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Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics,
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A two-component, two-dimensional (2D) dipolar bosonic system in the bilayer geometry is considered. By
performing quantum Monte Carlo simulations in a wide range of layer spacings we analyze in detail the pair
correlation functions, the static response function, and the kinetic and interaction energies. By reducing the layer
spacing we observe a transition from weakly to strongly bound dimer states. The transition is accompanied by
the onset of short-range correlations, suppression of the superfluid response, and rotonization of the excitation
spectrum. A dispersion law and a dynamic structure factor for the in-phase (symmetric) and out-of-phase
(antisymmetric) collective modes during the dimerization is studied in detail with the stochastic reconstruction
method and the method of moments. The antisymmetric mode spectrum is most strongly influenced by suppression
of the inlayer superfluidity (specified by the superfluid fraction γs = ρs/ρ). In a pure superfluid (normal fluid)
phase, only an acoustic [optical (gapped)] mode is recovered. In a partially superfluid phase, both are present
simultaneously, and the dispersion splits into two branches corresponding to a normal and a superfluid component.
The spectral weight of the acoustic mode scales linearly with γs . This weight transfers to the optical branch when
γs is reduced due to formation of dimer states. In summary, we demonstrate how the interlayer dimerization in
dipolar bilayers can be uniquely identified by static and dynamic properties.
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I. INTRODUCTION

A stack of vertically coupled layers with dipolar Bose-
Einstein condensates (BECs) is a remarkable physical system
with interesting static and dynamic properties. The intralayer
and interlayer correlations play here a dominant role and
determine the character of the static response and the screening
properties. The interlayer attractive dipolar interaction in the
bilayer (or multilayer) case results in a variety of interesting
physical phenomena, which include a peculiar behavior of
the scattering cross section and bound states [1–4], interlayer
pairing, and superfluidity [5–7]. Even more intriguing is the be-
havior of the collective modes as they can be directly detected
with experimental probes that couple to the particle density
operators. A variety of experimental techniques existing in
solid-state physics can help to perform such analyses: inelastic
electron-scattering spectroscopy [8–10], frequency-domain
far-infrared or microwave spectroscopy [11], and inelastic
light-scattering spectroscopy [12–14].

From the experimental side the use of layered and quasi-
two-dimensional (quasi-2D) coupled BECs has a number of
key advantages. It has been proposed recently [15–19] that
the use of thin layers is an effective way to control the three-
body losses and significantly reduce the parameter space of
the dynamical instability, the main problem encountered in
experiments with dipolar gases.

Recent experimental achievements with layered ultracold
polar molecules [20] motivates our current studies of quasi-2D
dipolar bosonic bilayers in strongly interacting regime. The
bilayer and multilayered geometries have a great potential for
realization of new exotic phases. One prominent example is the
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formation of vertically aligned chains composed of particles
from different layers. Some preliminary theoretical predictions
on the distribution and the length of chains based on the
thermodynamic considerations has been presented recently
[21]. The next intriguing question is how quantum statistics
will influence properties of the chains in a degenerate regime,
critical temperature of BEC, and superfluid transition. The
dynamical properties are of high interest as well. The spectrum
of collective density excitations will be strongly modified by
the interchain dynamics and intrachain modes, being in strong
dependence with variation of interlayer distance and a strength
of interlayer coupling [21].

Similar to the predictions for a single 2D layer [22–25],
dipolar bilayer and multilayers are expected to undergo a
crystallization transition at high densities [26]. All these
possibilities, existing in multilayers, form an interesting topic
for future analyses.

In our current studies we consider a bilayer geometry as
the simplest case, where all mentioned effects can be analyzed
in detail, without additional complications due to multilayer
effects. It has been predicted theoretically that a dipolar bilayer
undergoes a number of phase transitions with variations of
interlayer spacing. One prominent example is the formation
of a two-particle complex, a dimer [27,28]. It is demonstrated
below that a transition from weakly to strongly bound dimers
significantly modifies all thermodynamic characteristics. The
energetics (and the binding energy) of a single-dimer state
can be analyzed to a large extent analytically [1,2]; however,
similar studies at finite densities and temperatures are more
complicated [21]. In particular, variation of the interlayer
coupling leads to a quantum phase transition from single-
to two-component (pair) superfluidity, as was predicted by
quantum Monte Carlo simulations [29,30]. The ground-state
properties and the spectrum of collective excitations has been
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analyzed recently using the hypernetted-chain Euler-Lagrange
and the correlated basis function methods [31]. Of special
interest are the bilayers with high population imbalance,
where more complicated many-body states have been analyzed
[32–34].

In our present studies we consider a translationally invariant
system where all dipoles are polarized perpendicular to the
plane of 2D confinement and, as the result, within each layer
they experience only repulsive interaction. The dimerization
is possible due to the interlayer coupling, and for considered
interlayer spacings bound states are limited by two-particle
states. We perform path integral Monte Carlo simulations
(PIMC) in the grand-canonical ensemble [35] to get access
to thermodynamic properties and the superfluid response.
To characterize collective density excitations we reconstruct
the dynamic structure factor via the stochastic optimization
method [36]. The results are compared with the sum-rule
approach [37,38]. This comparison is aimed to clarify whether
the method of moments is suitable to provide adequate
description of cold Bose systems in a wide range of parameters.
In particular, we demonstrate that fulfillment of the third power
moment of the spectral function, which includes interlayer
static correlations, is crucial to correctly account for the
dimerization transition in the bilayer geometry.

The paper is organized as follows. In Sec. II we introduce
the model of a 2D dipolar bilayer. In Sec. III the density
response function for a multicomponent system and its relation
with the dynamic structure factor is specified. In Sec. IV we
present the method of moments and apply it to determine
the dispersion relation of collective modes. In Sec. V we
analyze the static thermodynamic characteristics and their
dependence on the interlayer spacing and the dipole coupling
strength. The structure of the pair distribution functions and
energy characteristics makes it possible to identify and follow
in detail the dimerization transition. The latter has a strong
effect on the inlayer superfluidity. In Sec. VI we present
our results for the dynamic structure factor S±(q,ω). For
the mass-symmetric bilayer, the excitation spectrum can be
analyzed in terms of its eigenmodes: the in-phase and out-
of-phase density oscillations. In this representation the density
response function is a diagonal matrix and interpretation of the
observed spectral features significantly simplifies. We discuss
a connection of the excitation branches present in S±(q,ω)
with a superfluid and normal components of a Bose gas. The
results are compared with the predictions from the method
of moments (Sec. IV). We finally draw our conclusions in
Sec. VII.

II. MODEL OF TWO-COMPONENT BILAYER

The model bilayer system consists of quasi-2D planes with
bosonic particles of the same mass and dipole moment. We
consider a polarized system, when all dipolar moments are
oriented perpendicular to the planes. The dipole-dipole pair
interaction is purely repulsive within the same layer, while it
can be both repulsive and attractive for bosons from different
layers depending on their spatial separation. The contact pair
interaction, being important for simulations in 3D geometry,
can be neglected in the quasi-2D geometry, being completely
screened by the intralayer repulsion.

The inlayer particle density is controlled by the chemical
potential μ, being a free parameter in our simulations. We
analyze a symmetric bilayer and take μ1 = μ2. The effects
due to the density imbalance are not considered.

The Hamiltonian can be written in a general form as for a
two-component system,

Ĥ =
2∑

α=1

Ĥα +
N1∑
i=1

N2∑
j=1

V̂12(rij ), (1)

Ĥα =
Nα∑
i=1

⎡
⎣− �

2

2mα

∇2
i +

Nα∑
i<j

V̂αα(rij )

⎤
⎦, (2)

where mα (α = 1,2) are the particle masses of two kinds, and
Vαα and V12 are the intra- and interlayer interaction potentials,
correspondingly. For the polarized system we use

Vαα = p2
α

r3
(α = 1,2), V12 = p1p2

r2 − 2z2

(r2 + z2)5/2
, (3)

where r is the in-plane (projected) two-particle relative
distance, and z is the interlayer separation. For a symmetric
bilayer we take, p1 = p2 = p and m1 = m2 = m.

We use the same length and energy units as in Ref. [36]:
a = 1/

√
ρα (ρα is the inlayer density) and E0 = �

2/mαa2
α . In

the case of different particle species, one of the components is
used as a reference system.

