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Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems
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In this work, we describe a method to realize a three-dimensional Weyl semimetal by coupling multilayers
of a honeycomb optical lattice in the presence of a pair of Raman lasers. The Raman lasers render each
isolated honeycomb layer a Chern insulator. With finite interlayer coupling, the bulk gap of the system closes at
certain out-of-plane momenta due to Raman assisted tunneling and results in the Weyl semimetal phase. Using
experimentally relevant parameters, we show that both one pair and two pairs of Weyl points can be realized by
tuning the interlayer coupling strength. We suggest that Landau-Zener tunneling can be used to detect Weyl points
and show that the transition probability increases dramatically when the Weyl point emerges. The realization of
chiral anomaly by using a magnetic-field gradient is also discussed.
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I. INTRODUCTION

The search for topological phases that are fully gapped in
the bulk and possess topologically protected gapless surface
states has been an important subject in physics. Several new
topological phases, such as two-dimensional (2D) and three-
dimensional (3D) topological insulators [1,2] and quantum
anomalous Hall insulators [3], have been realized experimen-
tally in condensed-matter systems. The gapless surface states
in these systems are protected by certain symmetries and the
bulk gap [1,2]. Nevertheless, the surface states can be removed
once the bulk gap in the system is closed.

Interestingly, it is well known that Weyl semimetals
[4–8], which contain nodal points, the Weyl points, in the
energy spectrum also support topologically protected gapless
Fermi arcs on the surface. A pair of Weyl points in a
Weyl semimetal can be regarded as a pair of topological
defects in 3D momentum space with opposite chirality and
possesses a linear energy spectrum near the Weyl points. The
Fermi arcs, which connect the Weyl points in the surface
Brillouin zone, cannot be removed unless the Weyl points
are merged together by strong perturbations [4,5]. Due to
the presence of the Weyl points in the bulk and the gapless
Fermi arcs on the surface, Weyl semimetals are expected to
exhibit interesting novel phenomena which are absent in fully
gapped topological phases such as the chiral anomaly [9,10]
and unconventional quantum oscillations [11]. Recently the
experimental realization of the Weyl semimetal phase has been
widely studied in real materials [12,13].

On the other hand, great advancement has been made in
realizing topological phases with cold atoms in optical lattices.
Using Raman laser coupling [14–20] and an optical shaking
lattice [21–23], Chern insulators have been successfully
realized experimentally [24,25] using both schemes. Methods
for realizing 3D topological insulators in optical lattices have
also been proposed [26,27]. In this work, we outline a practical
scheme to realize and detect the Weyl semimetal phase in
optical lattices.

*phlaw@ust.hk

We base our proposal on the already realized honeycomb
optical lattice [28,29] and show that by introducing nontrivial
hopping between the neighboring honeycomb lattice layers it is
possible to generate either one pair or two pairs of Weyl points
in the system. What is important in our condition is that the
momentum transfer �p from Raman beams possesses nonzero
components both along and perpendicular to the honeycomb
lattice planes. Within each individual lattice layer, in-plane
momentum transfer generates nontrivial Peierls phases and can
drive each layer into a 2D Chern insulator phase. Importantly,
when individual layers are coupled with nontrivial phases
generated by the Raman beams, the Chern insulators can
become trivial for certain out-of-plane momentum kz. Since
the bulk gap has to be closed for topological phase transitions
from the topologically nontrivial Chern insulators to trivial
insulators as a function of out-of-plane momenta kz, there are
Weyl points in the momentum space separating the trivial and
nontrivial regimes. The number of Weyl points, corresponding
to the number of the band-gap closing points as a function of
kz, is tunable by changing, for example, the Raman detuning
and the interlayer coupling. We suggest that Landau-Zener
transitions can be used to detect the emergence of the Weyl
points. We also discuss how Landau levels and the chiral
anomaly can be realized by introducing a magnetic field
gradient in the z direction.

II. THE SCHEME

We first consider a multilayer honeycomb optical lattice
generated by laser beams [28,29]:

V = −VX̄ cos2(qx̂ + θ/2) − VX cos2(qx̂) − VY cos2(qŷ)

− 2α
√

VXVY cos(qx̂) cos(qŷ) − VZ̄ cos2(qzẑ), (1)

where VX,VX̄, and VY are intensities of lasers X,X̄, and Y ,
pointing along x̂, − x̂, and ŷ directions, respectively. q is the
wave vector of the lasers. When VX̄ � VY ≥ VZ , a honeycomb
lattice is created with two lattice sites A and B in a unit cell,
as shown in Fig. 1(a). The energy offset � between A and
B sublattices can be tuned through the phase difference θ

between X and X̄ lasers. The standing wave Z̄, with wave
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FIG. 1. (a) AA stack of the multilayer honeycomb optical lattice.
(b) The intralayer optical potential. The bigger dark blue and the
smaller light blue pockets represent the A and B sites, respectively.
(c) The Raman laser assisted resonant tunneling between nearest
neighbors. The recoil momentum carried by photons generates Peierls
phases in the hopping amplitudes. (d) The synthetic magnetic flux �i

of each triangle resulting from the Peierls phases in the xy plane. (e)
The synthetic magnetic flux of each rectangle in the yz plane.

vector qz, stacks the honeycomb optical lattice as seen in
Fig. 1(a), and controls the interlayer coupling strength. The
energy offset � is tuned to be large enough such that the
direct tunneling between neighboring A and B sites is greatly
suppressed in the absence of Raman beams.

