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Bosonic Josephson effect in the Fano-Anderson model
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We investigate the coherent dynamics of a noninteracting Bose-Einstein condensate in a system consisting
of two bosonic reservoirs coupled via a spatially localized mode. We describe this system by a two-terminal
Fano-Anderson model and investigate analytically the time evolution of observables such as the Josephson
current. In doing so, we find that the Josephson current sensitively depends on the on-site energy of the localized
mode. This facilitates using this setup as a transistor for a Bose-Einstein condensate. We identify two regimes.
In one regime, the system exhibits well-behaved long-time dynamics with a slowly oscillating and undamped
Josephson current. In a second regime, the Josephson current is a superposition of an extremely weakly damped
slow oscillation and an undamped fast oscillation. Our results are confirmed by finite-size simulations.
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I. INTRODUCTION

The experimental control of cold-atomic quantum gases has
proceeded to a high level in recent years. In particular, transport
experiments in two-terminal setups exhibit interesting effects
as, e.g., conductance quantization or the creation of a heat
engine [1–3]. Moreover, the control of superfluids gives rise to
new transport regimes: in contrast to particle transport driven
by a difference of the chemical potentials in the reservoirs
or by a temperature gradient, the dynamics of a superfluid is
determined by the phase of its matter wave [4–6]. The control
of these kinds of systems could pave the way to establish
so-called atomtronic circuits [7–9].

Moreover, theoretical investigations of bosonic transport
predict interesting effects as, e.g., a quantization of the
current, superfluid Helmholtz oscillations, or current against
the chemical potential gradient [10–16]. However, all of them
rely to some extent on phenomenological assumptions to
describe the many-particle dynamics, as interactions destroy
integrability.

Motivated by these experimental and theoretical achieve-
ments, we study here the dynamics of a system which consists
of two bosonic reservoirs which may at low temperature
contain Bose-Einstein condensates (BECs). These reservoirs
are linked by an additional strongly confined potential well.
The situation is sketched in Fig. 1(a). For weak couplings and
low temperature, the dynamics is mainly governed by a bosonic
Josephson effect [17–19]. Thereby, the Josephson current
between two directly coupled BECs depends on the phase
difference of the condensates. Here we investigate how the
indirect coupling via the additional potential well influences
the dynamics. Furthermore, a special focus of this article is the
influence of the excited reservoir modes on the dynamics of
the BEC. Based on our model and our methods, we are able to
analytically investigate the effects of particle loss and damping
due to these excited reservoir modes.

In contrast to the theoretical investigations in Refs. [10–16],
we maintain the integrability in our investigation by neglecting
the interparticle interactions. For instance, in rubidium conden-
sates, the interaction is rather small and can be additionally
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adjusted using Feshbach resonances [20,21]. The absence of
interactions allows us to analytically solve the dynamics of
the full system. Here, the only additional assumption enters
by presupposing the excited reservoir states to be thermally
occupied initially. We describe this system as a Fano-Anderson
model, which allows for analytical calculations. Our aim
is to understand the effects in the noninteracting model in
detail, which can then provide a starting point for future
investigations of the behavior in the presence of interactions. In
particular, we derive an effective non-Hermitian Hamiltonian
describing exactly the dynamics of the condensate in the
long-time limit. Our methods could be thus employed to
microscopically study effects which appear in non-Hermitian
Hamiltonians as, e.g., the so-called exceptional points, where
two eigenvalues and their eigenstates merge as a function of
system parameters [22–25].

An indispensable device in integrated electronic circuits is
a transistor. By adjusting a gate potential, one can control the
current from a source to a drain region with high accuracy.
We investigate the dynamics of the BEC in a bosonic Fano-
Anderson model in order to test if this system can be applied as
a transistorlike device controlling the Josephson current. The
confined potential well is assumed to have a large trapping
frequency so that it is justified to consider it as a single
mode with energy ε. For this reason, we call the confined
potential well a “bosonic quantum dot.” In the following,
due to the close relation to a common transitor, we denote
ε with the gate potential. We demonstrate that the Josephson
current from the left to the right reservoir sensitively depends
on ε. Furthermore, our approach reveals two regimes in the
dynamics induced by the excited reservoir modes. Depending
on the gate potential, there is a regime with a constant dot
occupation in the long-time limit, and a regime where the
dot occupation exhibits fast oscillations which persist for very
long times. At the transition, the dot occupation is exceedingly
high. The Josephson current exhibits a similar behavior. The
regimes appear as the energy of the reservoir modes is bounded
at energy ω = 0. As the energy of the eigenstates of the system
generating the dynamics is below or above that boundary, their
dynamics is subjected to damping or not.

The structure of the article is as follows. In Sec. II A,
we give a general introduction to the Josephson effect in
superconducting and bosonic systems. In Sec. II B, we explain
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FIG. 1. (a) Sketch of the system. Two reservoirs are coupled via a strongly confined well. (b) The system is described by the Fano-Anderson
model in Eq. (6). (c) Dot occupation Nd as function of time for different gate potentials ε. For ε > εcrit ≈ 0.016ωc, the occupation is constant,
while it is oscillating for ε < εcrit in the long-time limit. (d) In our calculations, we formally exclude the coupling of the lowest-energy modes
c0,α in the reservoirs α = L,R from the continuum limit (CL) to take into account the dynamics of the BEC. (e) Dot occupation Nd as function
of ε for a fixed time t1ωc = 2 × 103. The occupation is extremely high close to the transition at ε = εcrit . The black line depicts the analytic
time-averaged dot occupation in Eq. (52). The overall parameters are nL = nR = 104, �φ = −π/2, η = 0.5, γα/ωc = 0.028, t0,α/ωc = 0.0021,
and ω0,α = 0. We assume that a value of ωc = 5 kHz provides a reasonable estimate for cold-atom experiments. For more details about the
choice of t0,α and the estimation of ωc, see Appendix A.

the bosonic Fano-Anderson model, for which we specify the
Josephson current in Sec. III A. In Sec. III B, we apply
the so-called equations-of-motion method to calculate the
dynamics, which is discussed in Sec. III C. Section IV focuses
on the dynamics for long times. In Secs. IV A–IV C, we
explain how to efficiently calculate the time evolution and
show how to derive an effective Hamiltonian resembling
exactly the dynamics in the long-time limit. We provide an
exact expression for the Josephson current in Sec. IV D. In
Sec. IV E, we discuss the low-frequency current which is
mainly responsible for the particle transport. The Appendix
provides details about the calculations.

II. SYSTEM AND BASICS

A. Josephson effect

In a conventional superconductor, the Cooper pairs form a
condensate whose macroscopic order parameter is described
by a phase φ. Two superconducting regions connected by
a small normal-conducting island constitute a Josephson
junction. The coherent Josephson current through this junction
depends on the phase difference �φ = φR − φL of the
condensate phases in the superconducting leads, namely

IJ (t) = Ic sin �φ(t), (1)

where Ic is called the critical current [17,18]. In the ac-
Josephson effect, the two leads are subjected to a chemical
potential bias �μ which gives rise to a time evolution of the
phase difference

d

dt
�φ(t) = 2e

�
�μ, (2)

where 2e is the charge of a Cooper pair. For a constant bias
�μ, this results in a sine-modulated Josephson current with the
so-called characteristic frequency of the junction 
J = 2e

�
�μ.