The (reduced) parameters varied in the simulations are
(i) temperature, T = kBT /E0; (ii) the interlayer spacing,
d = z/a; (iii) the effective length of dipole interaction, ad =
mαp2

α/�
2, or the equivalent parameter, D = ad/a.

In the beginning of each simulation with the specified
parameters {d,D,T }, the chemical potential, μ = μ/E0, is
adjusted such that the average inlayer density matches the
relation ρα(T ,d,D,μ) ≈ 1. This ensures that the used length
scale coincides with the average interparticle distance of the
reference component, i.e., aα ≈ 1. Alternatively, the input
parameters {T ,d,D,μ} have to be rescaled to satisfy ρα = 1
(or aα = 1).

The simulation have been performed for three dipole cou-
pling strengths, D = {0.1,1,5.5}, referenced in the following
as weak, moderate, and strong coupling regimes, respectively.
In the single layer they are distinguished by absence or
presence of a roton feature in the excitation spectrum [36].
As shown below, the addition of a second layer effectively
enhances the coupling strength to D� ∼ 8D and can be used
to control the depth of the roton minimum by variation of
the interlayer spacing. Therefore, a bilayer geometry is quite
favorable for experimental realizations of strongly correlated
Bose gases. Here a similar depth of the roton minimum, as in
a single-layer system, can be reached by a factor ∼64 lower
inlayer density. Possible experimental realizations include the
atoms with large magnetic moment [39,40] (164Dy, 168Er) and
heteronuclear molecules [41–45] (KRb, RbCs, LiCs, LiK).

The temperature is kept fixed at T = 1. In this regime a
single layer is 100% superfluid [24]. The average density and
the particle number are controlled via the chemical potential μ
and the simulation box size L. Both are chosen to accumulate
Nα = 70–100 particles per layer, i.e., ρα = Nα/L2 ∼ 1 for
L = 9, to reduce finite-size effects [46]. The number of
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Monte Carlo samples used for the thermodynamic averages
is 108–109.

III. DENSITY RESPONSE FUNCTION

The knowledge of the density response function and its
poles provides information on the collective density excita-
tions. Within the linear response theory one considers a weak
external field which produces a perturbation via coupling to
the density operator,

ρ̂α(r) =
Nα∑
i=1

δ(r − rjα), (4)

expressed in the momentum representation as

ρ̂+
qα =

Nα∑
i=1

eiq·r iα = ρ̂−qα, (5)

V̂ ext
α (q,t) = V (t)ρ̂+

qα. (6)

The index α denotes the particle type (layer) in a multicompo-
nent (multilayer) system.

The density-density response function is defined via the
Green’s function of two density operators,

χαβ(q,ω + iν) =− i

��

∫ ∞

0
dtei(ω+iν)t 〈[ρqα(t),ρ−qβ(0)]〉.

(7)

It forms a matrix for a multicomponent system, which
links the density response of a subsystem α with an ex-
ternal perturbation field V ext

αβ (q,ω) applied either to the
same (β = α) or a different (β 	= α) subsystem. When
α = β (α 	= β) the applied density perturbation and the
measured density response corresponds to the same (different)
subsystem.

With an external perturbation field, V ext
αα applied to a

subsystem α, the density excitations are induced also in other
subsystems, as they are mutually dynamically coupled via the
interaction fields Vαβ . These perturbations act as additional
(induced) external fields. The combined effect of all fields on
a subsystem α can be written (within the linear response) in
the form 〈

ρ ind
α (q,ω)

〉 =∑
β

χ̃αβ(q,ω)V ext
αβ (q,ω), (8)

which includes a contribution from both diagonal and off-
diagonal elements of the density response matrix (7). As a
result, in the density fluctuation spectrum of the subsystem α

we see new resonances: collective modes corresponding to the
coupled density oscillations in different subsystems [47]. In
a strongly interacting bilayer (determined by the strength of
V12) this effect becomes important and leads to hybridization
effects in the excitation spectra.

In an experiment, one measures the dynamic structure factor
related with the density response function via the fluctuation-
dissipation theorem (FDT),

Im χαβ(q,ω) = −πραβ (1 − e−βω)Sαβ(q,ω). (9)

The main idea of the present approach is to obtain Sαβ(q,ω)
not from the real-time dynamics (7), but from the evolution

of a quantum system in the imaginary time. In this case,
one needs to apply a special reconstruction procedure and
solve the inverse problem specified by the relation between
the spectral density Sαβ (q,ω) and the imaginary-time density-
density correlation function defined for τ ∈ [0,β]

Gαβ(q,τ ) = 1

〈N〉 〈ρ̂qα(τ )ρ̂−qβ(0)〉 =
∫ ∞

−∞
dωe−τωS(q,ω).

(10)

The used approach is briefly reviewed in the Appendix and
discussed more in detail in Refs. [36,48].

IV. FREQUENCY POWER MOMENTS

In this section we introduce several sum rules valid
for χ (q,ω) and apply them to obtain a dispersion re-
lation of collective modes, ω(q), in the two-resonance
approximation.

The well-known Feynman’s ansatz assumes that a single
δ-peak resonance exhausts (provides the main contribution
to) an excitation spectrum. Indeed, the involved parameters,
an energy and a spectral weight, can be chosen to satisfy
the μ0s and μ1s sum rules [see Eq. (12)] by the choice
between ωf (q) = μ1s(q)/μ0s(q) and Sf (q) = μ0s(q). Finite-
temperature corrections can be included [36] and become
important in the phonon and roton part of the spectrum when
�ωf (q) � kBT .

If additional power moments are available, they provide a
significant improvement with respect to the Feynman approx-
imation. The use of the inverse power moment gives a lower
upper bound for the dispersion relation, ωχ (q) = μ0s/μ−1s ,
and a better estimate of the roton energy [24,36,49].

The third power moment μ3s has been evaluated for a
variety of classical and quantum systems, including liquid
4He [50,51], one-component classical plasmas in 2D and
3D geometry [38,52], and binary mixtures of ions and
electron systems in bilayers [53]. Of special interest is the
generalization to two- and multicomponent systems, when
particle species can differ in their mass and pair interaction
potential [47].

In the present work we generalize Feynman’s ansatz by
including a second mode, which represents either a second
high-frequency branch or a multiexcitation continuum. It can
be approximately represented by a second δ peak, carrying
a finite spectral weight and contributing to all sum rules μk .
The developed approach (method of moments) is applied to
the mass- and density-symmetric bilayer. We predict changes
in the dispersion relation of collective modes as one varies
the interlayer spacing d, temperature T , and the dipolar
coupling parameter D. Obviously, not all effect can be captured
within a simplified theory of moments based on the δ-peak
resonances. Nevertheless, even such a simplified treatment
makes it possible to capture main physics and helps shed
light on the hybridization of the modes due to the interlayer
coupling.

In Sec. VI this method is compared with the micro-
scopic data for S(q,ω) from the path-integral Monte Carlo
(PIMC) simulations for a wide range of physical parameters.
In our recent paper [36] S(q,ω) was reconstructed from
the imaginary-time density-density correlation function. This
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procedure does not involve a priori assumption on a shape of
spectral density and can provide accurate results comparable
to experimental data, as was demonstrated recently for liquid
4He [54].

Below we introduce the method of moments (MMs) and
derive our main results for one- and two-component systems.
In Sec. VI results will be checked against a full dynamic
structure factor.

A. One-component system

The frequency power moments are introduced as integral
properties of a spectral density. They are defined either via
the imaginary part of the density-density response function,
χ̃ = − Im[χ ]/πρ, as

μk(q) = 〈ωk〉(q) =
∫ ∞

−∞
dωωk χ̃(q,ω), (11)

or via the dynamic structure factor,

μks(q) =
∫ ∞

−∞
dωωkS(q,ω), (12)

mutually related with χ̃ by the FDT (9).
The following results are obtained directly from Eq. (7):

μ1(q) = 〈ω〉(q) = 〈[ ˙̂ρq,ρ̂−q]〉, (13)

μ3(q) = 〈ω3〉(q) = 〈[ ¨̂ρq, ˙̂ρ−q]〉. (14)

Using the Heisenberg equations they can be recast in the form
of commutation relations with the Hamiltonian operator

μ1(q) = 〈[[ρ̂q,Ĥ ],ρ̂−q]〉, (15)

μ3(q) = 〈[[[ρ̂q,Ĥ ],Ĥ ],[Ĥ ,ρ̂−q]]〉. (16)

For a one-component system after substitution of (2) (with
V12 = 0) we end up with the result

μ1(q) = ρε̃q, ρ = N/V, (17)

μ3(q) = ε̃2
q [ρε̃q/4 + (6/D) T (q)/V + 〈C(q)〉], (18)

where ε̃q = �
2q2/m and D is the system dimensionality.