A pair of Raman beams with frequency detuning δω ≡
ω1 − ω2 ≈ �/� is added to restore the resonant tunnel-
ing between neighboring intralayer sites, as illustrated in
Fig. 1(c). The momentum transfer �p = k1 − k2 associ-
ated with the resonant tunneling introduces Peierls phases
exp [i�p · (r + r′)/2] between intralayer neighboring sites r
and r′. This introduces synthetic magnetic flux into the optical
lattices [19,30] as depicted in Fig. 1(d). Using Floquet analysis
and a unitary transformation which eliminates the spatial
dependence of the Peierls phases (for details, see Appendix A),
the effective Hamiltonian can be written as

H =
∑
〈i,j〉,l

(
t0
ij b̃

†
i,l ãj,l + taij e

iφij ã
†
i,l ãj,l + tbij e

−iφij b̃
†
i,l b̃j,l

)

+ ε
∑
i,l

(ã†
i,l ãi,l−b̃

†
i,l b̃i,l) +

∑
i,l

(
ta⊥eiφ⊥ ã

†
i,l ãi,l+1

+ tb⊥e−iφ⊥ b̃
†
i,l b̃i,l+1

) + H.c. (2)

Here, i,j labels the position of lattice sites within a layer and l is
the layer index. ãi,l (b̃i,l) annihilates an atom at sublattice A(B)
of site i and layer l. t0

ij , which satisfies t0
i,i−1 = −t0

i,i+1 due to
the Raman fields [31], denotes the intralayer nearest-neighbor
hopping amplitude and taij (tbij ) is the next-nearest-neighbor
hopping amplitude between A(B) sublattice sites. ta⊥ and tb⊥
are the interlayer hopping amplitudes and ε = 1

2 (�δω − �),
originating from the Raman detuning, can be regarded as
the on-site energy difference between the sublattices. The
Peierls phases φij and φ⊥ are associated with intralayer
and interlayer hopping, generated by the in-plane and the
out-of-plane components of �p, respectively. Explicitly, one

finds

φij = 1
2�p · (ri,l − rj,l),φ⊥ = 1

2�p · (ri,l − ri,l+1). (3)

In particular, φij is responsible for making each isolated
layer of honeycomb lattices a Chern insulator, and φ⊥, which
originates from the phase difference between adjacent layers
due to nonzero vertical momentum transferred in the Raman
process, induces unconventional interlayer coupling, which
is the key for generating the Weyl semimetal phase. The
accumulation of Peierls phases along closed paths gives rise
to synthetic magnetic flux patterns as shown in Figs. 1(d)
and 1(e).

III. THE WEYL POINTS

To illustrate the emergence of Weyl points, we first consider
an ideal version of the experimental honeycomb lattice
(brickwall lattice). For simplicity, we set |t0

ij | = t and taij = tbij
(in the following, next-nearest-neighbor hopping t1 is along v1

or v2 while t2 is along v1 − v2). We use the coordinate system
established as shown in Fig. 1(a) for convenience and the
momentum transfer is set to be �p = (px,py,pz). If we further
label the A(B) sublattices as corresponding to a pseudospin σ ,
then the Hamiltonian takes the following form in momentum
space:

H (k) = d0(k)I + d(k) · σ (4)

with

d0(k) = 2t1 cos kxa cos 1
2pxa + 2t1 cos kya cos 1

2pya

+ 2t2 cos(kx + ky)a cos 1
2 (px + py)a

+ 2t⊥ cos kzd cos φ⊥,

dx(k) = t cos 1
2 (kx − ky)a,

dy(k) = −2t sin 1
2 (kx + ky)a + t sin 1

2 (kx − ky)a,

dz(k) = 2t1 sin kxa sin 1
2pxa + 2t1 sin kya sin 1

2pya

+ 2t2 sin(kx + ky)a sin 1
2 (px + py)a

− 2t⊥ sin kzd sin φ⊥ + ε, (5)

where a and d are lattice constants in the xy plane and
along the ẑ axis. A kz-dependent Zeeman term m = ε −
2t⊥ sin kzd sin φ⊥ appears in the effective Zeeman fields along
the ẑ direction. For fixed m, the Chern number

C = 1

4π

∫
dkxdkyd̂(k) · [∂xd̂(k) × ∂xd̂(k)] (6)

can be defined as the topological invariant of the system with
fixed kz and d̂(k) ≡ d(k)/|d(k)|.

