,

Sα(x) =
⎛⎝sin 	′ cos(k · x)

sin 	′ sin(k · x)
cos 	′

⎞⎠, (80)

where 	′(� 1) represents a precession angle. This mode
is reminiscent of a magnon in the FM, where one magnon
representing the precession of the magnetization appears.

E. Distinctions among three types of NG modes
in decay processes

Although both the phason and the oscillaton have linear
dispersions, they play distinct roles in decay processes. To see
this, let us consider μ-SB with ODLRO and μ0. Similarly
to the proof of Theorem 2, under the unitary transformation
generated by Hs ∈ h(s ∈ Rr̄ ), πI , �∗

α , and �α are trans-
formed into πI , �∗

αe−i(s,α), and �αei(s,α), respectively. Up
to the third order in πI , πR

α , and πI
α , the interaction part of

the Lagrangian between NG modes, Lint, which is invariant
under the transformations generated by Hs ∈ h for any s ∈ Rr̄ ,
should be a linear combination of the following four terms:

(πI )3, πI�
∗
α�α for α ∈ ROD

0 ,

�∗
β�∗

γ �α, �β�γ �∗
α for α = β + γ . (81)

Hence, we obtain

Lint = c(πI )3 + πI

∑
α∈ROD

0

cα�∗
α�α

+
∑

α,β,γ∈ROD
0 ,α=β+γ

Re(cα,β,γ �∗
β�∗

γ �α), (82)

where c and cα are real constants, cα,β,γ are complex numbers,
and Re(x) denotes the real part of x. Thus, one phason decays
into two phasons πI or two oscillatons with the same root
vector, whereas one oscillaton �α decays into one phason πI

and one oscillaton �α or two oscillatons, �β and �γ with
α = β + γ .
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Similarly, for μ-SB with ODLRO and μH , the interaction
Lagrangian between NG modes, Lint, can be written up to the
third order in πI , πR

α , and πI
α as

Lint = c(πI )3 + πI

∑
α∈RH

cα�∗
α�α

+
∑

α,β,γ∈RH ,α=β+γ

Re(cα,β,γ �∗
β�∗

γ �α), (83)

where c and cα are real constants, and cα,β,γ are complex
numbers. Thus, one precesson �α decays into two phasons
πI and a precesson �α or two precessons, �β and �γ with
α = β + γ .

V. HOMOTOPY GROUPS OF TOPOLOGICAL
EXCITATIONS FOR μ-SB

Let us now calculate the homotopy groups for μ-SB
states to find their topological excitations. An element of the
first homotopy group π1(G/H ) characterizes the topological
charge of a vortex and that of the second homotopy group
π2(G/H ) characterizes the topological charge of a point defect
and that of a skyrmion [40]. Usually, the homotopy groups
are calculated separately for individual cases. We here show
that not only the homotopy groups but also the textures of
topological excitations can be calculated systematically for
μ-SB.

We first briefly review the theory of an integral lattice and
a coroot lattice [41,42] as it is needed for the calculation of
the second homotopy group. We define integral lattices LG

and LH for a compact Lie group G and its subgroup H and a
lattice LR(S) for a subset S of R+ as

LG := {t ∈ Rr | exp(2πiHt ) = e, Ht ∈ g}, (84)

LH := {t ∈ Rr | exp(2πiHt ) = e, Ht ∈ h}, (85)

LR(S) := spanZ

{
2α

(α,α)

∣∣∣∣α ∈ S

}
, (86)

where e is the identity element of G, Ht for t ∈ Rr is defined
by

Ht =
r∑

b=1

tbHb, (87)

g and h are the Lie algebras of G and H , respectively, and
spanZX denotes a vector space spanned by elements of X

with integer coefficients:

spanZX :=
{

m∑
k=1

nkxk

∣∣∣∣∣xk ∈ X, nk ∈ Z, m ∈ N

}
. (88)

The vector 2α/(α,α) and LR(R+) are called the coroot vector
(the inverse root vector) of a root vector α and the coroot lattice
(the inverse root lattice) of G, respectively.

Under the addition of r-dimensional vectors, LG, LH , and
LR(S) (S ⊂ R+) form Abelian groups. Let us examine this
point by discussing an example of LG. Let t and s be elements

of LG. The sum t + s satisfies

exp(2πiHt+s) = exp(2πiHt ) exp(2πiHs)

= ee = e, (89)

and hence we have t + s ∈ LG. The identity element of LG

is the zero vector 0 and the inverse element of t (∈ LG) is
−t . Since LR(S) is an Abelian group generated by a subset
S of R+, LR(S) is an Abelian subgroup of the coroot lattice
LR(R+). Therefore, the coset space LR(R+)/LR(S) becomes
an Abelian group. Writing the element of the coset space
LR(R+)/LR(S) as [t] (t ∈ LR(R+)), the sum in the coset space
LR(R+)/LR(S) is defined as follows:

[t] + [s] := [t + s]. (90)

It is known that any coroot vector 2α/(α,α) is an element of
LG [41,42]. The coroot vector 2α/(α,α) for α ∈ R+\RH is an
element of LH because Hα ∈ h from Theorem 1, where R+\R
is the set of elements that belong to R+ but not to R. Therefore,
LR(R+\RH ) is a common subgroup of LR(R+) and LH , and
hence the coset space [LH ∩ LR(R+)]/LR(R+\RH ) forms an
Abelian group.

Then the following theorem holds.
Theorem 3. (1) Provided that H is a connected subgroup of

G, the first homotopy group for μ-SB is given as follows:

π1(G/H ) =
⎧⎨⎩0 for DLRO,

Zl for ODLRO and μH ,

Z for ODLRO and μ0,

(91)

where Zl = {gi |i = 0,1,2, . . . ,l − 1} is the cyclic group of
order l (g is the generator of Zl), l is a positive integer which
is uniquely determined from μH , and Zl=1 is a trivial group
consisting of the identity element alone. Let θ ∈ [0,2π ] and
O(θ ) be the azimuth angle around the vortex and the value of
the order parameter at the angle θ . The vortex with topological
charge g represents a vortex around which the phase of the
order parameter rotates by 2π :

O(θ ) = eiθO0, (92)

where O0 is the value of the order parameter at θ = 0.
(2) The second homotopy group for μ-SB is isomorphic to

the coset space constructed from the coroot lattice as follows:

π2(G/H ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LR(R+)
LR(R+\RH ) for DLRO and μH ,

LR(R+)
LR(R+\RD

0 )
for DLRO and μ0,

LH ∩LR(R+)
LR(R+\RH ) for ODLRO and μH ,

LR(R+)
LR(R+\ROD

0 )
for ODLRO and μ0.

(93)

Let θ ∈ [0,π ] and φ ∈ [0,2π ] be the three-dimensional polar
coordinates surrounding the point defect, O(θ,φ) be the value
of the order parameter at (θ,φ). The texture of the point defect
with topological charge [2α/(α,α)] is given by

O(θ,φ) = exp

[
iφ

Hα

(α,α)

]
◦ exp

[
iθ

EI
α

(α,α)

]
◦ O0, (94)

where O0 and g ◦ O0 (g ∈ G) is the value of the order param-
eter at θ = φ = 0 and that of the order parameter obtained
by the symmetry transformation g from O0, respectively
(◦ denotes the group operaton).
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The proof of this theorem is given in Appendix.
Physically, nontrivial elements Zl and Z in Eq. (91)

represent quantum vortices. We note that a quantum vortex
does not necessarily have an integer charge in a system with
internal degrees of freedom [43]. Let us examine this point as
yet another example of μ-SB. Consider the three-dimensional
representation of ḡ = su(N = 2) and a phase with ODLRO
and μH . This example will appear as a special case of N = 2
of a U(N )-symmetric system in Sec. VI. In this representation,
the order parameter 〈�s〉 is a 2 × 2 symmetric complex matrix
which transforms under the symmetry transformation of U(2)
as follows [20]:

〈�s〉 �→ U 〈�s〉tU for U ∈ U(2). (95)

In μ-SB with ODLRO and μH , the expectation value of 〈�s〉
is given by

〈�s〉 = 〈�0〉 =
(

1 0
0 0

)
. (96)

Since this representation is the three-dimensional represen-
tation of U(2), which is equivalent to the three-dimensional
representation of U(1) × SO(3), the order parameter 〈�s〉
is related to the three-dimensional complex vector 〈φ〉 =
(〈φ1〉,〈φ0〉,〈φ−1〉), which is the order parameter of a spin-1
BEC [21,22], as

〈�s〉 =
(〈φ1〉 〈φ0〉

〈φ0〉 〈φ−1〉
)

. (97)

The first homotopy group π1(G/H ) of this phase is given by

π1(G/H ) = Z2 = {e,g}, (98)

where e and g are the identity element and the generator of Z2

with g2 = e. From Eq. (92), a vortex with topological charge
g is given by 〈

�g
s

〉
(θ ) =

(
eiθ 0
0 0

)
, (99)

where θ ∈ [0,2π ] represents the azimuth angle around the
vortex. We can show g2 = e as follows. Let σx,σy,σz be the
Pauli matrices. From Eq. (92), the texture of the vortex with
topological charge g2 is given by

〈
�g2

s

〉
(θ ) =

(
e2iθ 0

0 0

)
= U (θ )〈�0〉tU (θ ), (100)

U (θ ) = eiθσz . (101)

By the continuous deformation defined by

〈�s,t 〉(θ ) = U (θ,t)〈�0〉tU (θ,t), (102)

U (θ,t) = e−iπt
σy

2 eiθ
σz
2 eiπt

σy

2 eiθ
σz
2 for 0 � t � 1, (103)

〈�s,t 〉 is transformed from 〈�s,t=0〉 = 〈�g2

s 〉 to a uniform order
〈�s,t=1〉 = 〈�0〉, which implies g2 = e.