An analog effect appears also in a BEC, whose macroscopic
order parameter is the complex-valued wave function. The
simplest model with a bosonic Josephson current consists of
two coupled bosonic modes

H = t0(a†b + b†a), (3)

where t0 denotes the tunneling coupling [19]. The bosonic
Josephson current related to the operator I ≡ i[H,b†b] reads

IJ (t) = t02 Im〈b†a〉t . (4)

For the initial state |ψ0〉 at time t = 0 we assume a BEC
described by a product of coherent states |ψ0〉 = |a〉 ⊗ |b〉
with a|a〉 = √

nae
−iφa |a〉 and b|b〉 = √

nbe
−iφb |b〉. Thereby,

nα denotes the initial occupation of mode α = a,b and φα its
phase. Solving the equations of motion we find

IJ (t) = − 1
2
J sin(
J t)(nb − na)

+ 
J cos(
J t) sin �φ0
√

nanb, (5)

where �φ0 = φb − φa and 
J = 2t0 is the characteristic
frequency. In contrast to (2), we do not assume a difference
in the chemical potentials in the bosonic Hamiltonian as finite
energy terms ωaa†a and ωbb†b are not present in Eq. (3).
Obviously, the Josephson current exhibits an oscillating
behavior with the characteristic frequency 
J = 2t0. This
is exactly the energy difference of the two eigenenergies
ε± = ±t0 of the Hamiltonian (3). The superposition of the
corresponding eigenmodes thus drives the coherent dynamics
of the Josephson current. The same effect also generates the
BEC dynamics in the Fano-Anderson model considered in
this article, although here the coherent dynamics is subjected
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to incoherent particle loss due to the coupling to the excited
reservoir modes. In Sec. IV E, we derive a relation similar to (5)
for the low-frequency Josephson current in the Fano-Anderson
model; cf. Eq. (49). We find that the excited reservoir modes
effectively create an additional imaginary part to the energies
and to the characteristic frequency 
J .

B. Our model

We theoretically model the transport system depicted in
Fig. 1(a) as a bosonic two-terminal Fano-Anderson model to
investigate the transport properties of a BEC which, to our
knowledge, has not been done before. The model is sketched
in Fig. 1(b). The Hamiltonian reads

H = εd†d +
∑

α=L,R

kmax∑
k=0

[ωkαc†kαckα + (tkαd†ckα + H.c.)], (6)

where ωkα denote the energy of the bosonic reservoir modes
ckα which are labeled by α = L,R denoting the reservoirs and
k = 0, . . . ,kmax denoting their internal states. The parameters
tkα describe the coupling of the dot d to each reservoir
mode. Without loss of generality, we assume real-valued tkα

throughout the article. Complex tunneling elements can be
rendered real by an appropriate gauge transformation. This and
related models have been frequently used to study transport in
various contexts [26–31]. For a bosonic Fano-Anderson model
at temperatures above the condensation temperature, one can
show that the stationary particle current is given by [32]

IR =
∫ ∞

0
G(ω)[nL(ω) − nR(ω)]dω, (7)

where nα(ω) = 1/[eβα (ω−μα) − 1] is the Bose distribution
and describes the occupation of the left and right reservoir
modes. It depends on the chemical potentials μα < 0 and
the temperatures Tα = 1/βα . The transmission G(ω) is a
system property and does not depend on either temperature
or chemical potential. Thus the current through the system
is generated by a difference of the chemical potentials or
temperatures in the reservoirs. In contrast, we are interested in
the coherent contributions to the particle transfer which—just
as in the bosonic two-mode system of Sec. II A—can be
present even in the case of vanishing temperature and chemical
potential difference.

III. DYNAMICS OF THE BOSE-EINSTEIN CONDENSATE

A. Josephson current in the Fano-Anderson model

We define the current operator via the time evolution
of the particle-number operator of the right reservoir NR =∑

k c†k,Rck,R; thus

IR ≡ i[H,NR] = −i
∑

k

tk,Rc†k,Rd + H.c.

≡ IR,ex + IR,J . (8)

The current can be split into two parts IR,ex and IR,J . They
are related to the initial condition which we specify in the
following.

The density matrix at time t = 0 is given by a product of
the density matrices describing each reservoir separately. The
excited states are assumed to be initially thermally occupied.
Moreover, we allow for a condensate in each reservoir α so that
the lowest-energy modes ω0,α are macroscopically occupied.
This effect requires a finite-energy gap between the lowest-
energy mode and the excited modes. If the temperature of the
reservoir is lower than a critical temperature which depends
on the particle density, the Bose-Einstein condensation takes
place.

Each condensate in the modes c0,α is characterized by a
macroscopic occupation nα and a phase φα . We describe it
by a coherent state |α0〉. For these reasons, the initial density
matrix reads

ρ = ρL ⊗ ρR ⊗ ρd, (9)

ρα = 1

Zα

exp

⎡
⎣−βα

kmax∑
k 	=0

ωk,αc†k,αck,α

⎤
⎦ ⊗ |α0〉〈α0|, (10)

c0α|α0〉 = α0|α0〉 with 〈α0|α0〉 = 1, (11)

ρd = |0〉〈0|, (12)

where α0 = √
nαe−iφα , βα denotes the inverse temperature,

and |0〉 is the vacuum state of the dot. The excited modes are
described by a density matrix of a grand-canonical ensemble.
As we consider a BEC, we assume vanishing chemical
potentials μα → 0−. The partition function Zα warrants the
normalization trρα = 1. As the experiments in Refs. [4,33]
demonstrate, the initial ground-state occupations nα and the
phases φα can be controlled with high accuracy.

Accordingly, we split the current into two contributions.
The first one is the current operator from and to the excited
states k > 0; thus

IR,ex = −i
∑
k 	=0

tk,Rc†k,Rd + H.c. (13)

Particles which are thermally excited at t = 0 generate a
current given by Eq. (7) in the long-time limit which is the
main part of IR,ex . Furthermore, particles which are initially
in the condensate do not necessarily stay there. During the
time evolution they can jump into the dot and then into an
excited mode. Thus also a fraction of the condensate particles
can participate in IR,ex .

In the presence of a condensate we identify the current
from and to the reservoir ground states k = 0 as the Josephson
current which is coherent. The corresponding current operator
reads

IR,J = −it0,Rc†0,Rd + H.c. (14)

In this article, we are interested in the latter contribution.
We therefore assume the zero-temperature limit Tα → 0,
or equivalently βα → ∞, where all particles are initially
condensed within the lowest-energy modes c0α .

B. Equations of motion in Laplace space

Following Ref. [32], we construct the Heisenberg equations
of motion d

dt
o = i[H,o] for o = d,ckα and apply a Laplace
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transformation ô(z) ≡ ∫ ∞
0 e−zto(t)dt . In Laplace space, the

equations of motion can be easily solved and we obtain

d̂(z) = d

F(z)
− i

∑
α=L,R

kmax∑
k=0

tk,αck,α

(z + iωk,α)F(z)
, (15)

ĉk,α(z) = ck,α

z + iωk,α

− itk,αd

(z + iωk,α)F(z)

−
∑

α′=L,R

kmax∑
k′=0

tk,αtk′,α′

(z + iωk,α)(z + iωk′,α′ )

ck′,α′

F(z)
, (16)

where d = d(t = 0), ck,α = ckα(t = 0), and

F(z) = z + iε +
∑

α=L,R

kmax∑
k=0

t2
k,α

z + iωk,α

. (17)

The roots of F(z) are related to the energies of the
Hamiltonian (6) by εi = izi . The time evolution can be
obtained by an inverse Laplace transformation

o(t) = 1

2πi

∫ δ+i∞

δ−i∞
ezt ô(z)dz, (18)

where δ > 0 has to be chosen so that the integration contour is
completely within the region of convergence of ô(z). In order
to perform analytical calculations, we consider the system in
the continuum limit (CL). For this reason, we transform the
main part of the sum in F(z) into an integral

∑
k 	=0

t2
k,α

z + iωk,α

→ 1

2π

∫ ∞

0
dω′ �α(ω′)

z + iω′ ≡ Cα(z), (19)

with the tunnel rate �α(ω) = 2π
∑

k |tkα|2δ(ω − ωkα), which
we assume to be analytic for ω > 0 in the CL. We emphasize
that in order to investigate the time evolution of the condensate,
it is necessary to extract the ground-state energy modes k = 0
from the integral. In the CL, we thus have

F(z) = z + iε +
∑

α=L,R

t2
0,α

z + iω0,α

+ Cα(z). (20)

This approach is a modification of former investigations of
the Fano-Anderson model as in Ref. [32]. The extraction of
the ground-state modes allows for a detailed analysis of the
condensate dynamics and creates a three-mode system with
modes c0,L, c0,R , and d which is coupled to the reservoirs.
The latter are described by the tunnel rates �α(ω). A sketch
of the resulting setup is depicted in Fig. 1(d). In Sec. IV C,
we derive an effective non-Hermitian Hamiltonian for the
three-mode system which exactly resembles the dynamics in
the long-time limit. The non-Hermitian property reflects the
fact that the coherent dynamics in this system is subjected to
loss and is thus not unitary. Our approach thus provides the
possibility to analytically study these effects.