Several notes are necessary. The second term in Eq. (18) has a
meaning of a spatial component of kinetic energy and depends
on the momentum projection on a specific direction eq = q/q,

T (q) = D
2m

〈
N∑

i=1

(eq pi)(eq pi)

〉
. (19)

For a spatially isotropic system, after the angular averaging,
this term reduces to the average kinetic energy, T (q) = 〈Ekin〉.

The third term in Eq. (18) is determined by the spatial
distribution of particles and their pair interaction:

C(q) = 1

V q2

N∑
i=1

N∑
n	=i

(eiq·(r i−rn) − 1)

× (eq∇i)(eq∇n)Vin(r i ,rn). (20)

For polarized dipoles on a 2D plane (with repulsive isotropic
interaction V11 = p2/r3), this term after the angular averaging
reduces to

〈C(q)〉 = ρ

∫ ∞

0
drrρg(r)

3πp2

q2r5
[3 − 3J0(qr) + 5J2(qr)],

(21)

where ρg(r) is the radial pair distribution function defined in
the grand-canonical ensemble as

ρg(r) = 1

〈N〉

〈
N∑

i=1

N∑
j=1

′
δ(r − |r i − rj |)

〉
. (22)

The long wavelength limit of (21) has been analyzed by
Golden and Kalman [55] and can be expressed via the average
interaction energy per volume,

〈C(q → 0)〉 = 33πρ

8

∫ ∞

0
drrρg(r)

p2

r3
= 33

8

〈Eint〉
V

. (23)

By taking the ratio of the power moments (17) and (18) we get
an acoustic dispersion,

ω(q → 0) � lim
q→0

√
μ3(q)

μ1(q)
≡ cq, (24)

with the sound speed defined as

c =
√

�2

m

[
3〈εkin〉 + 33

8
〈εint〉

]
. (25)

Here εkin = T (q)/ρV and εint = 〈Eint〉/ρV are the kinetic and
interaction energies per particle. Note that in Eq. (24) we are
only allowed to write an inequality, and, hence, the estimated
isothermal sound speed provides an upper bound for the true
sound speed of acoustic phonons.

The long-wavelength limit of μ3(q) gets a contribution from
the kinetic energy and the correlation part. On the contrary, the
large-q behavior is determined by the first term in Eq. (18),
with the scaling ∝q6. Hence, the free-particle excitations, with
the energy ε̃q , dominate the third moment at large momenta.

B. Two-mode solution

In this section we generalize the canonical Feynman ansatz.
For the density-density response function we write a two-mode
ansatz in the form with two δ functions,

χ̃ (q,ω) = − Im[χ (q,ω)]

πρ
=
∑

i=L,H

Si[δ(ω − ωi) − δ(ω + ωi)].

(26)

With this definition the density prefactor drops out in the sum
rules (17) and (18), while the third moment now contains the
kinetic and interaction energy per particle. The high-energy
mode ωH represents either an additional quasiparticle excita-
tion branch or a combined effect including a multiexcitation
continuum. The q dependence is omitted in the used notations:
ωi = ωi(q) and Si = Si(q).

The substitution of (26) in Eq. (11) [for k = −1,0,1,3]
defines a closed system of equations with respect to the free
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parameters of the two-mode ansatz,

μ0s = SL coth
βωL

2
+ SH coth

βωH

2
,

μ1 = SLωL + SH ωH ,

μ−1 = SL/ωL + SH /ωH ,

μ3 = SL(ωL)3 + SH (ωH )3. (27)

Note that the zero moment μ0s is evaluated from (12) and
via the FDT includes finite-temperature effects. Otherwise,
due to the antisymmetry property, χ̃(q,−ω) = −χ̃ (q,ω), all
even-power moments are exactly zero. The odd moments of
(11) and (12) obey an exact relation,

1
2 μ(2k+1) = μ(2k+1)s . (28)

The system of equations (27) can be solved numerically.
First we introduce a definition of several upper bounds for the
dispersion relation ωL(q),

ωχ (q) = μ0s

μ−1s

= S(q)

| Re[χ (q,0)]/2ρ| , (29)

ωf (q) = μ1s

μ0s

= �
2q2

2m S(q)
, (30)

ωμ3 (q) =
√

μ3s

μ1s

=
√

μ3s

�2q2/2m
, (31)

which satisfy the inequality [37],

ωχ (q) � ωf (q) � ωμ3 (q). (32)

For zero temperature this result is exact. For finite temperatures
the order of the upper bounds can change.

As a next step, we express {ωH ,SL,SH } via the dispersion
relation ωL(q) considered as a free parameter. The first three
equations in Eq. (27) are reduced to the quadratic form with
respect to ωH

A(ωL)[ωH ]2 + B(ωL,ωH )ωH + C(ωL) = 0, (33)

with the prefactors defined as

A(ωL) = 1 − ωL

ωχ
coth

βωL

2
, (34)

B(ωL,ωH ) =
(

[ωL]2

ωχ
− ωf

)
coth

βωH

2
, (35)

C(ωL) = ωL

(
ωf coth

βωL

2
− ωL

)
. (36)

In a first approximation we can substitute, coth βωH /2 ≈ 1.
In a quantum case temperature is typically low, kT � �ωH ,
and B(ωL,ωH ) shows only a weak dependence on ωH . Next,
Eq. (33) is solved numerically,

(ωH )(n) = max

[
−B(n) ± √

B(n)2 − 4AC

2A

]
, (37)

by successive iterations and using the standard Newton’s
method. The iterations start from the zero order, B(0) =
[(ωL)2/ωχ − ωf ], when temperature effects are neglected. For

βωH � 1 the energy (ωH )(n) converges in few iterations. A
corresponding solution is obtained for each wave number q.

Next, the spectral weights of two modes can be expressed
in terms of the frequencies ωL and ωH ≡ (ωH )(n) as

SH = S(q)
ωf coth βωL

2 − ωL

ωH coth βωL

2 − ωL coth βωH

2

, (38)

SL = S(q) − SH coth βωH

2

coth βωL

2

. (39)

We perform substitution in the third moment μ3 in Eq. (27)
and evaluate the deviation from the reference value given by
(18).

Finally, we scan over different input frequencies ωL and
repeat all the steps in Eqs. (33)–(39) to find an optimal value
ωL� which provides best agreement with (18).

In two special cases (A = 0 and/or C = 0), the solution of
(33) becomes degenerate: ωH = ωL. In this case, we use a
one-mode ansatz and set SH = 0. For the dispersion relation
ωL(q) we get two possible solutions:

A = 0 : ωL = ωχ tanh
βωL

2
, (40)

C = 0 : ωL = ωf coth
βωL

2
. (41)

Both results coincide with the upper bounds for ω(q) derived
in Ref. [36].