From Eqs. (86) and (93), π2(G/H ) is generated by a
set of representative elements {[2α/(α,α)]|α ∈ R+} of the
coset space. This shows that any point defect in μ-SB can
be represented as a composite of the point defects with
topological charge [2α/(α,α)] (α ∈ R+). In Eq. (93), the

coset spaces of LR(R+) by their subgroups LR(S) (S =
R+\RH,R+\RD

0 ,R+\ROD
0 ) are considered instead of the

numerators LR(R+) or LH ∩ LR(R+). This is because the
element of the denominators LR(S) of the coset does not
give nontrivial topological excitations. Let us clarify this point
for the case of μH . Since ER,I

α and Hα for α ∈ R+\RH

are unbroken generators for μH , the successive actions of

exp [iφ Hα

(α,α) ] and exp [iθ EI
α

(α,α) ] leave the order parameter
invariant:

exp

[
iφ

Hα

(α,α)

]
◦ exp

[
iθ

EI
α

(α,α)

]
◦ O0 = O0

for ∀ (θ,φ) ∈ [0,π ] × [0,2π ]. (104)

Therefore, Eq. (94) does not give a nontrivial point defect but
a uniform order for α ∈ R+\RH for μH .

The point defect in Eq. (94) with the topological charge
2α/(α,α) is similar to the point defect in the FM and the
AFM in that the former is obtained by replacing su(2) spin
S by the generalized magnetization Sα . In fact, let M be the
magnetization of the FM or that of the sublattice in the AFM.
A point defect can be described as a hedgehog configuration
of M:

M(θ,φ) = (sin θ cos φ, sin θ sin φ, cos θ ), (105)

where θ and φ are three-dimensional polar coordinates. This
hedgehog configuration is obtained by the successive rotation
of the spin around the y axis by angle θ followed by the rotation
around the z axis by angle φ,

M(θ,φ) = exp (iφSz) ◦ exp(iθSy) ◦ M0, (106)

where M0 = (0,0,1) is the magnetization of the FM or that
of the sublattice in the AFM parallel to the z axis. Comparing
with Eq. (94), we can conclude that the point defect in Eq. (94)
is the generalization of the point defect in the FM and the AFM
obtained by replacing S by Sα .

VI. APPLICATION OF μ-SB TO U(N)-SYMMETRIC
SYSTEMS

In this section, we apply μ-SB to U(N )-symmetric systems
[13,14,44,45]. Here, we consider up to the third lowest-
dimensional representation of the su(N )-Lie algebra since
symmetry-broken phases are not necessarily characterized
by μ-SB in higher-dimensional representations. Up to and
including the third lowest-dimensional representation, the
irreducible representations of the su(N )-Lie algebra are given
by the following three representations, the N -dimensional
representation, the N (N − 1)/2-dimensional representation,
and the N (N + 1)/2-dimensional representation. To make
this paper self-contained, we briefly review the symmetry
transformation, the highest weight, and the set of weight
vectors of these three representations. See Refs. [20,46] for
details on the su(N )-Lie algebra and its representations.
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Let {νj }Nj=1 be a set of real (N − 1)-dimensional vectors
that satisfy

N∑
j=1

νj = 0, (107)

(νi ,νj ) = δij − 1

N
. (108)

Defining αi,j by αi,j := νi − νj , the set of positive root vectors
R+ of the su(N ) Lie algebra is given by

R+ = {αi,j |αi,j := νi − νj ,1 � i < j � N}. (109)

The weight vector νi is normalized in Eq. (108) so that the
magnitude of the root vectors is

√
2. For example, {νj }Nj=1 for

N = 2 and 3 are given by

N = 2 : ν1 = 1√
2
, ν2 = − 1√

2
, (110)

N = 3 : ν1 =
(

1√
2
,

1√
6

)
, ν2 =

(
− 1√

2
,

1√
6

)
,

ν3 =
(

0,
1√
2

)
. (111)

For N = 2 and N = 3, the schematic illustrations are pre-
sented in Figs. 1(a) and 1(b), respectively.

The lowest-dimensional representation is the N -
dimensional representation. The element of this representation
is an N -dimensional complex vector v. The symmetry trans-
formation of this representation acts on v as an action of the
matrix from the left:

v �→ Uv for U ∈ U(N ). (112)

For the ODLRO, v is the order parameter of a BEC in
degenerate N -component bosons. The highest weight μH and
the set of weight vectors W [μH ] are given by

μH = ν1, (113)

W [ν1] = {νj |j = 1,2, . . . ,N}. (114)

The weight vector state |νj ) is a unit vector whose components
vanish except for the j th component:

|νj ) = t (0, . . . ,0,

j

1̆,0, . . . ,0). (115)

The second lowest-dimensional representation is the
N (N − 1)/2-dimensional representation. The element of this
representation is an N × N complex skew-symmetric matrix
�a . In fact, the dimension of the set of N × N complex
skew-symmetric matrices is N (N − 1)/2. The symmetry
transformation of this representation acts on �a as an action
of the matrix and that of its transpose from the left and the
right, respectively:

�a �→ U�a
tU for U ∈ U(N ). (116)

For the ODLRO, this order parameter corresponds to that of an
s-wave superfluid phase in degenerate N -component fermions
in a nonrelativistic system [24–27]. In fact, let {ψi}Ni=1 be
the fields of the degenerate N -component fermions. Since the
N -components are degenerate and the total number of fermion

is conserved in a nonrelativistic system, this system is invariant
under the U(N )-symmetry transformation:

ψi �→ Uijψj for U ∈ U(N ). (117)

Here, repeated indices are assumed to be summed over i =
1, . . . ,N . The order parameter of the phase is given by the
following N × N matrix:

�̃a = {〈ψiψj 〉}Ni,j=1. (118)

The antisymmetric nature of �̃a arises from the anticommu-
tation relation of the fermions. Under the U(N )-symmetric
transformation, ψi and �̃a transform as

ψi �→ Uijψj , (119)

(�̃a)ij �→ Uik〈ψkψl〉(tU )lj = (U�̃a
tU )ij

for U ∈ U(N ), (120)

which coincides with the transformation (116). The highest
weight μH and the set of weight vectors W [μH ] are given by

μH = ν1 + ν2, (121)

W [ν1 + ν2] = {νi + νj |1 � i < j � N}. (122)

The weight vector state |νi + νj ) is the skew-symmetric matrix
whose elements vanish except for the (i,j )th and (j,i)th
elements:

|νi + νj ) = �(i,j )
a , (123)[

�(i,j )
a

]
kl

= δikδjl − δilδjk. (124)

The third lowest-dimensional representation is the N (N +
1)/2-dimensional representation. The element of this repre-
sentation is an N × N complex symmetric matrix �s . In
fact, the dimension of the set of N × N complex symmetric
matrices is N (N + 1)/2. Similarly to Eq. (116), the symmetry
transformation of this representation acts on �s as

�s �→ U�s
tU for U ∈ U(N ). (125)

Although the transformation in Eq. (125) coincides with
Eq. (116), �a has the odd parity, t�a = −�a , and �s the even
parity, t�s = �s . An N × N skew-symmetric (symmetric)
matrix � transforms into a skew-symmetric (symmetric)
matrix under the transformation � �→ U�tU (U ∈ U(N )).
For the ODLRO, the order parameter �s is related to that
of a p-wave superfluid phase in degenerate N -component
fermions [47]. In fact, let {ψi}Ni=1 be the fields of the degenerate
N -component fermions. The order parameter of the p-wave
superfluid phase is given as follows [47]:

〈ψi,kψj,−k〉 =
∑

α=x,y,z

kα	α,ij . (126)

where three N × N matrices �α := {	α,ij }Ni,j=1 (α = x,y,z)
are symmetric matrices [47]. The symmetric nature of �α

arises from the anticommutation relation of the fermions and
the odd parity of the orbital part of the p-wave pairing. Under
the symmetry transformation that mixes the degenerate N -
components, ψi �→ Uijψj , the N × N symmetric matrix �s
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transforms according to Eq. (125). The highest weight μH and
the set of weight vectors W [μH ] are given by

μH = 2ν1, (127)

W [2ν1] = {νi + νj |1 � i � j � N}. (128)

The weight vector state |νi + νj ) is the symmetric matrix
whose elements vanish except for the (i,j )th and (j,i)th
elements:

|νi + νj ) = �(i,j )
s , (129)[

�(i,j )
s

]
kl

= δikδjl + δilδjk. (130)

A. Classification of μ-SB phases

We first classify the μ-SB phases for ḡ = su(N ) that
appear up to and including the third lowest-dimensional
representation.