We consider a tunnel rate with an exponential cutoff in its
energy dependence, thus

�α(ω) = γα

(
ω

ωc

)η

e− ω
ωc �(ω), (21)

where η > −1 is a scaling exponent describing the tunnel rate
close to ω = 0. The parameter γα is the coupling constant and

ωc denotes the cutoff frequency. The function �(ω) denotes the
Heavyside function and guarantees that the reservoir spectrum
is bounded at ω = 0. We choose this tunnel rate, as it allows for
analytical calculations. However, many of our results as, e.g.,
the complex frequencies in Eq. (35) are expressed in terms of
�α(ω) itself and thus hold for more general parametrizations
than Eq. (21). In our investigations, we find that the dynamics
of the condensate is mainly determined by the tunnel rates
near ω � 0. So the exact details as the cutoff of the tunnel
rate are not important for our qualitative results. For the tunnel
rate (21) the integration in (19) can be performed exactly and
we obtain

Cα(z) = −i
γα

2π

(
−i

z

ωc

)η

e−i z
ωc �̃(1 + η)�̃

(
−η, − i

z

ωc

)
,

(22)

where �̃(x) and �̃(x,z) denote the complete and incomplete
� functions, respectively. The incomplete � function �̃(−η,

− i z
ωc

) is characterized by a branch-cut discontinuity in the
complex plane running from z = −i∞ to z = 0. Also the pref-
actor (−iz/ωc)η contributes for noninteger η to the branch cut.

The branch cut is not a specific property of the chosen
parametrization in (21), but is a generic property of Cα(z) as
the integration in (19) runs over positive frequencies only. It
occurs since the integrand in (19) has a pole at z = −iω.
In Sec. IV A, we discuss how to handle these branch-cut
discontinuities analytically.

C. Dynamical regimes

We calculate the time evolution of the system operators by
performing an exact inverse Laplace transformation of (15)
and (16). The expectation values of the observables we
are interested in, such as the current IR,J (t) = tr[IR,J (t)ρ],
depend on correlation functions, e.g., 〈c†k,αck′,α′ 〉

0
at t = 0.

The expectation value 〈O〉t is defined by

〈O〉t ≡ tr[O(t)ρ]. (23)

For the initial condition (9) in the zero-temperature limit,
the only nonvanishing correlation functions are

〈c†k,αck,α〉0 = δk,0nα,

〈c†0,Rc0,L〉0 = √
nLnRei�φ, (24)

where �φ = φR − φL denotes the initial phase difference of
the left and right condensate, and nα their initial occupation.

The results are depicted in Fig. 1(c) and Fig. 2. In the
numerical calculations throughout the article we assume a
symmetric system, meaning that ω0,L = ω0,R = 0. In the time
evolution we observe two dynamical regimes. They can be
distinguished best by considering the dot occupation Nd ,
the Josephson current IR,J , and the occupation of the right
ground-state mode N0,R .

In regime I for ε > εcrit ≈ 0.016ωc, we observe that Nd (t)
and IR,J (t) exhibit initial oscillations that are quickly damped.
The determination of εcrit is discussed in Sec. IV B. For
longer times, we find that Nd (t) reaches a constant value
while IR,J (t) performs oscillations with a very long period,
which are undamped. The oscillation frequency increases
when approaching ε = εcrit . During these oscillations the main
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FIG. 2. (a) Josephson current as a function of time in the continuum limit. The parameters are the same as in Fig. 1(c). The current
shows a similar behavior as the dot occupation Nd (t). The dash-dotted line depicts an approximation of the low-frequency contribution of the
current given in Eq. (49). For ε ≈ εcrit the approximation completely fails (not shown). The oscillation frequencies are given by the imaginary
parts of the roots of F̃(z) which are depicted in Fig. 3(e) and are approximately given by Eq. (35). (b) Total occupation

∑kmax

k=0 Nk,R and the
ground-state occupation N0,R of the right reservoir. Both observables are scaled by the total particle number in the system Ntot = nL + nR .
The fast oscillations of the current are only visible in the reservoir occupation close to the transition at ε � εcrit . (c) Finite-size simulation
with kmax = 100. For tωc � 1 × 103 the finite-size time evolution agrees well with the CL. The fluctuations for tωc � 1 × 103 are due to the
finite-energy gaps between the reservoir modes near the ground state. (d) The fluctuations are hardly visible in the ground-state occupation
N0,R(t).

fraction of the particles oscillates between the two reservoir
ground states. A rather small amount of the initially condensed
particles are subjected to depletion. They are scattered to the
excited modes during the dynamics [difference between the
curves in Fig. 2(b)]. The depletion is stronger for ε close to
εcrit .

In regime II for ε < εcrit , the dot occupation Nd (t) exhibits
fast oscillations which are only weakly damped. The damping
is stronger close to the transition. The time evolution of IR,J (t)
displays a superposition of two oscillations with long and
short period, respectively. However, only the slow oscillations
significantly change the occupation of the right reservoir in
panel (b). The depletion is only noticeable close to εcrit .

In Fig. 2(c), we depict a finite-size simulation of the
Josephson current as a benchmark for our approach. In
Appendix A, we provide information about its calculation.
Thereby, each reservoir consists of a rather small number of
modes, namely kmax = 100. We also explain in the Appendix
that a value of ωc = 5 kHz for the cutoff frequency is a realistic
value in cold-atom experiments.

As we observe in Fig. 2(c), the numerical finite-size
simulation agrees well with the CL calculations for short
times 10−3tωc � 1 after which the finite-size simulation starts
to exhibit deviations. These appear due to the finite-energy
spacing δω ≈ ωc/kmax between the levels close to the ground
state. In numerical studies we find that the starting time of
these deviations Tdev grows for increasing kmax .

However, we assume that these fluctuations are not partic-
ularly relevant in experiments. The actual observable quantity
is the particle number in the right reservoir which is mainly
given by the condensate particles N0,R . As we see in Fig. 2(d),
the fluctuations in the current are averaged so that they are
hardly visible in N0,R . Additionally, weak interactions which
are always present in experiments could induce a damping of
these finite-size fluctuations.

Finally, we emphasize that the two regimes I and II are
connected by a smooth crossover as a function of ε for finite
t0,α . This becomes clear when considering the relation of
observables and roots of the system later in this article in
Sec. IV D. The transition is only nonanalytic in the limit
t0,α → 0.

IV. LONG-TIME LIMIT

A. Analysis in the complex plain

In order to better understand the time evolution in Fig. 2,
we investigate the time evolution for intermediate and long
times in more detail. To this end, we have to identify the main
contributions in the inverse Laplace transformation of (15)
and (16). In particular, the analytic properties of F(z) and its
roots are important for the inverse Laplace transform so that
we analyze it in the following.

First, we consider the roots of F(z) in (17) for a finite-sized
system with kmax states in the reservoirs. The roots of F(z)
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are located on the imaginary axis as sketched in Fig. 3(a).
Using the residue theorem with the dashed contour shown in
Fig. 3(a), we find that one can perform the inverse Laplace
transformation (18) for o = d,ckα corresponding to the blue
integration contour, by evaluating the residue

o(t) =
∑

a∈Df s

Resz=a ezt ô(z), (25)

where Df s is the set of all poles in (15) and (16) which includes
the set of all roots of F(z).