C. Two-component system

The method of moments, discussed above, can be directly
transferred to a two-component system. Similar to Sec. IV A,
first we need to evaluate the power moments of the density
response matrix, using corresponding commutation relations
between the density operator and the two-component Hamil-
tonian (2). With the spectral density defined as

χαβ(q,ω) = − Im[χαβ(q,ω)]/π, (42)

the commutation relations now read

〈ω〉αβ(q) = 〈[[ρ̂qα,Ĥ ],ρ̂−qβ]〉, (43)

〈ω3〉αβ(q) = 〈[[[ρ̂qα,Ĥ ],Ĥ ],[Ĥ ,ρ̂−qβ]]〉. (44)

Their evaluation results in the following sum rules:

μ1,αβ (q) = ραε̃qαδαβ, (45)

μ3,αα(q) = μ3α(q) − ε̃2
qα

〈
C

(1)
12 (q)

〉
, (46)

μ3,ββ (q) = μ3β(q) − ε̃2
qβ

〈
C

(1)
12 (q)

〉
, (47)

μ3,12(q) = ε̃q1 ε̃q2
〈
C

(2)
12 (q)

〉
. (48)

Here μ3α(β) is the third moment (18) of a one-component
Hamiltonian Ĥα(β). The free-particle contribution is specified

013603-5



A. FILINOV PHYSICAL REVIEW A 94, 013603 (2016)

by ε̃qα(β) = �
2q2/mα(β). The correlation terms are expressed

as (α 	= β)

C
(1)
αβ (q) = 1

V q2

Nα∑
j=1

Nβ∑
i=1

(eq∇jβ)(eq∇iα)Vαβ(r iα,rjβ), (49)

C
(2)
αβ (q) = 1

V q2

Nα∑
j=1

Nβ∑
i=1

e−iq·(r iα−rjβ )

× (eq∇jβ)(eq∇iα)Vαβ(r iα,rjβ), (50)

and have an explicit dependence on the intercomponent
interaction potential V12.

For polarized dipoles in a bilayer, the correlation terms
simplify to one-dimensional integrals,

〈
C

(1)
12 (q)

〉 = ρ̄

∫ ∞

0
drrg12(r)[2f1(r) − f2(r)], (51)

〈
C

(2)
12 (q)

〉 = ρ̄

∫ ∞

0
drrg12(r)

×{2J0(qr)f1(r) − [J0(qr) − J2(qr)]f2(r)},
(52)

f1(r) = 3πp2

q2r̃5

(
1 − 5d2

r̃2

)
, f2 = 15πp2r2

q2r̃7

(
1 − 7d2

r̃2

)
,

(53)

where ρ̄ = 1
2 (ρα + ρβ) is the average density, r is the in-

plane interparticle distance, and r̃ = √
r2 + d2 includes the

interlayer spacing d. In the long-wavelength limit (q = 0), the
correlation functions in Eq. (51) and (52) coincide.

The interlayer (α 	= β) radial pair distribution function
introduced above measures the pair correlations between the
layers,

ραβgαβ(r) = 1

〈N〉

〈
N∑

i=1

N∑
j=1

δ(r − |r iα − r iβ |)
〉

= 2

〈N〉

〈
Nα∑
i=1

Nβ∑
j=1

δ(r − |r iα − r iβ |)
〉
. (54)

It has the meaning of the conditional probability and is
normalized to the average particle number in both layers,
〈N〉 = 〈Nα + Nβ〉. The off-diagonal density element ραβ is
defined by the limit, limr→∞ gαβ(r) = 1. This distribution
contains important information on many-body effects and
quantum statistics. The brackets denote the grand-canonical
ensemble average. The particle numbers Nα and Nβ fluctuate
around their mean values specified by the chemical potential.

The intralayer (α = β) and interlayer (α 	= β) static
structure factors are defined via the corresponding Fourier
transform

Sαβ(q) = δαβ +
∫

d reiq·rραβ[gαβ(r) − 1] (55)

and can be simplified in a 2D spatially isotropic homogeneous
system,

Sαβ(q) =
∫ ∞

0
drραβ[gαβ(r) − 1]2πrJ0(qr). (56)

In the long-wavelength limit the compressibility sum rule
holds,

Sαβ(0) = 2(〈NαNβ〉 − 〈Nα〉〈Nβ〉)
〈Nα + Nβ〉 = ραβ kBT καβ. (57)

Simulations in the grand-canonical ensemble make it possible
to explicitly estimate Sαβ(0) and καβ via the particle number
fluctuations. The relation (57) can be used as a test of Eq. (56),
which involves an extrapolated behavior of ραβgαβ(r) at
distances beyond the simulation cell; see Eq. (62).

The static limit of the density response function can be
evaluated via integration of the density-density correlation
function in the imaginary time,

Gαβ(q,τ ) = 2

〈Nα + Nβ〉 〈ρ̂qα(τ )ρ̂−qβ(0)〉, (58)

Re[χαβ(q,ω = 0)]

2ραβ

= −
∫ β

0
Gαβ (q,τ )dτ. (59)

According to the definition above,

Gαβ(q,τ = 0) = Sαβ(q). (60)

As a result, in the long-wavelength limit we obtain

Sαβ(0)

kBT
= − Re[χαβ(0,ω = 0)]

2ραβ

. (61)

In Sec. V we compare Sαβ(q) obtained independently via
Eq. (55) and the direct estimator, Eqs. (58) and (60), used at a
set of wave numbers, qn = 2πneq/L. Some small deviations
between these two estimators are mainly observed at low q and
originate from the interpolation formula used for ραβgαβ(r) at
r � L/2,

ραβgαβ(r) = ραβ[1 + ae−br sin(cr − d)]. (62)

The latter includes several fit parameters {a,b,c,d} adjusted to
match the pair distribution function within the simulation cell
close to the cell boundary.

V. THERMODYNAMIC PROPERTIES
OF DIPOLAR BILAYERS

In this section we discuss thermodynamic properties of
dipolar bilayers obtained for several coupling strength D.
The free parameter is the interlayer spacing d. The observed
changes in the static and thermodynamic properties are used
later in Sec. VI for the discussion of collective excitation
spectra.

A. Moderate coupling: D = 1 (1.4 � U0 � 3.3)

A single layer of bosonic dipoles at the coupling parameter
D = 1 shows a weak rotonization of the dispersion of
collective longitudinal density modes [36]. The intralayer
correlations play an important role and their accurate treatment
requires to go beyond the mean field. At the same time,
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FIG. 1. (a),(d) Intra- and interlayer PDFs gαβ (r). (b),(e) Static
structure factor Sαβ (q). (c),(f) Density response function χαβ (q) ≡
| Re χαβ (q,ω = 0)|/2ραβ [Eq. (59)]. The interlayer spacing: 0.3 �
d � 0.5. Simulation parameters: D = 1, μ = 20, V (L2) = 81, and
T = 1. In panels (b) and (e) the dotted (dashed) lines, on the top of
the data for Sαβ (q) (symbols with error bars), represent the Fourier
transform (56) of the interpolated radial intra(inter)layer correlation
functions gαβ (r) [Eqs. (22), (54), and (62)].

the Berezinskii-Kosterlitz-Thouless (BKT) temperature for
the normal fluid-superfluid transition reaches its maximum
value [24], T BKT

c = 1.4. At the temperature considered here
(T = 1), both layers are fully superfluid once the layer spacing
is sufficiently large.

Static properties. Figure 1 illustrates the induced changes in
the static characteristics of a dipolar bilayer, once the interlayer
spacing is varied. The intralayer PDF g11(r) reveals strong
short-range correlations identified by the correlation hole at
the origin. On the contrary, there is no sign of long-range
spatial correlations: g11(r) becomes flat already after the first
correlation shell (r � 2). This situation changes when both
layers are brought to a close vicinity (d ∼ 0.3). Here the first
time, g11(r), starts to exhibit an oscillatory behavior, however,
strongly damped.

The strength of the interlayer correlations can be read
out from the behavior of g12(r). When the layer spacing is
continuously reduced from d = 0.5 to d = 0.3, we observe
development of a peak at r = 0; see Fig. 1(d). Dipoles from
different layers demonstrate a tendency to a pairwise vertical
alignment. The head-to-tail alignment within each layer is
excluded in our model by zero thickness of the layers. Such a
possibility in physical systems depends on the ratio between
the scattering length as (represented as the radius of a hard core
potential) and the oscillator length of vertical confinement,
lz = √

�/mαωz. Our current model corresponds to a quasi-2D
geometry when as � lz.

The sharp peak g12(0) observed at d � 0.34 is interpreted
as a formation of strongly localized dimer states. Its half-
width characterizes the in-plane dimer size and is about a
factor of four smaller than the average interparticle distance
a ≈ 1 (in our units). Due to a spatial localization of dimers
(note a well-pronounced dip in g12 around r ∼ 0.5), they
can be approximately treated as composite particles with
double mass. The inlayer correlations in this regime can be

characterized by a new effective dipole coupling D� > D,
enhanced due to the dimer-dimer interaction. The excitation
spectrum is expected to reveal a more pronounced roton
feature. A clear signal of a roton is the oscillatory behavior
of g11(r), as observed in Fig. 1(a) for d = 0.3.