1. Lowest-dimensional representation

For μ-SB with ODLRO and μH , the expectation value of
the order parameter coincides with the highest weight of this
representation in Eq. (114):

〈φ〉 = |ν1) = (1,0, . . . ,0). (131)

The remaining symmetry H of the state is given by

H := {U ∈ U(N )|U |ν1) = |ν1)}
= {U ∈ U(N )|U1j = Uj1 = δj1 (j = 1,2, . . . ,N )}
� U(N − 1), (132)

where � represents the group isomorphism. Thus, H is a
connected group. In this representation, the Casimir invariant
C

ḡ

2 (〈φ〉) coincides with |〈φ〉|4 and hence C
ḡ

2 (〈φ〉) = 0 so
long as the order parameter has a nonzero expectation value.
Therefore the pair of ODLRO and μ0 is absent in this
representation.

We next consider the case of DLRO. There are N -fold
degenerate states in each site which are referred to as color or
flavor. For μ-SB with DLRO and μH , the mean-field ground
state is given by

|GS〉 =
⊗
i∈L

|ν1)i . (133)

This is the mean-field of an SU(N )-ferromagnet [44]. The uni-
tary operator Û associated with the symmetry transformation
U ∈ U(N ) leaves |GS〉 unchanged up to a global phase factor
if and only if U leaves the weight vector |ν1) on each sites
unchanged up to a global phase:

U |ν1) = eiφ|ν1) for ∃ φ ∈ R. (134)

This condition is equivalent to the condition that the first row
and the first column of U vanish except for a diagonal element:

U1j = Uj1 = 0 for j = 2,3, . . . ,N. (135)

The remaining symmetry H of the state is given by

H := {U ∈ U(N )|U1j = Uj1 = 0 (j = 2,3, . . . ,N )}
� U(1) × U(N − 1), (136)

and hence H is a connected group. For the case of μ0, from
Eq. (32) the expectation value of the Casimir invariant within
the unit cell u is given by

C
ḡ

2 =
∥∥∥∥∥∑

i∈u

μi

∥∥∥∥∥
2

. (137)

From Eq. (107), the right-hand side of Eq. (137) vanishes when
the unit cell consists of N -different weight vectors, {μi}i∈u =
{νj }Nj=1. Thus, the ground state is given by

|GS〉 =
⊗
u∈U

⊗
i∈u

|μi)i , (138)

{μi}i∈u = {νj }Nj=1. (139)

This is the mean-field ground state of the so-called N -
color density wave (N -CDW) phase [48–51]. This state is
a generalization of the SU(2)-antiferromagnet to a general
SU(N )-spin system. In the former, two states, a spin-up state
and a spin-down state, constitute a unit cell, while in the
latter N states do. The unitary operator Û associated with the
symmetry transformation U ∈ U(N ) leaves |GS〉 unchanged
up to a global phase factor if and only if U leaves all of the
N -different weight vectors |νi) within each unit cell unchanged
up to a global phase. In other words, the condition

U |νi) = eiφ|νi) for ∃ φ ∈ R, (140)

must be satisfied for all of N -weight vectors {νj }Nj=1. This
condition is satisfied if and only if U is a diagonal matrix.
Thus, the remaining symmetry H of the state is given by

H := {U ∈ U(N )|U = diag(eiφ1 ,eiφ2 , . . . ,eiφN ), φi ∈ R}
� U(1)N, (141)

and hence H is a connected group.

2. Second-lowest-dimensional representation

For μ-SB with ODLRO and μH , the expectation value of
the order parameter is given from Eqs. (8) and (53) by

�a = |ν1 + ν2) = �(1,2)
a . (142)

The remaining symmetry H of the state is determined by a
straightforward calculation as

H := {
U ∈ U(N )|U�(1,2)

a
tU = �(1,2)

a

}
= {U ∈ U(N )|U11U22 − U12U21 = 1,

Uij = Uji = 0 (i = 1,2, j = 3,4, . . . ,N)}
� SU(2) × U(N − 2), (143)

and hence H is a connected group. On the other hand, μ-SB
with ODLRO and μ0 does not necessarily exist for arbitrary N .
The same point is discussed in the derivation of the mean fields
of μ-SB in Sec. II. The set W [ν1 + ν2] does not necessarily
include the zero-weight vector [20]. In fact, νi + νj = 0 (1 �
i < j � N ) only when the following conditions are met: N =
2, νi = ν1, and νj = ν2. For N greater than 2, W [ν1 + ν2]
does not include the zero-weight vector.

We next consider the case of DLRO. There are N (N −
1)/2-degenerate states labeled by a weight vector μ ∈ W [ν1 +
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ν2] in each site. For μ-SB with DLRO and μH , the mean-field
ground state is given from Eqs. (10) and (53) by

|GS〉 =
⊗
i∈L

|ν1 + ν2)i . (144)

Similarly to the DLRO and μH in the lowest-dimensional
representation, the unitary operator Û associated with the
symmetry transformation U ∈ U(N ) leaves |GS〉 unchanged
up to a global phase factor if and only if U leaves the weight
vector |ν1 + ν2) on each site unchanged up to a global phase:

U |ν1 + ν2) = eiφ|ν1 + ν2) for ∃ φ ∈ R

⇔ Uij = Uji = 0 (i = 1,2, j = 3,4, . . . ,N). (145)

Thus, the remaining symmetry H of the state is given by

H := {U ∈ U(N )|
Uij = Uji = 0 (i = 1,2, j = 3,4, . . . ,N )}

� U(2) × U(N − 2), (146)

and hence H is a connected group. For the case of μ0, the
right-hand side of Eq. (137) vanishes when the set of weight
vectors {μi}i∈u on the unit cell u is{{μi}i∈u = {ν2j−1 + ν2j }N/2

j=1 for even N,

{μi}i∈u = {νj + νj+1}N−1
j=1 ∪ {ν1 + νN } for odd N.

(147)

For even N, N/2-sites within each unit cell are sufficient
because we have from Eq. (107)

N/2∑
j=1

(ν2j−1 + ν2j ) =
N∑

j=1

νj = 0. (148)

On the other hand, (N − 1)/2-sites within the unit cell are not
sufficient because the sum of the weight vectors within each
set {ν2j−1 + ν2j }(N−1)/2

j=1 is

(N−1)/2∑
j=1

(ν2j−1 + ν2j ) =
N−1∑
j=1

νj = −νN = 0. (149)

We have to consider the unit cell with N sites. In fact, the set
{νj + νj+1}N−1

j=1 ∪ {ν1 + νN } satisfies

N−1∑
j=1

(νj + νj+1) + (ν1 + νN ) = 2
N∑

j=1

νj = 0 (150)

Thus, the ground state is given by

|GS〉 =
⊗
u∈U

⊗
i∈u

|μi)i , (151)

{{μi}i∈u = {ν2j−1 + ν2j }N/2
j=1 for even N,

{μi}i∈u = {νj + νj+1}N−1
j=1 ∪ {ν1 + νN } for odd N.