For kmax → ∞, the roots move closer to each other and
finally form the branch cut of F(z) in (20). The branch cut is
depicted in Fig. 3(b). Everywhere else in the complex plane,
F(z) is analytic. The branch cut of F(z) is due to the branch
cut of Cα(z); cf. Eq. (22). At the branch cut, the function Cα(z)
has a jump discontinuity of

lim
δ↓0

Cα(−iω + δ) − Cα(−iω − δ) = �α(ω), (26)

where �α(ω) is the tunnel rate and ω > 0,δ ∈ R. This relation
can be proven using Eq. (19) and the Dirac identity

lim
δ↓0

1

(ω − ω′) ± iδ
= P

1

ω − ω′ ∓ iπδ(ω − ω′), (27)

where P denotes the principal value.
Besides, for the chosen parameters in Fig. 3(b), there are

two roots z1 and z3 which are not merged with the branch
cut. They appear due to the extraction of the ground states as
explained in Eq. (20).

As for the finite-size system, we apply the residue theorem
with the dashed contour shown in Fig. 3(b) in order to evaluate
the inverse Laplace transformation (18). The integration
contour is chosen so that the surrounded area is analytic except
for isolated poles. In doing so, we find

o(t) =
∑
a∈D

Resz=ae
zt ô(z) − 1

2πi

∫
C
ezto(z)dz, (28)

where D is the set of all isolated poles appearing in (15)
and (16) which includes the roots ofF(z) in (20). Formula (28)
is valid under the assumption of a vanishing integrand for
Re z → −∞. For this reason, we can omit the gray integration
contour in Fig. 3(b). The only remaining integration contour is
C depicted in black in Fig. 3(b) and encircles the branch cut of
F(z). Equation (28) constitutes an exact expression in the CL.
However, the evaluation of the branch-cut integral in Eq. (28) is
numerically expensive and analytically unfavorable. For this
reason, we explain in the following how to circumvent this
problem in the long-time limit.

The branch cut of Cα(z) in (19) which generates the branch
cut of F(z) is not uniquely defined. There is the possibility to
modify Cα(z) so that its branch cut is located elsewhere. As
the branch cut separates the bottom-left and the bottom-right
sector of the complex plane, we modify Cα(z) in the bottom-
left sector, so that the current branch cut is displaced and the
modified function C̃α(z) is analytic on the negative imaginary
axis. More precisely, that modification reads

C̃α(z) = Cα(z) +
{
�α(iz) Re z < 0 ∧ Im z < 0,

0 else, (29)

where �α(iz) is the analytic continuation of the tunnel rate
as defined for ω = iz > 0 onto the complex plane. One can
find from Eq. (26) that C̃α(z) is continuous along the previous
branch cut position. In Appendix B we prove that C̃α(z) is
indeed analytic on the negative imaginary axis. In addition, as
C̃α(z) is a sum of analytic functions in the bottom-left sector,
it is analytic there. Yet, due to the modification, C̃α(z) is not
continuous on the negative real axis separating the top-left
and bottom-left sector as depicted in Fig. 3(c). Consequently,
C̃α(z) has now a branch cut there. Thus Cα(z) and C̃α(z) are
related by a branch cut rotation.

Consequently, we also modify

F̃(z) ≡ F(z) −
∑

α=L,R

Cα(z) +
∑

α=L,R

C̃α(z), (30)

which is therefore also analytic everywhere except on the
negative real axis. As F̃(z) = F(z) for Re z > 0, the inverse
Laplace transformation in Eq. (18) is not affected so that
the operators as a function of time remain invariant under the
branch-cut rotation. As before, we employ the residue theorem
to simplify the evaluation of the inverse Laplace transformation
in Eq. (18) with the blue integration contour in Fig. 3(c).
The corresponding contour is depicted by the dashed lines in
Fig. 3(c). The result is formally equivalent to Eq. (28), but with
the integration contour C depicted in black in Fig. 3(c).

F̃(z) is different from F(z) in the bottom-left sector of the
complex plain. This gives rise to an additional root z2 with
negative real part. We depict it also in Fig. 3(c). In the limit of
tk,α → 0, it corresponds to the gate potential ε = iz2 in regime
I. For the symmetric system, we calculate the leading orders of
the position of the root for small tα,0 in Appendix D. Altogether,
F̃(z) possesses three roots. We found that the number of roots
of F̃(z) is independent of the system parameters.

We approximate now the inverse Laplace transformation by
neglecting the branch-cut integral in Eq. (28). This is justified
as the integrand in (28) contains the factor ezt , which vanishes
in the long-time limit as the integration contour surrounds the
negative real axis. For example, the branch-cut integral Ibc

belonging to the second line in Eq. (16) for k,k′ = 0 is for
long times approximately given by

Ibc ≈ 1

2πi

∑
α γα

4t2
0

(−i

ωc

)η

�̃(η + 1)
1

tη+1
c0,α′ , (31)

if ω0,α = ω0,α′ = 0 and t0,L = t0,R = t0, which is the most
important case in our article. In Appendix C, we provide more
information about the calculation. There, we also consider
the cases ω0,α 	= ω0,α′ = 0 and ω0,α 	= 0 	= ω0,α′ which yield
similar results. From (31) we see that the branch cut integral
vanishes algebraically in time for long times if η > −1.
Branch-cut integrals corresponding to the other terms in (15)
and (16) vanish even faster.

For intermediate times we found that the branch-cut integral
contributes only insignificantly for ε away from the transition
point εcrit . As a result, the dynamics of the system for
intermediate and long times is determined by the poles of (15)
and (16), which we can efficiently calculate numerically.

Finally, we have to point out a subtlety. The function F̃(z)
exhibits only three roots for ω0,L 	= ω0,R . For the special case
ω0,L = ω0,R , which we mainly focus on in this article, F̃(z)
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FIG. 3. (a) Sketch of the roots of F(z) in Eq. (17) for a finite system with kmax = 100. The dashed curve depicts the contour used to apply
the residue theorem. See the main text for more details. (b) In the CL, the roots get dense and finally form a branch cut (orange) located at the
negative imaginary axes. In addition, there are two roots z1 and z3 generated by the extraction of the ground-state modes in Eq. (20). The black
dashed curve depicts the integration contour C needed to evaluate Eq. (28). (c) Rotation of the branch cut so that its contribution in the inverse
Laplace transformation (28) is negligible in the long-time limit. Due to the rotation, the modified F̃(z) given in (30) exhibits an additional root
with finite real part z2. (d) Trajectories of z1 and z2 in the complex plain as function of ε. The parameters are identical to Fig. 1(c) so that
z3 → 0. (e) Real and imaginary part of the roots z1 and z2 as a function of ε. The dashed line depicts the approximation (35).

has indeed only two roots. The missing root corresponds to a
dark state with energy ω0,L. The corresponding mode reads

cdark = 1√
t2
0,L + t2

0,R

(t0,Lc0,R − t0,Rc0,L). (32)

This mode obviously does not couple to the dot or
the excited reservoir modes. It is not hard to show that
[H,c†darkcdark] = 0. Therefore, the particle number in the dark
mode remains constant and it is not subjected to particle
loss. Consequently, there is no complete depletion of the
ground-state modes if the dark state is initially occupied. In
our generic investigation in Sec. IV C we consider the more
general case of ω0,L 	= ω0,R and regard the equality as the limit
ω0,L → ω0,R .

Furthermore, if additionally ω0,L → ω0,R = 0, then the
dark-state root z3 → 0, which lies within the branch-cut
contour C. For this reason, we treat this special case formally
with a limit procedure: first we assume ω0,L → ω0,R 	= 0 and
then take the limit ω0,R → 0 after performing the inverse
Laplace transformation.

B. Roots of the symmetric system

In the following, we analyze the roots of F̃(z) for the
symmetric system with ω0,L = ω0,R = 0. For simplicity we
also assume symmetric tunneling rates t0,L = t0,R ≡ t0. Here,
we give an analytical expression for the leading contributions
of the real and imaginary part of the roots z1 and z2.