The phase diagram of an effective 2D system with �p =
(0,py,0) as a function of fixed m and py is summarized
in Fig. 2(a), where the colored region has a nonzero Chern
number. When the interlayer coupling t⊥ is zero, m = ε with
pya ∈ (0,2π ) ∪ (2π,4π ) makes |dz| > 0 for all kz. As a result,
the system is fully gapped in the bulk.

As the interlayer coupling is increased to a finite value, m as
well as the bulk gap change as a function of kz. From Eq. (5),
it is clear that the Weyl points appear when (kxa,kya) =
(− 2

3π,− 5
3π ) or (kxa,kya) = ( 2

3π,− 1
3π ) and at a value of kz
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FIG. 2. (a) The Chern number C of an isolated layer with
t2 = 3t1 = 0.3t as a function of the Zeeman term m and recoil
momentum �p = (0,py,0). The purple dots denote m(kz = 0) = ε,
while the dashed lines correspond to the range of m for general kz

when interlayer coupling is turned on. (b) The energy difference
between the upper and the lower bands, using parameters from a
realistic optical lattice, is shown. It is evident that two pairs of Weyl
points locate in the plane of ky = kx − π . (c) Energy spectrum in
the ky = kx − π plane with ε = 0 where two pairs of Weyl points
emerge. (d) One pair of Weyl points emerges with ε = 0.2t . In (c) and
(d) we take t1 = 0.1t, t2 = 0.3t, t⊥ = 0.26t , and �p = (0,π/a,π/d)
for calculation.

where dz(kz) = 0 such that |d| = 0. For systems with specific
t⊥ and �p, the ranges of m(kz) as a function of kz, where
kz ranges from −π/d to π/d, are schematically indicated as
vertical dashed lines (i) for ε = 0 and (ii) for ε = 0.2t in
Fig. 2(a). The number of Weyl points is determined by the
number of crossings of the dashed lines and the topological
phase boundary in Fig. 2(a). The crossing is controllable by
tuning the interlayer coupling, the detuning and the momentum
transfer �p in the Raman process, so the Weyl semimetal
phase with either one pair or two pairs of Weyl points becomes
available. The energy spectra for systems which contain one
pair or two pairs of Weyl points are depicted in Figs. 2(c)
and 2(d), respectively. The ranges of the Zeeman terms m as a
function of kz in Figs. 2(c) and 2(d) correspond to the vertical
lines (i) and (ii) in Fig. 2(a), respectively.

In the following, we consider a realistic optical potential
with θ = 2

3π and V[X̄,X,Y ] = [7,0.5,2]ER , where ER ≡ q2/2m

is the recoil energy [28,29]. The hopping parameters of the
optical lattices are calculated from the maximally localized
Wannier function method (see Fig. 8). In realistic band
structures with the Raman laser strength V0 = ER , two pairs of
Weyl points emerge successively when the amplitude of VZ is
increased. Using t⊥ = 0.09ER,�p = (0,2π/a,π/d), and ε =
0, we plot the energy gap between the lower and the upper
bands in Fig. 2(b). Here the energy gap is plotted for the planes
kz = 0, kz = π, ky = kx − π , and ky = −kx + kxi + kyi with
i = 1,2. The four crossing points (kxi,kyi,0) and (kxi,kyi,π )
between the orthogonal planes are the Weyl points. It is evident

that the four band touching points represent the Weyl points. It
is important to note that, using the realistic parameters, there is
a wide range of experimentally accessible parameter space of
ER and Vz in which the Weyl semimetal phase can be realized.

IV. DETECTION OF THE WEYL SEMIMETAL PHASE

Our proposed scheme for realizing the Weyl semimetal
consists of two steps: (1) create isolated 2D Chern insulators
and (2) couple the isolated layers with nontrivial hoppings. To
confirm the emergence of the Weyl phase, we shall first detect
the Chern insulator and then ascertain the closing of the bulk
gap when interlayer tunneling is increased. As we show below,
both can be carried out with Bloch oscillations.

It is important to note that the nonzero Chern number comes
from the integral of Berry curvature over the first Brillouin
zone. Thus one way to reveal the topological order is to
measure the Berry curvature, as was proposed theoretically
in [32,33] and performed experimentally [28,29]. In the Bloch
oscillation induced by a constant force, the atom cloud, in
addition to the group velocity parallel to the force, would
obtain an anomalous velocity that is transverse to the force due
to nonzero Berry curvature [34]. After one full Bloch cycle, this
Berry curvature generated anomalous velocity would slightly
drive the atom cloud transversely. This transverse drift, which
is measurable experimentally, can manifest the topological
order of Chern insulators.

After the confirmation of the 2D Chern insulator phase for
the isolated layers, the interlayer coupling can be gradually
enhanced through modulating the intensity of laser Z̄ to
close the bulk band gap [29]. Such band-gap closing can be
monitored by the fraction of atoms in the excited band after
a cycle of Bloch oscillations, as was done for an isolated 2D
honeycomb lattice [28,35]. Below, we extend this technique
to the Weyl semimetal case and calculate the Landau-Zener
probability.