(152)

The remaining symmetry H of the state can be calculated in a
manner similar to the derivation of Eq. (141). A unitary matrix
U is included in H if and only if U |μi) = eiφ|μi) (∃ φ ∈ R)
for all of the weight vectors within each unit cell. For even

N, U |ν2j−1 + ν2j ) = eiφ|ν2j−1 + ν2j ) (∃ φ ∈ R) is satisfied
when both the (2j − 1) and the (2j )th columns and the
(2j − 1) and the (2j )th rows vanish except for the (2j −
1,2j − 1), (2j − 1,2j ), (2j,2j − 1), and (2j,2j ) elements.
Therefore, U is block-diagonalized into a direct product of
2 × 2 matrices and we obtain

H =
⎧⎨⎩U ∈ U(N )

∣∣∣∣∣∣U =
N/2⊕
j=1

Ui (Ui ∈ U(2))

⎫⎬⎭, (153)

� [U(2)]N/2. (154)

For odd N and the set of weight vectors {νj + νj+1}N−1
j=1 ∪

{ν1 + νN }, a unitary matrix U is included in H if and only if
U is a diagonal matrix. Therefore, we obtain

H := {U ∈ U(N )|U = diag(eiφ1 ,eiφ2 , . . . ,eiφN ),φi ∈ R}
� U(1)N, (155)

For both even and odd N,H is a connected group.

3. Third lowest-dimensional representation

For μ-SB with ODLRO and μH , the expectation value of
the order parameter is given by

�s = |2ν1) = �(1,1)
s . (156)

The remaining symmetry H of the state is given by

H := {
U ∈ U(N )|U�(1,1)

s
tU = �(1,1)

s

}
= {U ∈ U(N )|U1j = Uj1 = 0 (j = 1,2, . . . ,N )}
� U(N − 1), (157)

and hence H is a connected group. Similar to the case
of the second lowest-dimensional representation, μ-SB with
ODLRO and μ0 does not necessarily exist for arbitrary N .
The set W [2ν1] includes the weight vector νi + νj = 0 (1 �
i � j � N ) only when the following conditions are met:
N = 2, νi = ν1 and νj = ν2 [20]. For N greater than 2,
W [2ν1] does not include the zero-weight vector. For the
ODLRO and μ0 with N = 2, H is not a connected group.
In fact, the order parameter of this phase and H are given by

�s = σx, (158)

H = {eit I2|t ∈ R} �

{
I2,e

i π
2 σy

}
= U(1) � Z2, (159)

where N � N ′ is a semidirect product whose product is given
by

(n,h) � (n′,h′) = (nhn′h−1,hh′)

for ∀ n,n′ ∈ N, ∀ h,h′ ∈ N ′. (160)

We next consider the case of DLRO. There are N (N + 1)/2
states labeled by a weight vector μ ∈ W [2ν1] in each site. For
μ-SB with DLRO and μH , the mean-field ground state is given
by

|GS〉 =
⊗
i∈L

|2ν1)i . (161)
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The remaining symmetry H of the state is calculated in a
manner similar to Eq. (136) as

H := {
U ∈ U(N )|U�(1,1)

s
tU = eiφ�(1,1)

s for ∃ φ ∈ R
}

= {U ∈ U(N )|U1j = Uj1 = 0 (j = 2,3, . . . ,N )}
� U(1) × U(N − 1), (162)

and hence H is a connected group. For the case of μ0, the
ground state and the remaining symmetry H of the state is
obtained in a manner similar to the case of the DLRO and μ0

for the lowest-dimensional representation. the right-hand side
of Eq. (137) vanishes when the set of weight vectors {μi}i∈u

within the unit cell u are

{μi}i∈u = {2νj }Nj=1. (163)

Thus, the ground state is given by

|GS〉 =
⊗
u∈U

⊗
i∈u

|μi)i , (164)

{μi}i∈u = {2νj }Nj=1. (165)

The remaining symmetry H of the state can be calculated in a
manner similar to the derivation of Eq. (141). A unitary matrix
U is included in H if and only if U is a diagonal matrix. Thus,
the remaining symmetry H of the state is given by

H := {U ∈ U(N )|U = diag(eiφ1 ,eiφ2 , . . . ,eiφN ), φi ∈ R}
� U(1)N, (166)

and hence H is a connected group.

B. Numbers of NG modes

We next calculate the number of NG modes in μ-SB phases
classified in the previous subsection. From the quadratic part
of effective Lagrangians in Eq. (59), the numbers of type-1
and type-2 NG modes, n1 and n2, are given by

(n1,n2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0,|RH |) for DLRO and μH ,(
2
∣∣RD

0

∣∣,0) for DLRO and μ0,

(1,|RH |) for ODLRO and μH ,(
2
∣∣ROD

0

∣∣+ 1,0
)

for ODLRO and μ0,

(167)

where |X| denotes the number of elements in the set X.

1. Lowest-dimensional representation

Combining the set W [μH ] of the weight vectors in Eq. (114)
and the set {μi}i∈u of the weight vectors in the unit cell u in
Eq. (139), the sets RH and RD

0 are given from Eqs. (47) and
(48) by

RH = {α1,j |2 � j � N}, (168)

RD
0 = {αi,j |1 � i < j � N} = R+. (169)

Substituting these equations into Eq. (167), we obtain

(n1,n2) =
⎧⎨⎩(0,N − 1) for DLRO and μH ,

(N (N − 1),0) for DLRO and μ0,

(1,N − 1) for ODLRO and μH .

(170)

2. Second-lowest-dimensional representation

Combining the set W [μH ] of the weight vectors in Eq. (122)
and the set {μi}i∈u of the weight vectors in the unit cell u in
Eq. (152), the sets RH and RD

0 are given from Eqs. (47) and
(48) by

RH = {αi,j |i = 1,2, 3 � j � N}, (171)

RD
0 = R+\{α2j−1,2j |j = 1,2, . . . ,N/2} for even N,

(172)

RD
0 = {αi,j |1 � i < j � N} = R+ for odd N. (173)

For N = 2, there exists the μ-SB phase with ODLRO and μ0.
From Eq. (49), the set ROD

0 in this phase is empty,

ROD
0 = ∅, (174)

where ∅ denotes the empty set. Substituting the above three
equations into Eq. (167), we obtain

(n1,n2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0,2(N − 2)) for DLRO and μH ,

(N (N − 2),0) for DLRO, μ0,and even N,

(N (N − 1),0) for DLRO, μ0,and odd N,

(1,2(N − 2)) for ODLRO and μH ,

(1,0) for ODLRO, μ0,and N = 2.

(175)

3. Third-lowest-dimensional representation

Combining the set W [μH ] of the weight vectors in Eq. (128)
and the set {μi}i∈u of the weight vectors in the unit cell u in
Eq. (165), the sets RH and RD

0 are given from Eqs. (47) and
(48) by

RH = {α1,j |2 � j � N}, (176)

RD
0 = {αi,j |1 � i < j � N} = R+. (177)

For N = 2, there exists a μ-SB phase with ODLRO and μ0.
The set ROD

0 in this phase is given from the definition of ROD
0

in Eq. (49) as

ROD
0 = {α1,2}. (178)

Substituting the above equations into Eq. (167), we obtain

(n1,n2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0,N − 1) for DLRO and μH ,

(N (N − 1),0) for DLRO and μ0,

(1,N − 1) for ODLRO and μH ,

(3,0) for ODLRO, μ0,and N = 2.

(179)

C. Homotopy groups of topological excitations

Finally, we calculate the first and second homotopy groups
for μ-SB phases. Since H is a connected group for all the
cases except for the ODLRO and μ0 with N = 2 in the third
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lowest-dimensional representation, we can apply Theorem 3
except for this case.

1. Lowest-dimensional representation

For the DLRO, from Eq. (91), we obtain

π1(G/H ) = 0. (180)

For the DLRO and μH , we obtain from R+ in Eq. (109)

LR(R+) = spanZ

{
2α

(α,α)

∣∣∣∣α ∈ R+

}
= spanZ

{
αi,j |1 � i < j � N

}
. (181)

LR(R+\RH ) = spanZ{α1,j |2 � j � N}, (182)

In deriving the first equality of Eq. (181), we use Eq. (109) and
(αi,j ,αi,j ) = 2 for any i,j . Therefore we obtain from Theorem
3

π2(G/H ) = LR(R+)

LR(R+\RH )

= spanZ{α1,2} � Z. (183)

For the DLRO and μ0, since RD
0 = R+, we obtain from

Theorem 3

π2(G/H ) = LR(R+)

=
⎧⎨⎩

N∑
j,k=1

mjkαj,k

∣∣∣∣∣∣mjk ∈ Z

⎫⎬⎭
=
⎧⎨⎩

N∑
j=1

mjνj

∣∣∣∣∣∣mj ∈ Z,

N∑
j=1

mj = 0

⎫⎬⎭
� ZN−1. (184)

For the ODLRO and μH , it is easier to calculate π1(G/H )
and π2(G/H ) directly rather than using Theorem 3 because
the order parameter manifold is isomorphic to a higher-
dimensional sphere:

G/H = U(N )/U(N − 1) = S2N−1. (185)

Since N � 2, we obtain the following two equations from the
standard results of homotopy groups [40]:

π1(G/H ) = π1(S2N−1) = 0, (186)

π2(G/H ) = π2(S2N−1) = 0. (187)

2. Second-lowest-dimensional representation

For the DLRO, from Eq. (91), we obtain

π1(G/H ) = 0. (188)

For the DLRO and μH , from Theorem 3 and Eq. (173), we
obtain

π2(G/H ) = LR(R+)

LR(R+\RH )

= spanZ{α2,3} � Z. (189)

For the DLRO, μ0 and even N , from Theorem 3 and Eq. (152),
we obtain

LR

(
R+\ROD

0

) =
⎧⎨⎩

N/2∑
j=1

mjα2j−1,2j

∣∣∣∣∣∣mj ∈ Z

⎫⎬⎭, (190)

π2(G/H ) = LR(R+)

LR

(
R+\ROD

0

)
=
⎧⎨⎩

N/2−1∑
j=1

mjα2j,2j+1

∣∣∣∣∣∣mj ∈ Z

⎫⎬⎭
� Z

N
2 −1. (191)

For the DLRO, μ0 and odd N , we obtain the same result
π2(G/H ) = ZN−1 as in the case of the lowest-dimensional
representation since RD

0 is the same in both cases of the lowest-
dimensional and second lowest-dimensional representations.