In order to express the location of the roots, we define the
real and the imaginary part of

∑
α C̃α(z) by

lim
δ↓0

∑
α=L,R

C̃α(−iω + δ) ≡ �(ω) + i�(ω), (33)

with ω,δ ∈ R. The real part can be expressed with the tunnel
rates

�(ω) = 1
2 (�L(ω) + �R(ω)), (34)

which can be proven using the Dirac identity (27).
In Appendix D we show that for small t0 and η > 0 the

roots z1 and z2 of F̃(z) are approximately located at

zj ≈ z0
j − z0

j�
(
iz0

j

)
2z0

j + i[ε + �(0)]
, (35)

where the imaginary part z0
j reads

z0
1,2 = −i

1

2
(ε + �(0) ±

√(
ε + �(0)

)2 + 8t2
0 ). (36)

Using Eq. (22) we find for the Lamb shift

�(0) = −
∑

α=L,R

γα

2π
�̃(η), (37)

which renormalizes the gate potential ε. The second term in
Eq. (35) is the leading order of the real part. Interestingly, it is
proportional to �(iz0

j ). Consequently, if iz0
j < 0, the real part

vanishes due to Eq. (21).
The analytical expressions for z1 and z2 are depicted in

Fig. 3(e) and agree well with the numerical calculation. The
imaginary parts of the roots zj can be used to define the
transition between the two dynamical regimes I and II. For
t0 → 0, the two roots get degenerate for

ε = εcrit ≡ −�(0). (38)

This relation defines the regime I for ε > εcrit and regime II
for ε < εcrit . As we see in Fig. 3(e), the root z2 has the property
Re z2 < 0. In the regime II we have Re z2 ≈ 0 which vanishes
exactly for t0 = 0 as we can see from (35). Yet, in regime I
it is always finite. By contrast, the real part of z1 is always
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Re z1 = 0. To clarify the dependence of z1 and z2 on ε, we
also depict the trajectory of these roots in the complex plain
as a function of ε in Fig. 3(d).

C. Effective Hamiltonian

We are interested in the dynamics of observables which
can be expressed by the operators d, c0,L, and c0,R , such as
the dot occupation or the Josephson current. As we have
assumed a zero-temperature limit at time t = 0, the only
relevant operators in Eqs. (15) and (16) at t = 0 are even
these operators. For this reason, we can effectively restrict the
BEC dynamics to a three-mode system.

For a notational reason we define

vt ≡
⎛
⎝ d(t)

c0,L(t)
c0,R(t)

⎞
⎠. (39)

As we show at the end of this section, the dynamics of vt in the
long-time limit is determined by an effective non-Hermitian
Hamiltonian, which fulfills

i
d

dt
vt = Heff vt , (40)

which is formally equivalent to a single-particle Schrödinger
equation. We explicitly note that the effective Hamiltonian
operates as a superoperator on vt . Thereby, the effective
Hamiltonian Heff reads

Heff = SDS−1, (41)

where D = diag[iz1,iz2,iz3] is a diagonal matrix containing
the roots of F̃(z) in Eq. (30). The columns of the matrix S are
given by Sj = wj with

wj = 1√
ζj

(
− 1,

t0,L

(ω0,L − izj )
,

t0,R

(ω0,R − izj )

)T

, (42)

where ζj accounts for the normalization. We note that the
wj are in general not orthogonal to each other. Additionally,
the roots zj can be complex valued so that the effective
Hamiltonian is non-Hermitian.

We note that effective non-Hermitian Hamiltonians can give
rise to interesting effects not present in Hermitian systems. A
particular appealing effect is a non-Hermitian degeneracy, at
which two eigenvalues and their corresponding eigenstates
merge which is denoted as an exceptional point [22–25]. Usu-
ally, the construction of non-Hermitian Hamiltonians includes
phenomenological assumptions. The effective Schrödinger
equation (40) can be derived microscopically, as we show
below. This can be used to study the fate of exceptional
points under more realistic conditions. In particular, here
the eigenvalues are not determined by the roots of the
characteristic polynomial of the Hamiltonian, but by the roots
of F̃(z) = 0, which exhibits a nonlinearity due to C̃α(z). This
might give rise to a qualitatively different behavior of the
system at or close to possible exceptional points.

In the remainder of this section we show how to explicitly
derive Heff and that it generates indeed the correct dynamics
in the long-time limit. The derivation works as follows.
Considering the time evolution of the operators derived by
the equation of motions method, cf. Eq. (28), the effective

Hamiltonian is constructed such that it exactly resembles the
dynamics in the long-time limit. After neglecting the branch-
cut integral in the inverse Laplace transformation Eq. (28)
of Eq. (15) or (16), the time evolution can be evaluated by
calculating the corresponding residue at the roots of F̃(z). In
doing so, the time evolution of the operators reads

vt =
∑

zj ∈DF

ezj tQ(zj )v0, (43)

where we define DF = {z | F̃(z) = 0} which is the set of all
three roots of F̃(z) = 0. Here, Q(zj ) denotes a 3 × 3 matrix
and reads

Q(zj ) = Rzj

×

⎛
⎜⎜⎝

1 −t0,L

(ω0,L−izj )
−t0,R

(ω0,R−izj )
−t0,L

(ω0,L−izj )
t2
0,L

(ω0,L−izj )2
t0,R t0,L

(ω0,R−izj )(ω0,L−izj )
−t0,R

(ω0,R−izj )
t0,R t0,L

(ω0,R−izj )(ω0,L−izj )
t2
0,R

(ω0,R−izj )2

⎞
⎟⎟⎠

(44)

with

Rzj
= Resz=zj

1

F̃(z)
. (45)

We remark that the only important poles zi in Eqs. (15)
and (16) are the ones given by F̃(z) = 0. The other poles
appearing in (15) and (16) such as z = −iω0,α are not
relevant. More precisely, the factors (z + iω0,α) appearing in
the nominators can be combined with F̃(z), which cancels
the nominators in the third term of (20). This combination
therefore reveals that the first-order pole at z = −iω0,α is not
an actual pole in the second term of (15) and in the second and
third term of (16). Finally, the pole of the first term in (16) at
z = −iω0,α is annihilated by the term with (z + iω0,α)2 in the
nominator of the third term in (16) during the inverse Laplace
transformation.

The matrix Q(zj ) is Hermitian for purely imaginary zj as
in the case for Cα(z) → 0 (tk>0,α → 0). Interestingly, it fulfills
a projectorlike relation

Q(zj )Q(zj ) = Q(zj )ζzj
Rzj

. (46)

This relation even holds for complex-valued zj . Consequently,
two eigenvalues of Q(zj ) are zero. The nonvanishing eigen-
value is ζzj

Rzj
. For γα = 0 we have a bare three-mode system

without coupling to the excited modes. For this reason, the
eigenvalue is necessarily ζzj

Rzj
= 1, so that the time evolution

is unitary. Due to the coupling to the excited reservoir modes
for γα > 0, it is possible that ζzj

Rzj
	= 1. This eigenvalue thus

contains information about the transient dynamics.
The normalized eigenstates corresponding to Rzj

ζzj
are the

wj given in Eq. (42). Consequently, the matrix Q(zj ) can be
written as

Q(zj ) = ζzj
Rzj

wj · wT
j . (47)

Inserting this into Eq. (43) and using wj as an eigenstate of
Heff due to Eq. (41), we can verify that Eq. (43) fulfills the
Schrödinger equation (40).
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D. Relation of observables and roots

The properties of the roots are reflected in the oscillations of
the observables. For example, the Josephson current for long
times reads

IR,J (t) = 2 Re
∑
j,j ′

e(z∗
j +zj ′ )t Ĩ C

R,J (zj ,zj ′ ), (48)

where the constants IC
R,J (zj ,zj ′ ) are a function of the roots

and depend on the initial condition. Their explicit expressions
can be found in Eq. (E2). The time evolution of other
observables such as the ground-state occupation of the right
reservoir N0,R(t) read similarly. We see that the oscillations
are determined by the exponential factor e(z∗

j +zj ′ )t . We find
that IC

R,J (zj ,zj ) = 0. For the symmetric system ω0,α = 0 and
t0,α = t0, IC

R,J (zj ,zj ′ ) is rather small if both zj ,zj ′ 	= z3 = 0.
So the most important terms are the ones where one root is
z1 or z2 and the other is z3 = 0. Thus the dynamics is mainly
determined by the roots z1 and z2. Thereby, the imaginary
parts are responsible for the oscillation frequencies, while the
real parts determine the damping. The oscillatory behavior of
other observables such as the ground-state occupation of the
right reservoir N0,R(t) or the dot occupation Nd (t) is similarly
determined by the roots z1 and z2.