More specifically, we use the model described by H (k)
in Eq. (4) and consider an external linear potential applied
along the (110) direction where there are two pairs of Weyl
points [see Fig. 3(a)]. The total probability for interband
transition will come from two independent Landau-Zener
events as schematically depicted in Fig. 3(b). Since the
transition probability in each Landau-Zener event increases
exponentially as the gap decreases, the emergence of Weyl
points is accompanied by a dramatic increase in the transferred
fraction when the bulk band gap closes. For noninteracting
fermionic atoms, as was performed in a recent experiment [28],
the Landau-Zener probability must be averaged over the initial
distribution of atoms [35].

Let us denote the energy of the lowest band as E(k)
and the energy difference between the lowest and the first
excited bands close to the band touching point as δ(k).
Then, within local-density approximation, the Landau-Zener
transition probability can be written as

P =
∫
E(k,r)�EF

p(k)d3kd3r∫
E(k,r)�EF

d3kd3r
, (7)

where EF is the Fermi energy and E(k,r) = E(k) + V (r) with
V (r) the external harmonic confining potential. p(k) is the
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FIG. 3. (a) The two planes which contain the Weyl points are
depicted. The color represents the energy difference between the
upper band and lower band and indicates the position of the Weyl
points. Driven in the (110) direction, atoms at the bottom of the lower
band will move along the arrows in the k space and penetrate the
two planes. Atoms in a unit Bloch oscillation encounter two local
band-gap minima and undergo two Landau-Zener tunneling events.
(b) Three typical cases of Landau-Zener transition. The path in the
upper and bottom panel contains Weyl points with different locations,
while that in the middle panel is fully gapped. The dashed arrow
denotes that the Landau-Zener transition probability is small due to
the existence of the energy gap.

Landau-Zener probability for the k state:

p(k) =
∑
i �=j

exp

[
−πδ2

i (k)

4viF

](
1 − exp

[
−πδ2

j (k)

4vjF

])
, (8)

where i(j ) labels the corresponding Landau-Zener events
along the (110) direction and vi(j ) is the velocity close to
Weyl points. F is the strength of the linear potential.

The transition probability as a function of t⊥, for systems
with different EF , is shown in Fig. 4(a). The momentum
transfer due to the Raman field is pya = π and pzd = π

such that the system can be a Weyl semimetal when t⊥ is
larger than some critical values. Initially, atoms with energy
lower than EF are occupied near the 
k = (0,0,±π/2d). For
small t⊥, the system is fully gapped and the Landau-Zener
transition probability is exponentially small. At certain critical
t⊥, Weyl points emerge on the line along the (110) direction.
Due to the gap closing, the interband transition probability
increases dramatically as shown in Fig. 4(a). However, by
further increasing t⊥, the Weyl points move away from the
|kzd| = π/2 plane. As a result, the atoms driven in the (110)
direction will not be able to access the Weyl points and the
transition amplitude decreases. Therefore, there is a peak in
the transition probability as a function of t⊥ and the peak
location indicates the critical value of t⊥ at which the Weyl
points emerge. In other words, the transition peak separates
the fully gapped Chern insulator phase from the nodal Weyl
semimetal phase.

The density plot of the transition probabilities as a function
of t⊥ and py for Fermi energy EF = 0.05t is shown in
Fig. 4(b). The Landau-Zener transition peak locates around
t⊥ =

√
3

2 | sin 1
2pya(t1 − t2)|, which is denoted as the dashed

line in Fig. 4(b). As in Fig. 4(a), the peak separates the Chern
insulator phase from the Weyl semimetal phase. Similar results
can be obtained when realistic parameters are used.
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FIG. 4. (a) Landau-Zener transition probabilities as a function of
t⊥ for different Fermi energies. A transition peak signals the emer-
gence of Weyl points at the critical value of t⊥. The peak separates
the fully gapped Chern insulator phase from the Weyl semimetal
phase. (b) Landau-Zener transition probability as a function of both
t⊥ and p with Fermi energy EF = 0.05t . In calculations, we take
F = 0.01, t1 = 0.1t, t2 = 0.3t, ε = 0, and �p = (0,π/a,π/d).

V. LANDAU LEVELS AND CHIRAL ANOMALY

It is important to note that the Weyl semimetal
phase discussed above can be used to realize the chi-
ral anomaly. Considering a low-energy Weyl Hamiltonian
without any velocity anisotropy for simplicity, in the pres-
ence of an external magnetic field B = (Bx,0,0), we can
choose the Landau gauge A = (0,0,eBy) to obtain HW =
χvF [δkxσx − i∂yσy + (δkz + eBy)σz], where χ = ±1 repre-
sents the chirality of the Weyl point. Along the direction
parallel to the magnetic field, the infinite Landau bands form
gapped spectrum En = �vF sgn (n)

√
2|n|eB/� + δk2

x , with
n = ±1,±2, . . . and also gapless chiral modes E0 = χvF δkx .
The gapless chiral modes induced by the zeroth Landau levels
have opposite group velocity for the states at Weyl points of
opposite chirality. When a constant force (gradient scalar field)
is applied parallel to the magnetic field, states near one Weyl
point can be driven to the other Weyl point of opposite chirality
through the gapless chiral modes. In this case the particle
number is not conserved in a single Weyl point but the total
particle number over the two Weyl points remains a constant.
In the background of the magnetic field and gradient scalar
field, this violation of particle number in a single Weyl point
of specific chirality is referred to as a chiral anomaly [36]. In
the following, we will show that a uniform synthetic magnetic
field can be introduced in our Weyl semimetal phase to form the
chiral Landau bands and further simulate the chiral anomaly.