For the ODLRO and μH , we can prove π1(G/H ) = 0 as
follows. To show this, it is sufficient to show that the following
vortex-like texture analogous to Eq. (92) can be deformed into
a uniform one:

〈�a〉 = eiθ�(1,2)
a . (192)

Here θ ∈ [0,2π ] is the azimuth angle around the vortex-like
object. Let λz and λy be two matrices defined by

λz =
⎛⎝1 0 0

0 0 0
0 0 −1

⎞⎠, (193)

λy =
⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠, (194)

and define N × N matrices λ̃x and λ̃y by a direct product
of λz and λy with the identity matrix IN−3 of size (N − 3),
respectively:

λ̃z = λz ⊕ IN−3, (195)

λ̃y = λy ⊕ IN−3. (196)

By using λ̃z, Eq. (192) can be written as

〈�a〉 = U (θ )�(1,2)
a

tU (θ ), (197)

U (θ ) = eiθλ̃z . (198)

Consider the continuous deformation defined by

〈�a,t 〉(θ ) = U (θ,t)
〈
�(1,2)

a

〉
tU (θ,t), (199)

U (θ,t) = e−iπt
λ̃y

2 eiθ
λ̃z
2 eiπt

λ̃y

2 eiθ
λ̃z
2 for 0 � t � 1. (200)

The unitary matrix U (θ,t) satisfies

U (θ,t = 0) = exp(iθ λ̃z) = U (θ ), (201)

U (θ,t = 1) = e−iπ
λ̃y

2 eiθ
λ̃z
2 eiπ

λ̃y

2 eiθ
λ̃z
2

= e−iθ
λ̃z
2 eiθ

λ̃z
2 = IN , (202)
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where IN denotes the identity matrix of size N . In the third
line, we use the relation

e−iπ
λ̃y

2 λ̃ze
iπ

λ̃y

2 = −̃λz. (203)

Therefore, 〈�a,t 〉 is transformed from Eq. (192) to a uniform
order 〈�a,t=1〉 = �(1,2)

a , which implies the triviality of the
vortex-like texture in Eq. (192). From Eq. (173), we obtain

LH =
⎧⎨⎩tα1,2 +

N∑
j,k=3

mjkαj,k

∣∣∣∣∣∣t,mjk ∈R,3 � i < j � N

⎫⎬⎭,

(204)

LH ∩ LR(R+) = spanZ[{αi,j |3 � i < j � N} ∪ {α1,2}]
= LR(R+\RH ). (205)

Therefore, we obtain π2(G/H ) = 0 from Eq. (93). For the
ODLRO and μ0 with N = 2, by using Eq. (91) and substituting
ROD

0 = ∅ into Eq. (93), we obtain

π1(G/H ) = Z, (206)

π2(G/H ) = 0. (207)

3. Third-lowest-dimensional representation

For the DLRO, from Eq. (91) we obtain

π1(G/H ) = 0. (208)

For the DLRO and μH , we obtain the same result π2(G/H ) =
Z as in the case of the lowest-dimensional representation since
RH coincides in both cases of the lowest-dimensional and third
lowest-dimensional representations. For the DLRO and μ0, we
obtain the same result π2(G/H ) = ZN−1 as in the case of the
lowest-dimensional representation since RD

0 coincides in both
cases of the lowest-dimensional and third lowest-dimensional
representations.

For the ODLRO and μH , we can prove π1(G/H ) = Z2

in a manner similar to the discussion in Sec. V. Let g be
the generator of Z2. The vortex with topological charge g2 is
described as

�s(θ ) = e2iθ�(1,1)
s , (209)

where θ ∈ [0,2π ] is the azimuth angle around the vortex. We
can prove g2 = e in a manner similar to the case of N = 2 in
Sec. V by replacing Pauli matrices σi(i = x,y,z) into

σ̃i := σi ⊕ IN−2(i = x,y,z). (210)

For the ODLRO and μH , we obtain the same result
π2(G/H ) = 0 as in the case of the lowest-dimensional repre-
sentation since LH and RH coincide in both cases of the lowest-
dimensional and third lowest-dimensional representations. For
the ODLRO and μ0 with N = 2, Eq. (91) is not applicable
because H is not a connected group. From the correspondence
with the spin-1 BEC in Eq. (97), this phase coincides with the
polar phase in the spin-1 BEC [21,22]. The first and second

homotopy groups of this phase are given as follows [52,53]:

π1(G/H ) = Z, (211)

π2(G/H ) = Z. (212)

We list the results obtained in this section in Table III
together with the examples of the classified phases. Examples
with g = u(1) ⊕ so(3) are included because so(3) is isomor-
phic to su(2). From the fifth column of Table III, we can see
that a large class of symmetry-broken phases are described in
terms of μ-SB.

VII. DISCUSSION ON THE CASE OF
HIGHER-DIMENSIONAL REPRESENTATION

So far we have confined our discussions to low-dimensional
representations. We next turn to the case of a higher-
dimensional representation. In the case of ODLRO in a
higher-dimensional representation, there appears more than
one Casimir invariant in the energy functional. Due to the
competition between different Casimir invariants, the phases
that arise from the minimization of the energy functional are,
in general, described by neither μ-SB nor inert states, where an
inert state is a state in which the order parameter is independent
of the coupling constants [55,56]. In this section, we focus on
the case of a higher-dimensional representation in which two
Casimir invariants appear in the energy functional. In this case,
many of the ground states are described by inert states despite
the competition between Casimir invariants. Let us examine
this point by discussing examples of spin-2 BECs [15–17] and
spin-1 color superconductors [18,19].

A. Spin-2 BEC

First, we consider the example of spin-2 BECs. As we
will see below, all of the ground states are inert states. The
symmetry group of the system is U(1) × SO(3). The order
parameter of a spin-2 BEC is a five-dimensional complex
vector

〈φ〉 = t (〈φ2〉,〈φ1〉,〈φ0〉,〈φ−1〉,〈φ−2〉), (213)

and the Cartan generator of SO(3) is the Sz operator defined
by

Sz =

⎛⎜⎜⎜⎝
2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞⎟⎟⎟⎠. (214)

The three eigenstates of the Sz operator

〈φ〉H = t (1,0,0,0,0), (215)

〈φ〉Z = t (0,0,1,0,0), (216)

〈φ〉L = t (0,0,0,0,1), (217)

are the highest-weight, the zero-weight, and the lowest-weight
states, respectively. For g = u(1) ⊕ so(3), the lowest-weight
state is obtained by applying π -rotation around the x-axis to
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TABLE III. Classification of μ-symmetry breaking in systems without Lorentz invariance. The Lie algebras of the systems are assumed
to take the form of g = u(1) ⊕ su(N ) with N � 2. Here {νi}N

i=1 is the set of weight vectors in an N -dimensional representation of su(N ),
which satisfy Eqs. (107) and (108). The first column shows the irreducible representation of the order parameter 〈φ〉 for ODLRO and that
of the field of particles on each site of the lattice L for DLRO. The second column shows whether the system is characterized by μH

or μ0 and by ODLRO or DLRO, respectively. The expectation value of the order parameter for ODLRO can be written in the form of
Eq. (8) or Eq. (9), while the ground state for DLRO can be written in the form of Eq. (10) or Eq. (11). The row with μ0 and ODLRO
appears only for N = 2. For the representation of the μH = ν1 case, the pair of μ0 and ODLRO is absent since this representation is the
lowest-dimensional one. The third column (n1,n2) shows the numbers of type-1 and type-2 NG modes. The fourth column (π1,π2) lists the
first and second homotopy groups of G/H . FM, AFM, CDW, SF, and VBS stand for ferromagnet, antiferromagnet, color density wave,
superfluid, and valence bond solid, respectively. In the rows with ν1 + ν2, μ0, and DLRO, the upper (lower) row corresponds to the case of even
(odd) N .