As a consequence of the finite real part of z2 in regime I,
the fast oscillations in the observables caused by the imaginary
part of z2 are strongly damped as can be seen in Fig. 2(a)
for ε = 0.04ωc. The oscillations of IR,J with a long period
are caused by z1, as it has a small imaginary part. They are
undamped as Re z1 = 0.

In regime II, the imaginary part of z1 is large. For this
reason we observe fast oscillations which are undamped. The
imaginary part of z2 is small so that it causes oscillations with
a long period. However, there is a very small damping due to
the very small real part of z2. This can be seen best in N0,R(t)
in Fig. 2(b) for ε = 0.

Due to the damping describing the particle loss in the
condensate, the excited reservoir modes get occupied. As
Re z2 is quite large in regime I, this condensate depletion is
completed after a rather short time as can be seen in Fig. 2(b)
for ε = 0.02ωc. By contrast, due to a small Re z2 in regime
II, the damping continues even for long times, so the fraction
of the particles in the excited modes keeps growing as can be
observed in Fig. 2(b) for ε = 0 and ε = −0.02ωc. We recall
that the particles which have been initially in the dark mode
Eq. (32) are not subjected to depletion.

As the roots are a smooth function of the gate potential ε for
finite t0, cf. Eq. (36) and Fig. 3(e), and as the time dependence
of the observables is closely related to the roots, the crossover
in the time evolution of the observables from regime I to regime
II is also smooth. Only in the limit t0 → 0 the crossover in the
dynamics gets nonanalytic, which we used to define εcrit in
Sec. IV B.

E. Low-frequency current

As we can observe in Fig. 2(b), the fast oscillations in the
current in panel (a) in regime II are averaged in time and
induce only small variations in the particle number N0,R(t).
For this reason, we investigate the time-averaged dynamics

in the following. Here we return to the symmetric system,
meaning that ωk,L → ωk,R = 0 and t0,L = t0,R ≡ t0.

The Josephson current for long times can be expanded in
terms of its frequency contributions; cf. Eq. (48). We define
the low-frequency current by keeping only the contribution
with the smallest frequency. Formally, this corresponds to a
moving time averaged with a time window τ around a time t .
The duration τ has to be chosen so that 2π/τ is smaller than all
frequencies except one. As we see in Fig. 2(a) for ε = 0 and
ε = −0.02ωc, this is possible as the oscillation frequencies
differ considerably away from the transition at ε = εcrit .

In the limit of small t0, the low-frequency Josephson current
approximately reads

IR,J (t) ≈ 1
2 Im[
J e−i
J t ](nR − nL)

+ Re[
J e−i
J t ] sin �φ
√

nLnR, (49)

where


J =
{
iz1, ε > εcrit ,

iz2, ε < εcrit
(50)

denotes the characteristic frequency. Thus the low-frequency
current is determined by the root zj that has the smaller
imaginary part; cf. Fig. 3(e). Details of the derivation can
be found in Appendix E. For ε ≈ εcrit , Eq. (49) fails as there
is no clear separation of oscillation frequencies because Im z1

and Im z2 are in the same order of magnitude; cf. Fig. 3(e). For
comparison, we have included the analytic expression (49)
in Fig. 2(a). We observe that it indeed resembles the time-
averaged current away from εcrit .

Relation (49) is strongly reminiscent of Eq. (5). In contrast,
here the characteristic frequency 
J is complex valued in
regime II due to the depletion. In regime I, 
J is purely real-
valued so that Eq. (49) exactly resembles Eq. (5).

As we can see in Eq. (49), the characteristic frequency

j determines the dynamics of the current. We observe in
Fig. 4 that the imaginary part of 
J is considerably smaller
than the real part. Thus the Josephson current is essentially
proportional to the latter. For this reason, by analyzing Re 
j

-0.2 -0.1 0 0.1 0.2
-0.001

-0.0005

0

0.0005

0.001

FIG. 4. Characteristic frequency 
J appearing in the low-
frequency Josephson current Eq. (49). The parameters are the same
as in Fig. 2. In the immediate vicinity of εcrit , the expression (49) is
not valid as the oscillation frequencies of the Josephson current are
of the same order.
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we gain quantitative information about the Josephson current.
Expanding Re 
J using Eq. (36) for small t0/(ε + �(0)) we
get

Re 
J ≈ − 2t2
0

ε + �(0)
. (51)

As we see from this relation and from Fig. 4, Re 
J depends
sensitively on the gate potential ε. By tuning it close or far
from the transition εcrit we have thus a large or small Josephson
current. This thus provides the possibility to control the current
via the gate potential. This property enables one to use this
system as a transistor. Moreover, one can additionally control
the direction of the current. It depends on the sign of Re 
J

and consequently on the sign of ε − εcrit as can be also seen
in Fig. 4.

It is worth mentioning that a finite imaginary part of

J induces an additional phase shift to IR,J (t). For the
chosen parameters in Fig. 4, this is rather small as the
ratio of imaginary and real part of 
J is of the order of
10−2. Motivated by Eq. (4), we also investigate the relation
between the correlation function CRL(t) = 〈c†0,Rc0,L〉

t
and

the Josephson current. This somehow technical analysis is
included in Appendix F.

We also find an approximate expression describing the main
contribution of the time-averaged dot occupation Nd (t). We
find that the main contribution for long times is given by

Nd (t) ≈ |
J |2
4t2

0

e2t Im 
j [nR + nL + 2 cos �φ
√

nLnR]. (52)

This expression also agrees with the exact calculation depicted
in Fig. 1(d) in regime I and resembles a main contribution of
the moving time average in regime II. Interestingly, in regime II
the time-averaged dot occupation Eq. (52) vanishes for t → ∞
as a result of the finite real part of z2. However, there are
additional contributions to Nd (t) so that the dot occupation
does not fully vanish.

V. CONCLUSIONS

The methods which we presented in this article provide an
efficient and accurate tool to determine numerically and ana-
lytically the coherent dynamics of Bose-Einstein condensates
in the Fano-Anderson model. We showed that the Josephson
current sensitively depends on the gate potential like in a
transistor. In particular, we predict a crossover from a regime
with a constant dot occupation to a regime with an oscillating
one. This transition is also visible in the Josephson current
between the reservoirs. The regimes appear as the energy of
the reservoir modes is bounded at ω = 0. As a consequence
the energy of the eigenstates generating the dynamics can
be complex valued, which causes a qualitatively different
damping depending on the regime. Furthermore, we provide
analytical expressions for observables.

Additionally, we demonstrated how to derive an effective
non-Hermitian Hamiltonian that exactly describes the time
evolution in the long-time limit. Its complex eigenvalues as
a function of the gate potential become nearly degenerate at
a critical value ε = εc. This is analogous to the branching

behavior in exceptional points and explains the transition
between the two regimes of the time evolution in our system.

An important point to address in the future is how
interactions between the particles influence the dynamics.
The interactions could be introduced as in Refs. [34,35],
which investigate the equilibrium properties of a bosonic
single-impurity Anderson model. Such kind of investigations
could reveal the stability of the Josephson current in the
presence of interactions.
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APPENDIX A: DETAILS OF THE FINITE-SIZE
SIMULATION

In the CL, the tunneling elements tk,α and the reservoir
frequencies ωk,α are described simultaneously by the tunnel
rates �α(ω). For the finite-size simulation we have to separate
them again to define the tunneling elements tk,α . To this end,
we split the tunnel rates into

�α(ω) = �α(ω)να(ω), (A1)

where να(ω) ≡ ρα,0ρ(ω) denotes the density of states in the
reservoir and �α(ω) = λα,0λ(ω) describes the coupling of the
dot and the reservoir modes. In the CL, the density of states
diverges, which we achieve formally by ρα,0 → ∞, while ρ(ω)
stays constant. Meanwhile, λα,0 → 0 so that we obtain a finite
γα = ρα,0λα,0. In the following, we choose λ(ω) = (ω/ωc)η,
ν(ω) = e−ω/ωc , and ρα,0 = kmax/ωc.