In our AA stacked honeycomb optical lattice, when a linear
magnetic-field gradient is induced along the z direction and
together with the laser assisted tunneling, an extra phase
� = �p · ri,j,l = iφx + jφy + lφz is added to the z direction
hopping t

a(b)
⊥ [19]. In our choice of Raman lasers, (φx,φy,φz) =

(0, π
2 ,π ), the extra phase � results in a uniform synthetic

magnetic field along the x direction, as it is schematically
shown in Fig. 5(a).

In the presence of this uniform magnetic field along the
x direction, the energy spectrum formed by Landau levels
is generated. The zeroth Landau levels result in gapless chiral
modes along the kx direction at the Weyl points. The chiralities
of the gapless chiral modes are determined by the chiralities
of the Weyl points [11]. The energy levels in the presence of
the synthetic magnetic flux as a function of kx are depicted in
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Fig. 5(b). The in-gap modes represent the energy of the zeroth
Landau levels.

With a constant force applied parallel to the magnetic field
along the x direction, atoms can be adiabatically pumped
from one Weyl point to another Weyl point with opposite
chirality. This is the manifestation of chiral anomaly. The chiral
anomaly induced atom number imbalance between different
Weyl points is expected to cause asymmetric quasimomen-
tum distribution in the time-of-flight measurements [37–39].
Furthermore the recent advancement in cold atom quantum
transport measurement [40–42] can enable the study of chiral
anomaly induced negative magnetoresistance [43] in atomic
systems.

VI. CONCLUSION

In conclusion, we introduced an experimentally feasible
way for realizing Weyl semimetals by applying Raman
lasers to coupled multilayer honeycomb optical lattices. We
suggest that the measurements of Landau-Zener tunneling
probabilities can be used to detect the Weyl semimetal phase,
and the possible exploration of chiral anomaly is discussed.
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FIG. 6. The hopping terms considered in the honeycomb lattice
(brickwall lattice).

Our scheme will lay the foundation for the realization of
even more exotic nodal topological phases such as Weyl
superconductors [44,45] when attractive interactions between
atoms are introduced.

Note added. Recently, we noted that a scheme to realize
the Weyl semimetal phase by stacking 2D Harper systems in
cubic lattices was proposed [46].
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APPENDIX A: TIGHT-BINDING MODEL

Coupled by the Raman field, the periodic drive system
involving the resonant modulation can be described by a
time-independent effective Hamiltonian [30,31]. With hopping
terms indicated in Fig. 6, the Hamiltonian reads

H =
∑
m,n,l

ta1 (a†
m−1,n,lam,n,l + a

†
m,n−1,lam,n,l) + ta2 a

†
m−1,n+1,lam,n,l + t⊥a

†
m,n,l−1am,n,l + tb1 (b†m−1,n,lbm,n,l + b

†
m,n−1,lbm,n,l)

+ tb2 b
†
m−1,n+1,lbm,n,l + t⊥b

†
m,n,l−1bm,n,l +

[
2V0 sin

(
�p · ra

m,n,l − δωt
) − �

2

]
a
†
m,n,lam,n,l

+
[

2V0 sin
(
�p · rb

m,n,l − δωt
) + �

2

]
b
†
m,n,lbm,n,l + t02(a†

m,n,lbm−1,n,l + a
†
m,n,lbm,n−1,l) + t01a

†
m,n,lbm,n,l + +H.c., (A1)

where ra
m,n,l = mv1 + nv2 + ld and rb

m,n,l = mv1 + v2 + ld + Rb − Ra . Considering the gauge transformation

U =
∑
m,n,l

exp

(
1

2
iδωt

)
a
†
m,n,kam,n,k + exp

(
−1

2
iδωt

)
b
†
m,n,kbm,n,k, (A2)
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we have

H ′ = U †HU − i�U † dU

dt
= H0 + H1e

iδωt + H−1e
−iδωt , (A3)

with

H0 =
∑
m,n,l

ta1 (a†
m−1,n,lam,n,l + a

†
m,n−1,lam,n,l) + ta2 a

†
m−1,n+1,lam,n,l + t⊥a

†
m,n,l−1am,n,l + tb1 (b†m−1,n,lbm,n,l + b

†
m,n−1,lbm,n,l)

+ tb2 b
†
m−1,n+1,lbm,n,l + t⊥b

†
m,n,l−1bm,n,l + ε(a†

m,n,lam,n,l − b
†
m,n,lbm,n,l) + H.c., (A4)