The bound-state formation is accompanied by the increase
of the inlayer density: note a systematic increase in the
asymptotic value of g11(r) at large r . The static characteristics
are also modified. In particular, the second and the third
correlation shells in g11(r) are formed at d � 0.34. This is a
clear trend that strongly localized dimers form a more ordered
structure with short-range correlations but the system still
remains in a homogeneous gas phase.

Additional information is provided by the static structure
factor Sαβ(q). A broad peak around the wave number qa ∼ 2π

(corresponding to the inverse mean interparticle distance) is
present in both S11(q) and S12(q). A significant broadening of
S12(q) at d � 0.34 shows that there is a strong correlation
between density perturbations in both layers, and these
correlations survive in a broad range of excitation momenta q.
In its turn, the possibility for a momentum transfer between the
layers means that the kinetic energy of excited quasiparticles
is comparable with the interlayer interaction energy, q2/2m �
D/d3. For large q such a possibility exists only in the dimer
phase. Once d is decreased, the range of momenta q where
S12(q) 	= 0 increases. This trend is illustrated in Fig. 1(e).
For a simple estimate, we can choose d = 0.5 and d = 0.3.
The characteristic interlayer interaction is given by D/d3 ∼ 8
and 37, correspondingly. These values should be compared
with the energy of collective in-phase density excitations at
qa � 10 in Fig. 17. Obviously, for d = 0.5 and qa � 10
the interlayer coupling is weak, D/d3 � ωL

+(q) ∼ 25, and,
therefore, S12(q) decreases fast at large wave numbers. In
contrast, for qa � 8 the condition �ω(q) � D/d3 is satisfied,
and both S12 and χ12 take a nonzero value. For d = 0.3, the
above condition is satisfied in a broad range of momenta. The
observed decay of S12(q) for small q is related with the general
momentum-scaling of the quasiparticle density in 2D.

Superfluid response. To further illustrate the effect of the
interlayer coupling on the dimerization process, we present in
Fig. 2 snapshots of the particle density taken at d = 0.3, 0.4,
and 0.6. They are supplemented by the d dependence of the
inlayer superfluid fraction γs(d) = ρsα(d)/ρα(d). The density
snapshots support the dimerization scenario at small d and
demonstrate a significant spatial localization of particles in
both layers. The net effect is a reduction of the quantum spatial
coherence and a monotonic decrease of the superfluid fraction
γs , accompanied by the increase of the peak height g12(0). At
d � 0.34, the effect of spatial ordering can be clearly observed
in the density snapshots (still only on the microscopic scale
opposite to a long-range correlations in a crystal), while the
superfluid response fast drops to zero. As discussed below,
in this regime strongly localized dimers are formed and the
inlayer superfluidity completely vanishes.

Qualitatively, our observations can be explained as follows.
Below some layer spacing d the dimer size becomes smaller
than the inlayer average interparticle spacing, σd < a, and
dimers can be treated as new composite particles. The system
is characterized by a new effective coupling parameter which
is larger than in a single layer, D� = m�p�2/�

2a ∼ 8D. The
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FIG. 2. The d dependence of the inlayer superfluid fraction
γs(d,T ) at temperatures T = 1(0.5). Coupling D = 1. The values
γsα(T ), measured in each layer α, coincide within the statistical
errors. The simulated system contains 〈N〉 ∼ 160 particles, with
〈Nα〉 ∼ 80 particles per layer. The finite-size corrections can change
absolute values, but not the observed trend in γs(d). The insets show
instantaneous density snapshots from PIMC at d = 0.3, 0.4, and 0.6
(each quantum particle is presented as a cloud of ∼100 beads). Black
(brown) color is used to distinguish the top (bottom) layer.

factor 2 comes from the mass, m� = 2m, and the factor 4
from the dimer-dimer interaction (involving four particles).
In this regime, the phase diagram is similar to the one of
2D bosonic dipoles [36], with the crystallization transition at
D� � 17(2). For the inlayer coupling D = 1 and D� ∼ 8, we
are below this critical value. Hence, the oscillations of g11(r),
as observed in Fig. 1(a), should not be ascribed to the onset of
the crystallization transition, but rather to the formation of a
strongly correlated gas phase, which becomes again superfluid
at lower temperatures.

To check this possibility, we repeated our simulations at
twice lower temperature, T = 0.5. The comparison of T = 1
and T = 0.5 has not revealed significant differences. The slope
of the PDFs remains nearly the same. We conclude that the
dimers will remain in the gas phase down to the ground
state (T = 0) at least for the layer spacing d � 0.25. For
smaller d, we cannot exclude formation of more complicated
bound states, like trimers. This scenario becomes energetically
favorable in the bilayers with a strong density imbalance
[32,33].

Now we turn to a discussion of the superfluid phase present
at T � Tc. For composite dipoles Tc can be estimated from
the single-layer data [24]: Tc/[�2/ma2] ∼ 1.2 for D = 8. For
composite dipoles (m� = 2m) the temperature (in our units)
is by a factor two smaller: Tc/[�2/m�a2] ∼ 0.6. This explains
the zero superfluidity in our simulations at T = 1 and d � 0.3;
see Fig. 2. Additional simulations at T = 0.5 have shown that
a finite superfluid response in the dimer phase is restored.

Energy characteristics. The next feature which identifies
the dimerization is a specific d-dependent slope of the energy
characteristics {εN,kN,vN } shown in Fig. 3. Main changes are
observed in the range 0.3 � d � 0.5. A fast increase of the
kinetic energy kN is observed and is attributed to the energy
of zero-point fluctuations in spatially localized bound states.
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FIG. 3. The d dependence of total εN , kinetic kN , and potential
energy vN (per particle) from the many-body simulations at T = 1.
For comparison, the solution of a single-dimer problem is presented
by εT , vT , and kT (the dimer energies are divided by N = 2).
The upper index T denotes the temperature argument in the matrix
squaring technique [56].

Simultaneously, the potential energy vN drops to negative
values for d � 0.33, indicating that the interlayer attraction
dominates over the intralayer repulsion.

To explain the observed d dependence, we compare the
many-body results with a single-dimer solution. The dimer
problem in the bilayer geometry has been addressed before,
both numerically and analytically [1,2]. The present approach
is based on the matrix squaring technique [56] and numerical
evaluation of a two-body density matrix (DM) and its β

derivative. The obtained dimer energy can be compared with
the analytical results of Ref. [1].

For weak coupling, the binding energy as a function of the
interlayer coupling constant, U0 = mp2/�

2d, takes the form

εw
d /ε0 ≈ exp

{
− 8

U 2
0

[
1 − U0 + U 2

0

4

(
5

2
+ ln

eγ

2

)]}
, (63)

where ε0 = �
2/md2 and γ ≈ 0.577 is the Euler constant. This

result remains accurate [1] up to U0 � 1.2.
In the opposite limit of strong coupling (U0 � 1) the dimer

energy was determined by the variational calculations [57]

εs
d/ε0 ≈ −2U0 + 4

√
3U0/2 − 15/4. (64)

Asymptotics (63) and (64) are presented in Fig. 4 (left panel)
and compared with our numerical data. As expected, both
limits are nicely reproduced. The variational ansatz coincides
with the numerics for U0 � 5, while Eq. (63) remains accurate
up to U0 ∼ 1.2.

The energy characteristics of a single dimer are presented
in Fig. 3 with the curves εT , vT , and kT . They are rescaled
to the energy units of the many-body simulations as U0 =
D/d and εd/E0 = (εd/ε0)/d2. The upper index T indicates the
temperature argument of the pair DM evaluated with the matrix
squaring technique. The case T = 0 denotes a low-temperature
limit when we reach convergence to ground-state properties at
finite temperatures.

As shown in Fig. 3, the main trend observed in kN, vN ,
and εN is also reproduced by a single dimer. This testifies
that the pairwise interlayer correlations play here a dominant
role. A difference and a shift in absolute values are due to
many-body contributions. At d > 0.6, as we approach the limit
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energy, kd/|vd |, versus U0.

of independent layers, the many-body results saturate at their
single-layer values. These are, obviously, zero in the single-
dimer case, apart from the kinetic energy, which equals kT ∼
kBT .