The frequencies of the reservoir modes are taken as
ωk,α = −ωc log kmax−k

kmax
. In doing so, we make sure that the

reconstructed density of states νr,α(ω) = ∑kmax

k=0 δ(ω − ωk,α)
fulfills ∫ ωk,α

0
νr,α(ω)dω =

∫ ωk,α

0
να(ω)dω. (A2)

The tunnel elements tk,α are given by

t2
k,α = �α(ωk,α), (A3)

for k > 0. The coupling t0,α is chosen such that

t2
0,α ≡ t2

0 ≡ �α

(
1

ρ0

)
, (A4)

as �α(ω0α = 0) = 0 for η > 0. In doing so, we make sure that
the ground state is coupled in the same manner as the excited
states close to it. Consequently, for an increasing density of
states ρα,0, the coupling between dot and reservoir ground
states decreases.

Finally, we provide an estimation for the cutoff frequency
ωc which we use for scaling. The cutoff frequency provides an
estimate for the energy on which the tunnel rate changes from
rather high values to smaller ones. In cold-atom experiments,
this is related to the form of the confining optical potential of
the traps of the reservoirs. In cold-atom experiments, the form
of the optical potential can be adjusted with high accuracy,
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which determines the tunnel elements tk,α and the density of
states in the reservoirs, and thus the tunnel rate. Thereby, the
trap depth provides a boundary, at which the tunnel rate is
subjected to a drastic change. For this reason, we take the
trap depth as an estimate for the order of magnitude of ωc.
According to, e.g., Ref. [33] a proper value is ωc = 5 kHz.

APPENDIX B: ROTATION OF THE BRANCH CUT

Here we show that the modified function C̃α(z) in Eq. (29)
is analytic on the negative imaginary axis. For a nota-
tional reason we define R = {z ∈ C|Re z = 0 ∧ Im z < 0},
which is the negative imaginary axis, and G =
C \ {z ∈ C|Re z < 0 ∧ Im z = 0} which is the domain of C̃α .
We assume that Cα(z) is analytic in the regions A1 and A2

defined by

A1 = {z ∈ G|Re z < 0 ∧ Im z < 0}, (B1)

A2 = G \ (A1 ∪ R). (B2)

Furthermore, we assume that the analytic continuation of

�α(iz) ≡ lim
δ→0

[Cα(z + δ) − Cα(z − δ)], (B3)

with Re δ > 0 is analytic for z ∈ A1 ∪ R. Consequently, C̃α(z)
as defined in (29) is analytic on A1 as it is a sum of analytic
functions. Additionally, we assume that for all derivatives

C(n)
α (z) ≡ dn

dzn
C(n)

α (z), (B4)

with n ∈ N the limit

f
(n)
j (z) = lim

δ→0
C(n)

α (z + (−1)j δ), (B5)

where j = 1,2 exists for all z ∈ R. Under these requirements,
we can now show that C̃α(z) is indeed analytic for z ∈ R.

To this end, we show that all derivatives C̃(n)
α (z) are

continuous for z ∈ R. Therefore, we consider for z = iω ∈ R

the limit

lim
δ→0

C̃(n)
α (−iω − δ)

= lim
δ→0

[
C(n)

α (−iω − δ) + �(n)
α (ω − iδ)

]

= f
(n)
1 (−iω) + �(n)

α (ω), (B6)

where we have used that �α(iz) is analytic for z ∈ R. We
continue to calculate

�(n)
α (ω) ≡ dn

dzn
�(n)

α (iz) |z=−iω

= dn

d(−iω)n
lim
δ→0

[Cα(−iω + δ) − Cα(−iω − δ)]

= lim
δ→0

[
C(n)

α (−iω + δ) − C(n)
α (−iω − δ)

]

= f
(n)
2 (−iω) − f

(n)
1 (−iω). (B7)

Inserting this into Eq. (B6) we find

lim
δ→0

C̃(n)
α (−iω − δ) = f

(n)
2 (−iω)

= lim
δ→0

C̃(n)
α (−iω + δ), (B8)

which proves that C̃α(z) is analytic on the negative real axis
and consequently also analytic on G.

APPENDIX C: ESTIMATION OF THE
BRANCH-CUT INTEGRAL

Here we derive an estimate for the branch-cut integral
corresponding to the term with k,k′ = 0 in the second line
of Eq. (16). The branch-cut integral Ibc reads

Ibc = c0,α′

2πi

∫ 0

−∞

t0,αt0,α′ext

(x + iω0,α)(x + iω0,α′ )

×
[

1

F̃(x + i0+)
− 1

F̃(x − i0+)

]
dx, (C1)

where

F̃(x ± i0+) = x + iε +
∑

α

t2
0,α

x + iω0,α

+ C̃α(x ± i0+).

(C2)

As t → ∞, the integrand vanishes everywhere in the
long-time limit except at x = 0. Therefore, we investigate the
integrand close to that point in the following.

From Eq. (29) we see that

C+(x) ≡
∑

α

C̃α(x + i0+) =
∑

α

C̃α(x − i0+) − �α(ix).

(C3)
Inserting this into (C1), we find

Ibc =c0,α′

2πi

∫ 0

−∞

t0,αt0,α′
∑

α �α(ix)

(x + iω0,α)(x + iω0,α′ )

× ext

F̃(x + i0+)F̃(x − i0+)
dx. (C4)

To find the leading contribution of Ibc, we have to
approximate the terms

(x + iω0,α′ )F̃(x ± i0+) (C5)

appearing in the nominator.
To this end, we expand Eq. (22) for z ≈ 0. First we expand

the incomplete � function

�̃(−η,z) = �̃(−η) + z−η

η
+ z−ηO(z). (C6)

Inserting this into Eq. (22) we obtain

C+(z) = − i

∑
α γα

π
(−iz/ωc)η�̃(1 + η) · �̃(−η)

− i

∑
α γα

π
�(η) − i

∑
α γα

π
�̃(1 + η)O(z). (C7)

For η > 0, the second term dominates, which can be
identified in this case with the Lamb shift in Eq. (37). For
η < 0 the function C+(z) diverges at z = 0 due to the first
term.

1. Case: ω0,α = ω0,α′ = 0

In this case, we find for small x

xF̃ (x ± i0+) ≈
∑

α=L,R

t2
0,α = 2t2

0 , (C8)
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as we have η > −1. Here and in the following we assume
symmetric tunneling elements t0,L = t0,R ≡ t0 for simplicity.
We recall that for η < −1 the integral (19) diverges for z = 0.
Inserting this into (C4) and using that �α(ω) ≈ γα(ω/ωc)η, we
obtain

Ibc ≈ c0,α′

2πi

∫ 0

−∞

∑
α γα

4t2
0

(−ix

ωc

)η

extdx. (C9)

This integral can be analytically solved. In doing so, we get

Ibc ≈ c0,α′

2πi

∑
α γα

4t2
0

(−i

ωc

)η

�̃(η + 1)
1

tη+1
, (C10)

which is expression (31).