Representation μH Classification (n1,n2) (π1,π2) Example

ν1 ODLRO, μH (1,N − 1) (0,0) SU(N )-FM BEC

DLRO, μH (0,N − 1) (0,Z) spin-1/2 FM, SU(N )-FM [44]

DLRO, μ0 (N (N − 1),0) (0,ZN−1) spin-1/2 AFM, N -CDW [48–51]

ν1 + ν2 ODLRO, μH (1,2(N − 2)) (0,0) s-wave SF in three-component fermion [24–26]

ODLRO, μ0 (1,0) (Z,0) s-wave SF in two-component fermion [3]

DLRO, μH (0,2(N − 2)) (0,Z)

DLRO, μ0 (N (N − 2),0) (0,Z
N
2 −1) VBS in SU(4)-spin model [31,54]

(N (N − 1),0) (0,ZN−1)

2ν1 ODLRO, μH (1,N − 1) (Z2,0) FM phase in spin-1 BEC [21,22]

ODLRO, μ0 (3,0) (Z,Z) polar phase in spin-1 BEC [21,22]

DLRO, μH (0,N − 1) (0,Z) spin-1 FM

DLRO, μ0 (N (N − 1),0) (0,ZN−1) spin-1 AFM

the highest-weight state. The mean-field energy functional can
be constructed from the norm |〈φ〉| of the order parameter and
the Casimir invariants of SO(5) and SO(3) as

V (〈φ〉) = −c|〈φ〉|2 + c′
0|〈φ〉|4 + c′

1C
so(5)
2 (〈φ〉)

+ c′
2C

so(3)
2 (〈φ〉), (218)

where C
so(5)
2 (〈φ〉) and C

so(3)
2 (〈φ〉) are the Casimir invariants of

SO(5) and SO(3), respectively [23]. Here C
so(5)
2 (〈φ〉) is related

to the spin-singlet pair amplitude

A00(φ) := 1√
5

[φ2φ−2 − φ1φ−1 + (φ0)2] (219)

as

C
so(5)
2 (〈φ〉) = |〈φ〉|4 − 5|A00(〈φ〉)|2. (220)

In the energy functional, there are two competing Casimir
invariants, namely C

so(5)
2 (〈φ〉) and C

so(3)
2 (〈φ〉). By minimizing

the energy functional, the following four phases are obtained
[15–17]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ferromagnetic phase, 〈φ〉 = 〈φ〉H = t (1,0,0,0,0)
for c′

1 < 0 and c′
2 < 0;

cyclic phase, 〈φ〉 = t
(

1
2 ,0, i√

2
,0, 1

2

)
for c′

1 < 0 and c′
2 > 0;

uniaxial nematic phase, 〈φ〉 = 〈φ〉Z = t (0,0,1,0,0)
for c′

1 > 0;
biaxial nematic phase, 〈φ〉 = t

(
1√
2
,0,0,0, 1√

2

)
for c′

1 > 0;

(221)

where the order parameters are normalized such that |〈φ〉| = 1.
We note that the uniaxial nematic and biaxial nematic phases
are energetically degenerate at the mean-field level.

While the ferromagnetic phase and the uniaxial nematic
phase are described by μ-SB with μH and μ0, respectively,
the cyclic phase and the biaxial nematic phase are not.
However, both the cyclic phase and the biaxial nematic phase
are inert states. Moreover, they are both described by linear
combinations of the highest-weight, zero-weight, and lowest-
weight states with simple ratios between the coefficients, 1 and√

2i.

B. Spin-1 color superconductor

Next, we consider the example of spin-1 color superconduc-
tors. As we will see below, the four ground states are obtained
from the minimization of the energy functional and three of
them are inert while one of them is not. Color superconducting
phases are the superconducting phases in which Cooper pairs
formed by quarks are condensed [57]. Since each quark field
qc

f,s has three different types of internal degrees of freedom,
flavor f , spin s, and color c, the resulting Cooper pair has
these three internal degrees of freedom. In the spin-1 color
superconducting phases, quarks form a Cooper pair in a
single flavor, a spin SO(3)-triplet, and a color SU(3)-antitriplet
channel [18,19]. The single flavor and the spin SO(3) triplet
imply that the Cooper pair does not have an internal degree
of freedom in the flavor but has the spin 1, respectively.
The color SU(3) antitriplet implies that the Cooper pair has
three color charges, antired, antiblue, and antigreen. Let 	c,l

be the field of the Cooper pair with color c (= 1,2,3) and the
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spin direction parallel to the l (= x,y,z) axis, respectively,
where colors 1, 2, and 3 denote the color charge antired,
antiblue, and antigreen, respectively. The term “anti” implies
that 	c,l transforms in the conjugate representation of the
three-dimensional representation of SU(3):

	c,l �→ (Ucc′ )∗	c,l

when qc
f,s �→ Ucc′qc′

f,s (U ∈ SU(3)). (222)

Under the spin rotation, �c,l transforms in the vector repre-
sentation of SO(3):

�c,l �→ Rll′�c,l′ for R ∈ SO(3). (223)

Also, there is the U(1)-symmetry associated with the baryon-
number conservation which acts on the order parameter �

as

� �→ eiφ� for φ ∈ R. (224)

Based on the above discussions, the order parameter of
the spin-1 color superconducting phase is given by a 3 × 3
complex matrix

� = {	c,l|c = 1,2,3,l = x,y,z}, (225)

and the symmetry group G is G = U(3) × SO(3), which
consists of three symmetries, the color SU(3) symmetry, the
spin SO(3) symmetry, and the U(1) symmetry associated
with the baryon number conservation, respectively. Combining
Eqs. (222), (223), and (224), the order parameter � transforms
under G as

� �→ U ∗�tR for U ∈ U(3),R ∈ SO(3). (226)

We note that the system has a combined symmetry of U(3) and
SO(3), resulting in the two Casimir invariants in the energy
functional. The Cartan generators of the Lie algebra of G

consist of three generators: two generators, λ3 and λ8, of su(3),
and one generator, Sz, of so(3). They are defined as

λ3 =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠, λ8 = 1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠, (227)

Sz =
⎛⎝ 0 i 0

−i 0 0
0 0 0

⎞⎠. (228)

We note that from Eq. (226) the actions of λ3, λ8, and Sz on
the order parameter commute because the SU(3) group and its
generators act on the order parameter � from the left, while
the SO(3) group and its generators act on it from the right. The
mean-field energy functional of spin-1 color superconductors
can be constructed from the Hilbert-Schmit norm

√
Tr(��†)

of the matrix � and the Casimir invariants of SU(3) and
SO(3) as

V (�) = −c̄Tr(��†) + c̄0[Tr(��†)]2 + c̄1C
su(3)
2 (�)

+ c̄2C
so(3)
2 (�). (229)

Here C
su(3)
2 (�) and C

so(3)
2 (�) are the Casimir invariants of

SU(3) and SO(3) defined by

C
su(3)
2 (�) =

8∑
a=1

[Tr(�λa�
†)]2, (230)

C
so(3)
2 (�) =

3∑
a=1

[Tr(�Sa�
†)]2, (231)

where {λa}8
a=1 and {Sa}3

a=1 are the set of the Gell-Mann
matrices of su(3) [20] and the set of the generators of the vector
representation of so(3) defined by (Sa)bc = iεabc, respectively.
In the energy functional, there are two competing Casimir
invariants, namely C

su(3)
2 (�) and C

so(3)
2 (�). These Casimir

invariants are related to the quartic invariants Tr(��†��†)
and Tr[�t�(�t�)†] used in Ref. [19] as

C
su(3)
2 (�) = 2Tr(��†��†) − 2

3 [Tr(��†)]2, (232)

C
so(3)
2 (�) = Tr(��†��†) − Tr[�t�(�t�)†]. (233)

From the analysis of the quartic invariants in Ref. [19], they
satisfy the inequalities

0 � C
su(3)
2 (�) � 4

3 , (234)

0 � C
so(3)
2 (�) � 1, (235)

for a 3 × 3 matrix normalized as Tr(��†) = 1. By minimizing
the energy functional, four phases are obtained [19],