More information on the dimer states formed at d � 0.5 is
presented in Fig. 4 (two right panels). Here the U0 dependence
of the mean dimer size, σd/a =

√
〈r2〉 /a2, and the ratio of the

internal kinetic and the potential energy are shown. For U0 � 2
we observe a fast divergence of σd being a clear indication
of the crossover from strongly to weakly bound dimers. For
U0 = 1 the dimer size equals σd/a ≈ 7.5 and significantly
exceeds the average interparticle spacing in the many-body
system. This state is characterized by nearly equal values of the
kinetic and the potential energies. At U0 = 2 (corresponds to
the layer spacing d = 0.5 at D = 1) the binding energy equals
εd/E0 ≈ −1.0355. In our finite-temperature simulations at
T = 1 such a state is thermodynamically unstable. In contrast,
at U0 = 2.5, 3.12, and 5.0 (d = 0.4, 0.32, and 0.2) the dimer
size reduces to σd ≈ 0.5, 0.32, and 0.14. The binding energy
takes the values εd/E0 ≈ −3.1732, −8.8042, and −61.4326.
In this regime, it becomes a dominant energy scale in the
many-body simulations. We conclude that, at least for d �
0.32, treatment of interlayer dimers as composite particles,
characterized by m� and D�, is well grounded. Alternatively,
another criterion can be employed. A many-body system
cannot be treated as an ensemble of dimer states once σd/a �
1. This holds for U0 � 2 or the layer spacing d � 0.5; see
Fig. 4, where σd = 1 is shown by a horizontal dotted line.

The influence of many-body effects on the dimer states
can be nicely illustrated by the PDF g12(r). Its behavior
near r = 0 is determined by the two-body density matrix
of two dipoles from different layers. The angular average
defines the distribution function of a single dimer, gd (r) =
〈ρ2(r,r,β)〉, with r = |r i − rj |. For the dimers, which are
thermodynamically stable, both distribution functions should
coincide near the origin, i.e., g12(r) ≈ gd (r)|r�a .

To extract the dimer PDF from the many-body simulations,
we consider the difference, �g(r) = g12(r) − g11(r). We
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FIG. 5. The inter- and intralayer PDFs. Coupling D = 1. The
many-body results g12(r), g11(r), and �g(r) = g12(r) − g11(r) are
compared with the single-dimer solution gd (r). The range of layer
spacing 0.25 � d � 0.5 corresponds to 2 � U0 � 4 in Fig. 4.

assume that the probability distribution of a particle in the first
layer relative to all particles in the second layer, excluding one
in a bound state, should be given by the intralayer PDF gαα(r).
Once two-body interlayer correlations dominate over all other
correlations, this picture is reasonable. The d dependence
of the binding energy suggests that this holds, at least, for
d � 0.32.

Bound-state properties can be modified at finite densities
due to the intra- and interlayer correlations. The internal
properties of dipolar pairs will be reproduced by a single-dimer
solution, when |εd | � D/a3, kBT . For D = 1 and T = 1 this
results in the estimate |εb| � 1.

Figure 5 presents the comparison between the dimer state
in a many-body environment, �g(r), and the single-dimer
distribution gd (r). As expected, a nice agreement is observed
below d ∼ 0.4, due to the increase of the dimer binding energy
and the spatial localization. In contrast, at d = 0.45 and 0.5 a
new trend is present. At finite densities the average dimer size
is reduced compared to a free-dimer case. The many-body
environment acts in favor of the interlayer dimerization, as
the repulsive intralayer interaction plays a stabilizing role for
dipolar pairs.

To further characterize the dimerization, in Fig. 6 we
analyze the d-dependence of the inlayer density ρα and the
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FIG. 6. The d dependence of the inlayer density ρα and the
compressibility κα[102] for D = 1.
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isothermal compressibility κα . In the long-wavelength limit
both are related to the static structure factor as

Sαα(q = 0) = 1 + ρα

∫
V

[gαα(r) − 1]d r

=
〈
N2

α

〉− 〈Nα〉2

〈Nα〉 = ραkBT κα. (65)

The effect of the second layer comes into play below d = 0.5.
The inlayer density is steadily increasing with the reduction
of d. For d � 0.4 particles from both layers are pairwise
coupled and form composite bosons. For a fixed chemical
potential μ, each layer accommodates more particles, as it
becomes energetically favorable due to an enhanced binding
energy. This process is accompanied by reduction of the
compressibility κα . The system forms a strongly correlated gas
of dimers. This new phase is less compressible, whereas the
particle number fluctuations in each layer (65) are suppressed
due to formation of bound states.

B. Strong coupling: D = 5.5 (5.5 � U0 � 9.2)

We repeat our analysis for a strongly correlated bilayer.
Some of the discussed features are similar to the D = 1
case. The increased dipole coupling (D = 5.5) sets a new
energy scale, and as a result the dimerization transition
shifts to a larger layer spacing. The coupling parameter in
a single-dimer problem increases to 5.5 � U0(D/d) � 9.2 for
0.6 � d � 1.0; see Fig. 4.

Dimerization and superfluid response. The dimerization
transition is illustrated in Fig. 7 and starts around d ≈ 0.8.
At d = 0.71 we already find a nice agreement between the
finite-density result, �g, and the single dimer, gd . There is
a qualitative agreement in the range 0.75 � d � 0.8. The
shape of �g is disturbed due to the overlap with neighboring
particles. Here we observe a destabilizing effect of the many-
body environment. The peak height at the origin is reduced:
gd (0) > �g(0). In contrast, for d � 0.71 we find an opposite
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FIG. 8. The d-dependence of the superfluid fraction γs(d,T ) at
temperature T = 1 and D = 5.5. The system size is 〈N〉 ∼ 160 with
〈Nα〉 ∼ 80 particles per layer. The insets show instantaneous density
snapshots at d = 0.7, 0.8, and 1.0. Black (brown) color distinguishes
the top (bottom) layer.

trend: The inlayer interaction slightly enhances the spatial
localization of dimers.

The onset of dimerization at d ∼ 0.8 correlates with a
fast drop of the superfluid density; see Fig. 8. The superfluid
fraction γs already drops to zero at d ≈ 0.68, when the average
dimer size is reduced below half of the average interparticle
distance and equals σd/a ≈ 0.37.

Static properties. The instantaneous density snapshots in
both layers are presented in Fig. 8. They nicely illustrate
that the vertical alignment of particles from different layers
dominates, especially at d = 0.7. In this regime, the dimers
can be treated as composite particles. A new effective coupling
parameter, D� ∼ 8D = 44, exceeds the critical value, D� =
17(1), required for the crystallization transition [23]. The
simulated temperature (T = 1), however, is too high (by factor
two) to observe a defect-free Wigner lattice. Still some pieces
of a crystalline structure are present. For d � 0.7 the intralayer
PDF gαα shows several well-pronounced correlation shells; see
Fig. 9(a). Both the static structure Sαα and the density response
function χαα are peaked around the wave vector, q ≈ 2π/a,
corresponding to the inverse interparticle distance.

Thermodynamic properties. The d dependence of the total,
potential, and kinetic energies (per particle) is shown in Fig. 10.
All quantities show a noticeable change in the slope around
d ∼ 0.75. For larger d the energies saturate at their single-layer
values. This demonstrates that both layers become nearly
independent in a homogeneous superfluid phase. For d � 0.75
the system enters in the molecular (dimer) phase. The d

dependence is dominated by the single-dimer solution shown
by {εT ,kT ,vT }. The energy shift with respect to {εN,kN,vN } is
due to the many-body contributions.

The results for the density and compressibility are presented
in Fig. 11. The range 0.68 � d � 0.75 corresponds to a
transient region characterized by a partially superfluid phase.
The density increases by 1% as the superfluid fraction γs

approaches 1. For 0.65 � d < 0.68 (d > 0.75) the inlayer
density saturates at the equilibrium value in the normal
(superfluid) phase.
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FIG. 9. (a),(d) Intra- and interlayer PDFs gαβ (r). (b),(e)
Static structure factor Sαβ (q). (c),(f) Density response function
χαβ (q) ≡ | Re χαβ (q,ω = 0)|/2ραβ . The interlayer spacing: 0.6 �
d � 0.8. Simulation parameters: D = 5.5, μ = 70, V (L2) = 81,
and T = 1.