2. Case: ω0,α′ �= ω0,α = 0

In this case, we find

(x + iω0,α′ )F̃(x ± i0+) ≈ t2
0 iω0,α′

x
, (C11)

xF̃ (x ± i0+) ≈ t2
0 , (C12)

where we have again used that η > −1. Inserting this into (C4)
we get

Ibc ≈ c0,α′

2πi

∫ 0

−∞

∑
α γα

t2
0 ω0,α′

(−ix

ωc

)η

(−ix)extdx

= c0,α′

2πi

−i
∑

α γα

t2
0 ω0,α′

(−i

ωc

)η

�̃(η + 2)
1

tη+2
. (C13)

3. Case: ω0,α′ �= 0 and ω0,α �= 0

Here we find

(x + iω0,α′ )F̃(x ± i0+) ≈
{
K, η > 0,

K ′xη, η < 0,
(C14)

where K,K ′ are constants and depend on the system parame-
ters. Inserting this into (C4) we get

Ibc ≈ c0,α′

2πi

∑
α γα

K

(−i

ωc

)η

�̃(η + 1)
1

tη+1
(C15)

for η > 0 and

Ibc ≈ c0,α′

2πi

∑
α γα

K ′

(−i

ωc

)η

�̃(|η| + 1)
1

t |η|+1
(C16)

for η < 0.
In a similar way, one can show that all other branch-cut

integrals in Eq. (15) and Eq. (16) vanish even faster as a
function of t .

APPENDIX D: DERIVATION OF THE ROOTS

In the following we derive the approximate expression for
the location of the roots of F̃(z) in Eq. (35). The procedure
is performed in two steps. In the first one, we determine the
leading order of the imaginary parts which can be used to
determine subsequently in the second step the leading order of
the real part.

The root which is located at z = 0 for t0,α ≡ t0 = 0 and
ω0,R = ω0,L = 0 is only slightly shifted for a small but finite

t0. For this reason, we evaluate C̃α(z) at z = 0. Assuming
additionally η > 0, we thus obtain from

0 = F̃(z) = z + iε + 2t2
0α

z
+

∑
α=L,R

C̃α(z) (D1)

the quadratic equation

(z + iε)z + 2t2
0 + zi�(0) = 0, (D2)

with �(0) defined by (33). Note that �(0) = 0 for η > 0. This
equation has the roots

z0
1,2 = −i

1

2

(
ε + �(0) ±

√
(ε + �(0))2 + 8t2

0

)
. (D3)

We remark that by setting �(0) = 0 we obtain the energies
of the three-mode system without coupling to the excited
reservoir modes. We emphasize that the z

(0)
j are purely

imaginary and thus the leading order of the imaginary part
of zj .

To determine the leading order of the real parts, we have
to determine the next order z

(1)
j of the roots. To this end, we

define ∑
α=L,R

C̃α(z) ≡ i�(0) + C̃r (z). (D4)

Inserting zj = z
(0)
j + z

(1)
j into F̃(z) = 0 we get

(
z

(0)
j + z

(1)
j + iε

)(
z

(0)
j + z

(1)
j

) + 2t
(2)
0 + (

z
(0)
j + z

(1)
j

)
×[

i�(0) + C̃r

(
z

(0)
j + z

(1)
j

)] = 0, (D5)

which is an exact relation. As before we approximate the
argument of C̃r (z0

j + z1
j ) → C̃r (z0

j ), which is assumed to be

small. Furthermore, we omit the terms (z1
j )

2
and C̃r (z0

j )z1
j and

arrive at a linear equation with the solution

z1
j = z0

j C̃r (z0
j )

2z0
j + [iε + �(0)]

. (D6)

We are interested in its real part as we have already
identified the leading order of the imaginary part z

(0)
j . Using

thus Eq. (33), we finally obtain Eq. (35).

APPENDIX E: DERIVATION OF THE
TIME-AVERAGED CURRENT

The exact expression for the current reads

IR,J (t) = −2 Re it0,R〈v†t,3vt,1〉0

= 2 Re
∑
j,j ′

e(z∗
j +zj ′ )t Ĩ C

R,J (zj ,zj ′), (E1)

Ĩ C
R,J (zj ,zj ′) ≡ −it0,R

∑
l,l′

Q∗
3,l(zj )Q1,l′ (zj ′)〈v†0,lv0,l′ 〉0, (E2)

where vt,j is defined in Eq. (39). We recall that one root z3

of F̃(z) converges for the symmetric system ω0,R → ω0,L = 0
to z3 = 0. The oscillations are generated by the exponential
factor e(z∗

j +zj ′ )t . We found that Ĩ C
R,J (zj ,zj ) = 0. The largest

period is given by the imaginary part of z∗
3 + z1 in regime

I and by the imaginary part of z∗
3 + z2 in regime II as can
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be seen in Fig. 3(e). The other root differences are orders
of magnitude larger, away from the transition at ε = εcrit .
For a notational reason we thus introduce in Eq. (50) the
characteristic frequency 
J .

We define the time-averaged current IR,J (t) by neglecting
all other frequency contributions in Eqs. (E1). In doing so, the
low-frequency current in both regimes reads

IR,J (t)

= −2 Re it0e
−i
J t

∑
l,l′

Q∗
3,l(0)Q1,l′(−i
J )〈v†0,lv0,l′ 〉0.

(E3)

To show this, one also has to take into account that

Q(z3 → 0) =
⎛
⎝0 0 0

0 1
2 − 1

2
0 − 1

2
1
2

⎞
⎠. (E4)

The matrix elements of Q1,2(−i
J ) = Q1,3(−i
J ) de-
fined in Eq. (44) can be approximated by

Q1,2(−i
J ) = − t0


J

R−i
J
= t0


J

1
d
dz
F̃(z)

∣∣
z=−i
J

= − t0


J

1

1 + 2t2
0


2
J

+ d
dz

∑
α C̃α(z)

∣∣
z=−i
J

≈ −
J

2t0
. (E5)

The approximation is justified as 
J is small so that 2t2
0 /
2

J is
large compared to the other terms in the nominator. Inserting
this into (E3) and using Eqs. (24), we finally obtain Eq. (49).
In a similar manner, we also derive the time-averaged dot
occupation in Eq. (52).

APPENDIX F: JOSEPHSON CURRENT AND
CORRELATION FUNCTION

In the following, we establish a relation between the
Josephson current IR,J (t) and the correlation function

CRL(t) ≡ 〈c†0,Rc0,L〉t ,
in order to generalize Eq. (4). However, the relation cannot be
expressed in a simple way in the time domain as in (4), but has
to be done in Fourier space.

Motivated by the theoretical description of electronic
systems, we define the complex current operator

IC
α,J = −it0,αc†0,αd. (F1)

The physical current IR,J is given by IR,J (t) = 2 Re 〈IC
α,J 〉

t
.

Using (E1), we find that the complex current reads

IC
R,J (t) = −it0,R〈v†t,3vt,1〉0

=
∑
j,j ′

e(z∗
j +zj ′ )t Ĩ C

R,J (zj ,zj ′ ). (F2)

The constants Ĩ C
R,J (zj ,zj ′) are the Fourier components and are

given in Eq. (E2). To link the current Fourier components to
the correlation function CRL(t), we express it using its Fourier
components

CRL(t) = 〈v†t,3vt,2〉0

=
∑
j,j ′

e(z∗
j +zj ′ )t C̃RL(zj ,zj ′ ), (F3)

C̃RL(zj ,zj ′ ) ≡
∑
l,l′

Q∗
3,l(zj )Q2,l′ (zj ′)〈v†0,lv0,l′ 〉0. (F4)

Now we recognize that

Q1,l′(zj ′) = − 1

t0,L

(ω0,L − izj ′ )Q2,l′(zj ′), (F5)

which is obvious from Eq. (44). Inserting this relation in
Eq. (E2), we finally obtain

Ĩ C
R,J (zj ,zj ′) = κj ′ C̃RL(zj ,zj ′ ), (F6)

κj ′ = i
t0,R

t0,L

(ω0,L − izj ′ ). (F7)

This constitutes an exact relation between the current
and the correlation function in Fourier space and therefore
generalizes Eq. (4). While the Ĩ C

R,J and C̃RL depend on the
initial state, the proportional factor κj depends only on
the system parameters. Consequently, the factors κj charac-
terize the current through the transistor as a response to the
correlation function. Expressing the current as a function of
time, we finally obtain

IR,J (t) = 2 Re
∑
j,j ′

e(z∗
j +zj ′ )t κj ′ C̃RL(zj ,zj ′ ). (F8)
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