A phase, �A = 1

2

⎛⎝ 1 i 0
−i 1 0
0 0 0

⎞⎠
for 2c̄1 + c̄2 < 0 and c̄2 < 0; (236)

polar phase, �P =
⎛⎝0 0 0

0 0 0
0 0 1

⎞⎠
for c̄1 < 0 and c̄2 > 0; (237)

color − spin − locked phase, �C = 1√
3

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠
for c̄1 > 0 and c̄1 + c̄2 > 0; (238)

ε phase, �ε =
⎛⎝ ε1 iε1 0

−iε1 ε1 0
0 0 ε2

⎞⎠
for 2c̄1 + c̄2 > 0 and c̄1 + c̄2 < 0; (239)

where ε1 and ε2 are the constant values defined as

ε1 = 1

2

√
2c̄1

4c̄1 + c̄2
, ε2 =

√
2c̄1 + c̄2

4c̄1 + c̄2
. (240)

The order parameters are normalized such that Tr(��†) = 1.
Let us analyze these phases from the viewpoint of μ-

SB, the inert state, and the Casimir invariants. Since the
symmetry group of this system is no longer a simple Lie
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group, we generalize the concept of μ-SB for ODLRO to
the case in which the symmetry group of the system is a
semisimple Lie group. Since a semisimple Lie algebra can
be decomposed into the direct sum of the one-dimensional
commutative Lie algebras and simple Lie algebras, we can
assign the Casimir invariants to each simple Lie algebra.
When the order parameter is a simultaneous eigenstate of all of
the Cartan generators and each Casimir invariant is minimized
or maximized for the state, we refer to such a symmetry
breaking as μ-symmetry breaking. Among the four ground
states, the A phase, the polar phase, and the color-spin-locked
phase are inert states, while the ε phase is not. The order
parameter of the A phase is a simultaneous eigenstate of λ3, λ8,
and Sz:

λ3�A = �A, λ8�A = �A√
3
, �ASz = �A. (241)

We note from Eq. (226) that the generator Sz of so(3) acts
on the order parameter from the right. In the A phase, both
C

su(3)
2 (�) and C

so(3)
2 (�) are maximized:

C
su(3)
2 (�A) = 4

3 , C
so(3)
2 (�A) = 1. (242)

Therefore, the A phase is described by μ-SB. The order
parameter of the polar phase is a simultaneous eigenstate of
λ3, λ8, and Sz,

λ3�P = 2√
3
�P , λ8�P = 0, �P Sz = 0, (243)

and C
su(3)
2 (�) is maximized, whereas C

so(3)
2 (�) is minimized:

C
su(3)
2 (�P ) = 4

3 , C
so(3)
2 (�P ) = 0. (244)

Therefore, the polar phase is described by μ-SB. The color-
spin-locked phase is an inert state but is not μ-SB. However, we
can see from Eq. (238) that the ratios between the components
are all simple numbers similarly to the case of the spin-2 BECs;
they are all one. In the color-spin-locked phase, both C

su(3)
2 (�)

and C
so(3)
2 (�) are minimized:

C
su(3)
2 (�C) = 0, C

so(3)
2 (�C) = 0. (245)

The ε phase is not an inert state. This phase is an intermediate
phase between the A phase and the polar phase. In the limit
c̄1/c̄2 → −1/2 (c̄1/c̄2 → 0), it coincides with the A phase
(the polar phase). In the ε phase, the Casimir invariants takes
intermediate values between their minimum and maximum:

C
su(3)
2 (�ε) = 4

3
− 8c̄1(2c̄1 + c̄2)

(4c̄1 + c̄2)2
, (246)

C
so(3)
2 (�ε) =

(
2c̄1

4c̄1 + c̄2

)2

. (247)

In spin-1 color superconductors, a noninert state emerges as
a consequence of the competition between different Casimir
invariants.

VIII. CONCLUSION

In conclusion, we have proposed a Lie-algebraic approach
to systematically finding mean fields of quantum many-
body systems on the basis of the dynamical symmetry. The

mean fields of μ-symmetry breaking is derived through
the minimization of the energy functional constructed from
the Casimir invariants. We have introduced a concept of
μ-symmetry breaking as a phase that is characterized by a
weight vector in the representation of the Lie algebra. For
μ-SB, the quadratic part of an effective Lagrangian of NG
modes is block-diagonalized as in Eq. (59) in terms of the
Cartan canonical form. In μ-SB there appear three types of
NG modes as listed in Table II. Also, homotopy groups of
topological excitations are calculated systematically for μ-SB
as summarized in Eqs. (91) and (93). The textures of NG
modes and topological excitations are described in terms of
the generalized magnetization Sα . By applying μ-SB to a
U(N )-symmetric system, we have demonstrated that μ-SB
involves a large class of symmetry-broken phases as listed in
Table III.

In Sec. VII, we have seen from the examples of spin-2
BECs and spin-1 color superconductors that many of the
ground states obtained by the minimization of the energy
functional are inert, despite the fact that there is a competition
between different Casimir invariants. Moreover, these states
are described by linear combinations of weight vectors with
simple ratios between the coefficients. The physics behind this
fact has yet to be fully understood and merits further study.
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APPENDIX: PROOF OF THEOREM V ON THE
HOMOTOPY GROUPS IN μ-SB

In this Appendix, we prove Theorem 3 for μ-SB on the
basis of the theory of an integral lattice and a coroot lattice
[41,42].

Let r and R+ be the rank and the set of positive roots of a
compact Lie group G. We define an integral lattice LG for a
compact Lie group G and a lattice LR(S) for a subset S of R+
as [41,42]

LG := {t ∈ Rr | exp(2πiHt ) = e}, (A1)

LR(S) := spanZ

{
2α

(α,α)

∣∣∣∣α ∈ S

}
, (A2)

where spanZX denotes a vector space spanned by elements of
X with integer coefficients:

spanZX :=
{

n′∑
k=1

nkxk

∣∣∣∣∣xk ∈ X, nk ∈ Z, n′ ∈ N

}
. (A3)

Under a addition of r-dimensional vectors, LG and LR(S) of
R+ become Abelian groups for any subset S. It is known that
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LR(S) is an Abelian subgroup of LG for any subset S of R+
[41,42].

The proof of Theorem 3 proceeds in four steps.
First, we prove the following lemma on the general formulas

of homotopy groups.
Lemma 1. Let i∗n : πn(H ) → πn(G) be the induced homo-

morphism of the inclusion map i : H → G. The homotopy
groups of the homogeneous space πi(G/H ) (i = 1,2) are
calculated as follows.

(1) For a Lie group G and its connected subgroup H ,

π1(G/H ) = Coker{i∗1 : π1(H ) → π1(G)}, (A4)

where Coker{f : X → Y } for a homomorphism f : X → Y

is defined as

Coker{f : X → Y } := Y/Im{f : X → Y }. (A5)

Let [a] (a ∈ π1(G)) and θ ∈ [0,2π ] be a representative
element of the coset space Coker i∗1 and the azimuth angle
around the vortex. The texture O(θ ) of the vortex associated
with [a] is given by

O(θ ) = a(θ ) ◦ O0, (A6)

where O0 is the value of the order parameter at θ = 0 and
g ◦ O0 (g ∈ G) is the action of g on O0.

(2) For a compact Lie group G and its subgroup H ,

π2(G/H ) = Ker{i∗1 : π1(H ) → π1(G)}. (A7)

Let σ and σθ (0 � θ � π ) be an element of Ker i∗1 and a
continuous deformation from σθ=0 = σ to σθ=π = e (trivial
loop). The texture O(θ,φ) of the point defect associated with
σ is given by

O(θ,φ) = σθ (φ) ◦ O0, (A8)

where θ ∈ [0,π ] and φ ∈ [0,2π ] are the three-dimensional
polar coordinates and O0 is the value of the order parameter
at θ = φ = 0.

Proof of Lemma 1. We first prove the formula

πn(G/H )

Coker i∗n
= Ker i∗n−1 (A9)

by using the homotopy exact sequence [58]

i∗2−→ π2(G)
p∗

2−→ π2(G/H )
∂∗

2−→ π1(H )
i∗1−→ π1(G)

p∗
1−→

p∗
1−→ π1(G/H )

∂∗
1−→ π0(H )

i∗0−→ π0(G), (A10)

where p∗
n : πn(G) → πn(G/H ) and ∂∗

n : πn(G/H ) →
πn−1(G/H ) are the induced homomorphism of the projection
map p : G → G/H and the boundary map ∂ : G/H → H .