The inlayer compressibility is not influenced by the inter-
layer correlations in the superfluid regime with γs > 0.9. It
only starts to decrease with the formation of the interlayer
dimers at d � 0.75 and follows the d dependence of γs(d)
in Fig. 8. With the formation of strongly bound states below
d ∼ 0.6 the inlayer compressibility fast reduces to zero due to a
strong enhancement of the energy penalty for the independent
particle number fluctuations in both layers.

C. Weak coupling: D = 0.1 (0.16 � U0 � 1)

As a third case, we consider a weakly interacting system.
Possible physical realizations include ensembles of Cr atoms
[58–60]. The analyzed range of interlayer spacings, 0.1 � d �
0.6, corresponds to the coupling parameter 0.16 � U0 � 1
characterized by a significantly reduced binding energy εd ;
see Fig. 4 (left panel). The inlayer correlation energy compares
or exceeds εd . In this regime a single-dimer state is strongly
perturbed due to a many-body environment. For illustration
we start the discussion from the dimer distribution function.

Dimerization transition. In Fig. 12 the dimer distribution
function at a finite density, �g, is compared with the single-
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FIG. 11. The d dependence of the inlayer density ρα and the
compressibility κα[102] for D = 5.5.

dimer case, gd . The interlayer spacing d � 0.1 results in
U0 � 1 and corresponds to a vanishingly small dimer binding
energy εd (U0) (see Fig. 4), when it can be well approximated
by Eq. (63). However, the results in Fig. 12 show that the
dimer state predicted by gd (r) is significantly underestimated
compared to �g(r). For d = 0.1 the peak heights differ
by factor two, �g(0) ≈ 2gd (0). With the increase of d the
discrepancy only increases. As gd (r) in Fig. 12 shows, the
single dimer becomes spatially delocalized for d � 0.15. In
contrast, a pronounced dimerization peak is observed in �g. In
the range from d = 0.1 (U0 = 1) to d = 0.15 (U0 = 0.667) the
binding energy of a single dimer εd is reduced by almost three
orders of magnitude. Hence, to reproduce the dimerization
feature observed in �g one should go beyond the single-dimer
model and include finite-density effects.

To generalize our dimer model, we include the effect of
other particles by an effective external field and then solve
the corresponding Bloch equation for the pair DM. Two cases
are considered. First, we set a hard wall potential of radius
rc, which specifies the boundary condition: ρ(r,r; β) = 0 for
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FIG. 12. Inter- and intralayer pair distribution functions for D =
0.1. The many-body results—g12(r), g11(r), and �g(r) = g12(r) −
g11(r)—are compared with a single-dimer solution gd (r). Two addi-
tional curves take into account finite-density effects via an effective
external potential: (i) a hard wall of a radius rc (the curve “rc”);
(ii) a soft potential Vb(r) = γ r3 which mimics the intralayer dipole
repulsion. The considered layer spacing, 0.1 � d � 0.4, corresponds
to 0.25 � U0 � 1 in Fig. 4.
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r � rc. A particular choice of the rc value takes into account the
density effect: A correlation hole around a dimer excludes the
possibility to find other particles within a sphere of radius rc.
Hence, a pairwise repulsion between different dimers localize
them to the spatial volumes (areas) v ∼ r2

c (in 2D). A free
parameter rc is chosen to agree with the peak height �g(r = 0)
at d = 0.1. The value rc = 1.2 provides a reasonable choice
and is in agreement with the position of the first peak in the
intralayer PDF gαα(r) for all d � 0.1. In the second case,
we set a soft boundary potential: Vb(r)|r>r0 = γ (r3 − r3

0 ) and
Vb(r)|r�r0 = 0. The free parameters {r0,γ } are chosen to fit
the shape of �g(r) for d = 0.1. In the calculations with other
d values the parameters {r0 = 0.5, γ = 8} are kept fixed.

In Fig. 12 both models are shown with the curves “rc” and
“γ r3”. We observe a good agreement with the many-body
result �g, at least for d � 0.2, and a significant improvement
over the free-dimer model.

Superfluid response. The onset of dimerization observed
for d � 0.2 only slightly reduces the superfluid density; see
Fig. 13. This result is in a striking contrast to the case D =
1(5.5) in Figs. 2 and 8. The density snapshots show that particle
“clouds” strongly overlap (see the insets in Fig. 13). Hence,
the effect of spatial localization, as observed in Figs. 2 and 8, is
not relevant and the intralayer spatial coherence is preserved.

Static properties. The variation of the layer spacing d, being
of a minor importance for the superfluid response, results in
noticeable changes in the static properties; see Fig. 14. When d

is reduced, the intralayer density continuously increases (com-
pare the asymptotic values of g11). The interlayer response
functions S12(q) and χ12(q) develop a broad peak. The absolute
value of the response function increases at small d. The origin
of this effect is different from D = 1(5.5). In the former case
the peak position shows only a weak d independence and
is close to the wave number q ≈ 2π/a. The formation of
several correlation shells in gαα(r) validates that its origin is
the intralayer correlations and the spatial ordering (see Fig. 9).
This becomes possible due to formation of composite bosons
with double mass and a larger dipole coupling D�. For D = 0.1
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FIG. 14. (a),(d) Intra- and interlayer PDFs gαβ (r). (b),(e) Static
structure factor Sαβ (q). (c),(f) Density response function χαβ (q) ≡
| Re χαβ (q,ω = 0)|/2ραβ [Eq. (59)]. The interlayer spacing: 0.1 �
d � 0.2. Simulation parameters: D = 0.1, μ = 4.8, V (L2) = 81, and
T = 1.

the composite particle picture cannot be directly applied. A
single-dimer state is not stable (at least for d > 0.1) and bound
states can exist due to the density effect, as discussed above.
The constituents of dimers can exchange with neighboring
particles in the same layer, as follows from the density plots in
Fig. 13. In the assumption that the composite particle picture
is valid, a new effective coupling, D� ∼ 8D = 0.8, is not
large enough to induce a (quasi)long-range spatial ordering
similar to D = 1(5.5). A structure of S12 and χ12, in Fig. 14,
demonstrates a strong dependence on the layer spacing. In
contrast, the intralayer characteristics remain structureless; see
g11 and S11 in Fig. 14. The d dependence of the effective
intralayer coupling can be read out from a slope and a peak
position of χ11(q) by comparison with single-layer data [24].
For d = 0.1 and D = 0.1 in the bilayer the slope of χ11 is
similar to one in a single layer for D = 0.5. This result is close
to our estimate D� ∼ 0.8 based on the dimer picture.

Thermodynamic properties. Next we analyze the d depen-
dence of the total, kinetic, and potential energies presented
in Fig. 15. The dimer solution with the modified boundary

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6
d

0

1

2

3

4

5

6

0.2 0.4 0.6
d

0

1

0.2 0.4 0.6
d

N

rc

γr3

kN

k
k, rc

k, γr3

vN

v
v, rc

v, γr3

FIG. 15. The d dependence of total, kinetic, and potential
energies, εN ,kN ,vN (per particle), from many-body simulations at
T = 1. For comparison, the solution of a single-dimer problem with
the boundary conditions {rc,γ r3} (see the text) is presented along
with a free-dimer case {ε,v,k}.
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conditions {rc,γ r3}, captures main features of the many-body
result {εN,kN,vN }. Both results predict qualitative changes
below d ∼ 0.2. This new regime can be identified as a
transition from weakly to strongly bound states, when the
energy scale specified by the dimer energy εd starts to dominate
over the intralayer correlation energy. Similar to D = 1(5.5),
we observe a fast increase of the kinetic energy and the build
up of the dimerization peak g12(0) [see Fig. 14(d)].

The energy characteristics, {ε,k,v} and {εN,kN,vN }, differ
in the absolute value. The boundary conditions enhance the
kinetic energy k of a single dimer compared to the many-body
result kN . The effect is present for all d and is the largest for
the hard wall potential, {k,rc}. The many-body result, kN , for
d > 0.35 saturates slightly above the thermal kinetic energy,
kBT = 1. This shift is due the many-body interactions and gets
larger for stronger coupling D = 1(5.5).