H1 =
∑
m,n,l

t01b
†
m,n,lam,n,l + t02(b†m−1,n,kam,n,k + b

†
m,n−1,kam,n,k) + V0e

−i(�p·ra
m,n,l− π

2 )a
†
m,n,lam,n,l + V0e

−i(�p·rb
m,n,l− π

2 )b
†
m,n,lbm,n,l ,

(A5)

and

H−1 =
∑
m,n,l

t01a
†
m,n,lbm,n,l + t02(a†

m−1,n,kbm,n,k + a
†
m,n−1,kbm,n,k) + V0e

i(�p·ra
m,n,l− π

2 )a
†
m,n,lam,n,l + V0e

i(�p·rb
m,n,l− π

2 )b
†
m,n,lbm,n,l .

(A6)

Here we consider the effective Hamiltonian to the first order:

Heff = H0 + 1

�ω
[H1,H−1] + O

(
1

ω2

)
, (A7)

then

H
(0)
eff = H0, (A8)

H
(1)
eff = 1

�ω

∑
m,n,l

(
t2
01 + 2t2

02

)
b
†
m,n,lbm,n,l + t01t02(b†m,n,lbm−1,n,l + b

†
m,n,lbm,n−1,l) + t2

02b
†
m,n,lbm+1,n−1,l − (

t2
01 + 2t2

02

)
a
†
m,n,lam,n,l

− t01t02(a†
m,n,lam−1,n,l + a

†
m,n,lam,n−1,l) − t2

02a
†
m,n,lam+1,n−1,l + 2t02V

m,n
m−1,ne

−i 1
2 �p·(ra

m,n,l+rb
m−1,n,l )a

†
m,n,lbm−1,n,l

+ 2t02V
m,n
m−1,ne

i 1
2 �p·(ra

m,n,l+rb
m−1,n,l )b

†
m−1,n,lam,n,l + 2t02V

m,n
m,n−1e

−i 1
2 �p·(ra

m,n,l+rb
m,n−1,l )a

†
m,n,lbm,n−1,l

+ 2t02V
m,n
m,n−1e

i 1
2 �p·(ra

m,n,l+rb
m,n−1,l )b

†
m,n−1,lam,n,l + 2t01V

m,n
m,n e−i 1

2 �p·(ra
m,n,l+rb

m,n,l )a
†
m,n,lbm,n,l

+ 2t01V
m,n
m,n ei 1

2 �p·(ra
m,n,l+rb

m,n,l)b†m,n,lam,n,l, (A9)

where V
m,n
m′,n′ = V0 sin 1

2�p · (ra
m,n,l − rb

m′,n′,l). It is clear that the Raman lasers will introduce the Peierls phase
exp [i�p · (r + r′)/2]. For the ideal model in the main text, we assume ta1 = tb1 = t1, t

a
2 = tb2 = t2 and ignore the difference

in AA and BB sublattice hopping in the effective Hamiltonian. For �p = (0,py,pz), | sin �p · (ri,l − rj,l)| has the same value
for the nearest-neighbor hopping, so the total Hamiltonian is simplified as

H =
∑
〈i,j〉,l

[
t0
ij e

i 1
2 �p·(ra

i,l+rb
j,l )b

†
i,laj,l + taij a

†
i,laj,l + tbij b

†
i,lbj,l

] + ε
∑
i,l

(a†
i,lai,l − b

†
i,lbi,l) +

∑
i,l

(ta⊥a
†
i,lai,l+1 + tb⊥b

†
i,lbi,l+1) + H.c.

(A10)

The spatial dependence of the Peierls phases is eliminated
through the unitary transformation as follows:

ãi,l = ai,l exp
(
i 1

2�p · ra
i,l

)
,

b̃j,l = bj,l exp
(−i 1

2�p · rb
j,l

)
. (A11)

After the gauge transformation, the new Hamiltonian takes the
form

H =
∑
〈i,j〉,l

(
t0
ij b̃

†
i,l ãj,l + taij e

iφij ã
†
i,l ãj,l + tbij e

−iφij b̃
†
i,l b̃j,l

)

+ ε
∑
i,l

(
ã
†
i,l ãi,l−b̃

†
i,l b̃i,l

) +
∑
i,l

(
ta⊥eiφ⊥ ã

†
i,l ãi,l+1

+ tb⊥e−iφ⊥ b̃
†
i,l b̃i,l+1

) + H.c. (A12)

Further labeling A(B) sublattices as corresponding to a
pseudospin σ , the Hamiltonian is transformed in k space as
follows:

H (k) =
(

h11 h12

h21 h22

)
= d0(k)I + d(k) · σ . (A13)

Weyl points will emerge when the conditions dx(k) = dy(k) =
dz(k) = 0 are satisfied. For the case |t0

ij | = t, dx(k) = dy(k) =
0 occurs when (kxa,kya) = (− 2

3π,− 5
3π ) or (kxa,kya) =

( 2
3π,− 1

3π ). Thus the critical condition for the emergence of
Weyl points can be determined by judging the existence of
real roots for dz(− 5

3π,− 2
3π,kz) = 0 or dz(− 1

3π, 2
3π,kz) = 0

with given ε and φ⊥.Physically the existence of Weyl points
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FIG. 7. The Fermi arc on the (100) surfaces of Weyl semimetals.
(a) Using the parameters corresponding to Fig. 2(c). (b) Using the
parameters corresponding to Fig. 2(d) in the main text.

corresponds to a transition from the topological nontrivial state
to the topological trivial state when atoms move along the kz

direction. The Fermi arc evolution is shown in Fig. 7.