By using the homomorphism theorem and the exact
sequence, we obtain

πn(G/H )

Ker ∂∗
n

= Im ∂∗
n , (A11)

Im ∂∗
n = Ker i∗n−1, (A12)

Ker ∂∗
n = Im p∗

n = πn(G)

Ker p∗
n

= Coker i∗n. (A13)

Combining Eqs. (A11)–(A13), we obtain Eq. (A9). For a con-
nected subgroup H , we have π0(H ) = 0 and hence Ker i∗0 = 0.
Thus, we obtain Eq. (A4). Let O and [a] (a ∈ π1(G)) be
an element of π1(G/H ) and the element of Coker i∗1 that
corresponds to O in Eq. (A4). Let O0 be a value of the order
parameter. The projection p : G → G/H coincides with an
action on O0:

p(g) = g ◦ O0. (A14)

In fact, any element h in H is mapped by p to O0, p(h) =
O0 because an element of H acts on O0 trivially. Since
p∗

1 : π1(G) → π1(G/H ) is the induced homomorphism of the
projection map p : G → G/H , the element O of π1(G/H )
corresponding to the element of [a] (a ∈ π1(G)) is obtained
by the projection p as follows [58]:

O(θ ) = p[a(θ )] = a(θ ) ◦ O0. (A15)

Thus, we obtain Eq. (A6). Since π2(G) = 0 for a compact Lie
group G [41], we obtain Coker i∗2 = 0 and hence Eq. (A7).
Let σ and σθ (0 � θ � π ) be the element of Ker i∗1 and the
path of a continuous deformation from σθ=0 = σ to the trivial
loop σθ=π = e. We can obtain the element O of π2(G/H ) that
corresponds to σ in Eq. (A7) as

O(θ,φ) = σθ (φ) ◦ O0, (A16)

where θ ∈ [0,π ] and φ ∈ [0,2π ] are the three-dimensional
polar coordinates and O0 is the value of the order parameter
at θ = φ = 0. Thus, we obtain Eq. (A8), which completes the
proof of Lemma 1.

Second, we prove Eq. (93) on the second homotopy group.
Let LH be an integral lattice of H . We define the coroot lattice
LR,G for G by

LR,G := spanZ

{
2α

(α,α)

∣∣∣∣α ∈ R+

}
. (A17)

It is known that the coroot lattice LR,G is a subgroup of
the integral lattice LG and that the coset space LG/LR,G is
equivalent to the first homotopy group π1(G) [41,42]:

π1(G) = LG/LR,G. (A18)

Also, we define LR,H as the coroot lattice of the subgroup
H . For μ-SB, LH is a subgroup of LG and LR,H is a
subgroup of LR,G. Writing an element of π1(H ) = LH/LR,H

as t + LR,H (t ∈ LH ), the inclusion map i∗1 : π1(H ) → π1(G)
satisfies

i∗1 (t + LR,H ) = t + LR,G. (A19)

From Eq. (A7), we have

π2(G/H ) = Ker{i∗1 : π1(H ) → π1(G)}
= {t + LR,H |t ∈ LH,i∗1 (t + LR,H ) ∈ LR,G}
= {t + LR,H |t ∈ LH,t ∈ LR,G}
= (LH ∩ LR,G)/LR,H . (A20)
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For μ-SB with μH , LR,G and LR,H can be rewritten from
Theorem 1 as

LR,G = LR(R+), (A21)

LR,H = LR(R+\RH ). (A22)

Therefore, we obtain the third row of Eq. (93). Since LR(R+)
is a subgroup of LG and all of the Cartan generators are
not broken ones for DLRO, we have LH ∩ LR,G = LR,G =
LR(R+). Therefore, we obtain the first row of Eq. (93).
For μ-SB with μ0, LR,G and LR,H can be rewritten from
Theorem 1 as

LR,G = LR(R+), (A23)

LR,H =
{

LR

(
R+\RD

0

)
for DLRO and μ0,

LR

(
R+\ROD

0

)
for ODLRO and μ0,

(A24)

and LH is a subgroup of LR,G. Thus, we obtain the second
and fourth rows of Eq. (93). The texture of the point defect in
Eq. (94) is obtained by using Eq. (A8). Let σ be an element
of Ker i∗1 with coroot vector 2α/(α,α). Here σ represents the
loop on H defined by

σ (φ) = exp

[
iφ

2Hα

(α,α)

]
for φ ∈ [0,2π ]. (A25)

Since σ ∈ Ker i∗1 , there exists a continuous deformation from
σ to the trivial loop. In fact,

σθ (φ) = e
−iθ

EI
α

(α,α) e
iφ Hα

(α,α) e
iθ

EI
α

(α,α) e
iφ Hα

(α,α)

for (θ,φ) ∈ [0,π ] × [0,2π ] (A26)

describes a continuous deformation from σθ=0 = σ to the
trivial loop σθ=π = e:

σθ=0(φ) = e
iφ Hα

(α,α) e
iφ Hα

(α,α) = σ (φ), (A27)

σθ=π (φ) = e
−iπ

EI
α

(α,α) e
iφ Hα

(α,α) e
iπ

EI
α

(α,α) e
iφ Hα

(α,α)

= e
−iφ Hα

(α,α) e
iφ Hα

(α,α) = e. (A28)

Here we use

e
−iπ

EI
α

(α,α) Hαe
iπ

EI
α

(α,α) = −Hα. (A29)

From Eq. (A8), the element O ′ ∈ π2(G/H ) corresponding to
σ can be obtained by acting σθ (φ) on O0,

O ′(θ,φ) = e
−iθ

EI
α

(α,α) e
iφ Hα

(α,α) e
iθ

EI
α

(α,α) e
iφ Hα

(α,α) ◦ O0

= e
−iθ

EI
α

(α,α) e
iφ Hα

(α,α) e
iθ

EI
α

(α,α) ◦ O0, (A30)

where we use the fact that Hα is an unbroken generator.
Through the continuous deformation

O ′
u(θ,φ) = e

iuθ
EI

α
(α,α) O ′(θ,φ) for 0 � u � 1, (A31)

O ′
u is deformed from O ′

u=0 = O ′ to Ou=1 = O. Thus, Eq. (94)
is obtained.

Third, we show Coker i∗1 = 0 for DLRO. From Eqs. (A4)
and (A19), we have

Im i∗1 = {i∗1 (t + LR,H )|t ∈ LH }
= {t + LR,G|t ∈ LH }
= spanZ{LH ∪ LR,G}/LR,G, (A32)

and hence we obtain from Eq. (A18)

Coker i∗1 = LG

spanZ{LH ∪ LR,G} . (A33)

For a μ-SB with DLRO, no Cartan generators are broken ones.
Therefore, we obtain

LG = LH = LR,G, (A34)

Coker i∗1 = LG

spanZ{LG ∪ LG} = 0. (A35)

Finally, we calculate Coker i∗1 for a μ-SB with ODLRO.
For a μ-SB with ODLRO, the Cartan subalgebra gC of G

is included in h except for one direction spanZ{I } � Z from
Theorem 1. Thus, Coker i∗1 can be written as

Coker i∗1 = spanZ{I }
spanZ{I } ∩ spanZ{LH ∪ LR,G} . (A36)

Let an (n ∈ Z) be an element of spanZ{I } in the numerator of
Eq. (A36). Since the action of an(θ ) on the order parameter
represents the rotation of the phase 2nπ around the vortex,
Eq. (A6) reduces to Eq. (92).

For the ODLRO with μ0, LH is a subgroup of LR,G from
Theorem 1. We obtain from Theorem 3

spanZ{I } ∩ spanZ(LH ∩ LR,G) = spanZ{I } ∩ LR,G

= ∅, (A37)

Coker i∗1 = spanZ{I }. (A38)

Therefore, we obtain Coker i∗1 = Z from Eq. (A36). For the
ODLRO with μH ,Coker i∗1 is a subgroup of Z. To show that
Coker i∗1 is a finite group, it is sufficient to show

nI ∈ spanZ(LH ∪ LR,G) for ∃ n ∈ Z. (A39)

Let r̄ be the rank of the Lie algebra ḡ and let C =
{Cij }r̄i,j=1, {α(j )}r̄j=1, and {mi}r̄i=1 be the Cartan matrix of ḡ,
a set of simple roots of ḡ, and the Dynkin index of μH ,
respectively. The generator I can be written as

I = 1

|μH |2
(|μH |2I − HμH

)
+

r̄∑
j=1

[
1

|μH |2
r̄∑

i=1

miCij

(α(j ),α(j ))

2

]
2Hα(j )

(α(j ),α(j ))
.

(A40)

Since |μH |2I − HμH
and

2H
α(j )

(α(j ),α(j )) are the elements of LH ∪
LR,G and the coefficients are all rational numbers, the greatest
common divisor of the denominator of the coefficients satisfies
Eq. (A39). The positive integer l in Eq. (91) is determined to be
the minimum number that satisfies Eq. (A39), which completes
the proof of Theorem 3.
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