APPENDIX B: WEYL POINTS IN THE REALISTIC
OPTICAL POTENTIAL

The realistic optical lattice potential with V[X̄,X,Y ] =
[7,0.5,2]ER and θ = 2

3π is considered in order to cal-
culate the band structure for an isolated layer and its
corresponding maximally localized Wannier function [47].
The Wannier function W (x,y,z) = w(x,y)w(z) is con-
trolled by the in-plane and out-of-plane optical po-
tential, respectively, and w(x,y) is shown in Fig. 8
with intralayer hopping parameters [t01,t02,t03,t

a
1 ,ta2 ,tb1 ,tb2 ] =

y /
λ

x/λ
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λ
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ka/π

E
/E

R

Wannier function results
Planewave results

~

FIG. 8. The band structure and its corresponding maximally
localized Wannier function for the lattice potential with VX̄,X,Y =
[7,0.5,2]ER and θ = 2

3 π . The hopping terms obtained from the
maximally localized Wannier function make the energy spectrum
agree well with that from plane-wave results. k is along kx = ky .
λ = 2π

q
= √

2a is the wavelength of the in-plane laser.

10−2[−8.29,−1.65,0,0.45,1.86,−0.21,3.22]ER and the on-
site potential � = −1.2ER . In the resonant case � = δω, we
can select the wavelength for the z direction standing wave to
have pzd = π and make V0 = ER . Such an optical potential
can generate Weyl points as is shown in Fig. 2(b).
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J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M.
Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109, 145301
(2012).

013606-7

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevA.85.033640
http://dx.doi.org/10.1103/PhysRevA.85.033640
http://dx.doi.org/10.1103/PhysRevA.85.033640
http://dx.doi.org/10.1103/PhysRevA.85.033640
http://dx.doi.org/10.1038/nphoton.2013.42
http://dx.doi.org/10.1038/nphoton.2013.42
http://dx.doi.org/10.1038/nphoton.2013.42
http://dx.doi.org/10.1038/nphoton.2013.42
http://dx.doi.org/10.1103/PhysRevLett.112.136402
http://dx.doi.org/10.1103/PhysRevLett.112.136402
http://dx.doi.org/10.1103/PhysRevLett.112.136402
http://dx.doi.org/10.1103/PhysRevLett.112.136402
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.87.161107
http://dx.doi.org/10.1103/PhysRevB.87.161107
http://dx.doi.org/10.1103/PhysRevB.87.161107
http://dx.doi.org/10.1103/PhysRevB.87.161107
http://dx.doi.org/10.1038/ncomms6161
http://dx.doi.org/10.1038/ncomms6161
http://dx.doi.org/10.1038/ncomms6161
http://dx.doi.org/10.1038/ncomms6161
http://dx.doi.org/10.1126/science.1256742
http://dx.doi.org/10.1126/science.1256742
http://dx.doi.org/10.1126/science.1256742
http://dx.doi.org/10.1126/science.1256742
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.107.145301
http://dx.doi.org/10.1103/PhysRevLett.112.086401
http://dx.doi.org/10.1103/PhysRevLett.112.086401
http://dx.doi.org/10.1103/PhysRevLett.112.086401
http://dx.doi.org/10.1103/PhysRevLett.112.086401
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.111.225301
http://dx.doi.org/10.1103/PhysRevLett.109.145301
http://dx.doi.org/10.1103/PhysRevLett.109.145301
http://dx.doi.org/10.1103/PhysRevLett.109.145301
http://dx.doi.org/10.1103/PhysRevLett.109.145301


WEN-YU HE, SHIZHONG ZHANG, AND K. T. LAW PHYSICAL REVIEW A 94, 013606 (2016)

[22] W. Zheng and H. Zhai, Phys. Rev. A 89, 061603(R) (2014).
[23] M. D. Reichl and E. J. Mueller, Phys. Rev. A 89, 063628 (2014).
[24] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).
[25] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.

Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Nat. Phys. 11, 162 (2015).

[26] A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein,
and M. A. Martin-Delgado, Phys. Rev. Lett. 105, 190404 (2010).

[27] S.-T. Wang, D.-L. Deng, and L.-M. Duan, Phys. Rev. Lett. 113,
033002 (2014); D.-L. Deng, S.-T. Wang, and L.-M. Duan, Phys.
Rev. A 90, 041601(R) (2014).

[28] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Nature (London) 483, 302 (2012).

[29] T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U.
Bissbort, and T. Esslinger, Phys. Rev. Lett. 111, 185307 (2013).

[30] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003).
[31] N. Goldman, J. Dalibard, M. Aidelsburger, and N. R. Cooper,

Phys. Rev. A 91, 033632 (2015).
[32] H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012).
[33] X.-J. Liu, K. T. Law, T. K. Ng, and P. A. Lee, Phys. Rev. Lett.

111, 120402 (2013).
[34] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[35] L.-K. Lim, J.-N. Fuchs, and G. Montambaux, Phys. Rev. Lett.

108, 175303 (2012).

[36] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
[37] J. Struck, C. Olschlager, M. Weinberg, P. Hauke, J. Simonet, A.

Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012)

[38] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Science 349, 1514 (2015).

[39] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L.
Fallani, Science 349, 1510 (2015).

[40] C.-C. Chien, S. Peotta and M. Di Ventra, Nat. Phys. 11, 998
(2015).

[41] J.-P. Brantut, J. Meineke, D. Stadler, S. Krinner, and T. Esslinger,
Science 337, 1069 (2012).

[42] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T.
Esslinger, Nature (London) 517, 64 (2015).

[43] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H.
Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys.
Rev. X 5, 031023 (2015).

[44] Tobias Meng and Leon Balents, Phys. Rev. B 86, 054504
(2012).

[45] B. Liu, X. Li, L. Yin, and W. V. Liu, Phys. Rev. Lett. 114, 045302
(2015).

[46] T. Dubcek, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljacic, and
H. Buljan, Phys. Rev. Lett. 114, 225301 (2015).

[47] R. Walters, G. Cotugno, T. H. Johnson, S. R. Clark, and D.
Jaksch, Phys. Rev. A 87, 043613 (2013).

013606-8

http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.063628
http://dx.doi.org/10.1103/PhysRevA.89.063628
http://dx.doi.org/10.1103/PhysRevA.89.063628
http://dx.doi.org/10.1103/PhysRevA.89.063628
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1103/PhysRevLett.105.190404
http://dx.doi.org/10.1103/PhysRevLett.105.190404
http://dx.doi.org/10.1103/PhysRevLett.105.190404
http://dx.doi.org/10.1103/PhysRevLett.105.190404
http://dx.doi.org/10.1103/PhysRevLett.113.033002
http://dx.doi.org/10.1103/PhysRevLett.113.033002
http://dx.doi.org/10.1103/PhysRevLett.113.033002
http://dx.doi.org/10.1103/PhysRevLett.113.033002
http://dx.doi.org/10.1103/PhysRevA.90.041601
http://dx.doi.org/10.1103/PhysRevA.90.041601
http://dx.doi.org/10.1103/PhysRevA.90.041601
http://dx.doi.org/10.1103/PhysRevA.90.041601
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1088/1367-2630/5/1/356
http://dx.doi.org/10.1088/1367-2630/5/1/356
http://dx.doi.org/10.1088/1367-2630/5/1/356
http://dx.doi.org/10.1088/1367-2630/5/1/356
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.85.033620
http://dx.doi.org/10.1103/PhysRevA.85.033620
http://dx.doi.org/10.1103/PhysRevA.85.033620
http://dx.doi.org/10.1103/PhysRevA.85.033620
http://dx.doi.org/10.1103/PhysRevLett.111.120402
http://dx.doi.org/10.1103/PhysRevLett.111.120402
http://dx.doi.org/10.1103/PhysRevLett.111.120402
http://dx.doi.org/10.1103/PhysRevLett.111.120402
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/PhysRevLett.108.175303
http://dx.doi.org/10.1103/PhysRevLett.108.175303
http://dx.doi.org/10.1103/PhysRevLett.108.175303
http://dx.doi.org/10.1103/PhysRevLett.108.175303
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1103/PhysRevLett.108.225304
http://dx.doi.org/10.1103/PhysRevLett.108.225304
http://dx.doi.org/10.1103/PhysRevLett.108.225304
http://dx.doi.org/10.1103/PhysRevLett.108.225304
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1126/science.1223175
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1038/nature14049
http://dx.doi.org/10.1103/PhysRevX.5.031023
http://dx.doi.org/10.1103/PhysRevX.5.031023
http://dx.doi.org/10.1103/PhysRevX.5.031023
http://dx.doi.org/10.1103/PhysRevX.5.031023
http://dx.doi.org/10.1103/PhysRevB.86.054504
http://dx.doi.org/10.1103/PhysRevB.86.054504
http://dx.doi.org/10.1103/PhysRevB.86.054504
http://dx.doi.org/10.1103/PhysRevB.86.054504
http://dx.doi.org/10.1103/PhysRevLett.114.045302
http://dx.doi.org/10.1103/PhysRevLett.114.045302
http://dx.doi.org/10.1103/PhysRevLett.114.045302
http://dx.doi.org/10.1103/PhysRevLett.114.045302
http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613