Some noticeable changes in the total energy εN (Fig. 15, first
panel) are observed below d ≈ 0.2. This point can be identified
as the onset of dimerization. In comparison, the kinetic
and potential energies (kN , vN ) already show some weak d

dependence at a larger spacing, d ∼ 0.3. Their contributions
to εN mutually compensate in the range 0.2 � d � 0.4, and
produce a nearly flat curve for εN . The internal kinetic
energy fast increases below d ≈ 0.2. The similar behavior
is reproduced with the boundary conditions {rc,γ r3}, but is
absent in the free-dimer case (see dotted blue curves {ε,k,v}
in Fig. 15). The earlier onset of dimerization, compared to
a single free dimer, becomes possible due to the stabilizing
effect of a many-body environment.

The d dependence of the inlayer density and the com-
pressibility is analyzed in Fig. 16. The effect of the interlayer
coupling on both quantities is well pronounced. The interval
0.15 � d � 0.3 can be considered a transient region, whereas a
new d-dependent slope sets in for d � 0.15. It can be explained
by the formation of dimer states. This is validated by �g(r) in
Fig. 12 and g12(r) in Fig. 14(d).

The d dependence of the compressibility κα follows the
trend observed in {εN,kN,vN }. The particle number fluctua-
tions in both layers are suppressed by the energy penalty of
the order of a dimer binding energy.

In summary, we demonstrated how the dimerization tran-
sition can be identified via the static properties and energy
characteristics.

VI. EXCITATION SPECTRUM OF COLLECTIVE MODES

In this section we analyze dispersion relations of collective
modes. The generalization of the Feynman ansatz by the two-
mode solution makes it possible to distinguish the behavior
of the spectral density at low and high frequencies. In
the low-frequency domain weakly damped collective modes
(quasiparticles with a specific dispersion relation) provide a
dominant contribution to S(q,ω); at high frequencies they
provide combinations of multiparticle excitations due their
interaction and decay processes.

We start from the diagonalization of the density re-
sponse matrix. In this case spectral analyses significantly
simplify.

A. Diagonalization of density response matrix

For a two-component system the matrix elements of the
density-density correlation function in the imaginary time
(0 � τ � β) are defined by (10) and related with the density
response function via the FDT (9).

We can introduce symmetric and antisymmetric density
operators,

n̂q+(τ ) = 1√
2

[ρ̂q1(τ ) + ρ̂q2(τ )],

n̂q−(τ ) = 1√
2

[ρ̂q1(τ ) − ρ̂q2(τ )], (66)

and switch to a new representation, where the matrix of the
density-density correlation function, Gαβ(q,τ ) with (α,β =
±), becomes diagonal. Using (9) and (10) the diagonalization
applies also to Sαβ (q,ω) and Im χαβ(q,ω). The problem
reduces to the spectral analysis of the in-phase (symmetric)
and out-of-phase (antisymmetric) mode. With (66) the cor-
responding spectral densities can be written in terms of the
partial dynamic structure factors

S+(q,ω) = S11(q,ω) + S12(q,ω),

S−(q,ω) = S11(q,ω) − S12(q,ω). (67)

As a next step we introduce the symmetrized frequency power
moments

〈ωk〉+ = 〈ωk〉11 + 〈ωk〉12,

〈ωk〉− = 〈ωk〉11 − 〈ωk〉12, (68)

which can be evaluated via the partial moments introduced
in Sec. IV C. In all expressions we have explicitly used
the symmetry relations: G11(q,τ ) = G22(q,τ ), S11(q,ω) =
S22(q,ω), and 〈ωk〉11 = 〈ωk〉22.

B. Moderate coupling: D = 1.0

Two-mode solution. The two-mode ansatz for S±(q,ω) can
obtained by a self-consistent treatment of Eqs. (33)–(39), using
as an input the symmetrized moments (68) determined via the
partial frequency power moments (45)–(48).

The results are presented in Fig. 17 for different spacing
d. Shown is the low-frequency branch, ωL

±(q). The second
solution, ωH

± (q), is omitted. Typically, it does not describe a
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well-defined dispersion relation, but characterizes some aver-
age weighted frequency of a broad multiexcitation continuum.

The generalized Feynman ansatz has several advantages
over other approximations, like Singwi-Tosi-Land-Sjolander
(STLS) [61] and quasilocalized charge approximation (QLCA)
[62]. It predicts (i) spectral weights of collective modes,
(ii) the sum rules (45)–(48) are exactly satisfied, and (iii)
sharp quasiparticle resonances can be distinguished from the
multiexcitation continuum.

The left and right panels in Fig. 17 show the wave
number and the d dependence of the low-energy branch,
ωL

±(q), and its spectral weight, SL
±(q). For comparison, the

full spectral weight (normalization condition), specified by the
symmetrized static structure factor S±(q) = SL

±(q) + SH
± (q),

is also shown by dotted gray lines monotonically increasing
(decreasing) with d for the symmetric (antisymmetric) mode.

Several drastic changes in the dispersion relation are
observed with variation of the layer spacing d.

First, for d � 0.35 and low wave numbers the dispersion
relation is acoustic for both the symmetric and the anti-
symmetric modes. At these layer spacing, the system has
a finite superfluid response; see Fig. 2. However, once the
superfluid fraction drops to zero for d � 0.3, a finite energy
gap develops in the spectrum of the antisymmetric (out-of-
phase) mode ωL

−(q). As explained in Sec. V A, suppression
of the superfluidity at d � 0.3 is due to formation of strongly
localized dimer states. Simultaneously, a deep roton minimum
develops in the spectrum of the symmetric mode, ωL

+(q). The
roton wave number shifts continuously to larger momenta by
lowering d and saturates in the normal phase at the inverse
inlayer interparticle spacing, q ∼ 2π/a. The similar behavior
demonstrates the roton gap. It has a strong d dependence in the
superfluid phase and saturates in the normal phase for d � 0.3.

The difference in the resonance frequencies of the symmet-
ric and antisymmetric modes increases at low d; both modes
become well separated. With the formation of the optical gap,
the dispersion ωL

−(q) shifts to higher frequencies, while the
symmetric mode ωL

+(q) shifts to lower frequencies. This has
an effect on the d dependence of their spectral weights. By
lowering d, the spectral weight SL

+(q) continuously increases,
while SL

−(q) decreases; see Fig. 17 (right panel).
We conclude that with the formation of dimers, the in-

phase density excitations have the largest spectral weight
in the partial dynamic structure factor (67), S11(q,ω) =
1
2 [S−(q,ω) + S+(q,ω)], and dominate in the roton part of the
spectrum. They are responsible for the corresponding peak in
the static structure factor S11(q). In contrast, the spectral weight
of the out-of-phase mode SL

−(q) shows only a monotonic
increase with the wave number.

The in-phase excitations probe a collective behavior of a
dimer gas and a strength of the dimer-dimer interaction. For the
symmetric mode the system can be thought of as a single layer
of composite bosons with a new dipole coupling D� ∼ 8D. In
contrast, the antisymmetric mode for d � 0.3 probes intrinsic
properties of dimer states. The out-of-phase oscillations act
against a spatial localization in a bound state. At low d the
dimer binding energy and the interlayer coupling increases;
see Fig. 3. As a result, the energy gap ωL

−(0) gets larger.
For classical systems the presence of a gapped mode for

two(multi)-component systems has been predicted by QLCA
[63]. However, as is shown by our analysis in Fig. 17, the
spectral weight SL

−(q) of the gapped mode vanishes as q →
0. Its experimental detection in the long wavelength can be
difficult. The use of finite wave numbers (qa � 1) is more
preferable.

The effect of the interlayer coupling is not restricted to
the phonon-roton region, but extends also to large momenta.
A fit to ωL

+(q) for qa > 8 with the free-particle dispersion,
εq(q; m�,ε0) = [q2/2m� − ε0] (ε0 is used a fit parameter),
results in a new effective mass, m� > m, which can be
explained by the interlayer dimerization.

For D = 1 and d � 0.25, in the regime of strongly bound
dimers (with the binding energy |εd | � 25), the fit with εq(q)
results in m� ≈ 2m. The q dependence of ωL

+(q) is reproduced
quite well up to the maximum considered wave number
qa ∼ 17.4. At larger layer spacing the excitation energies can
significantly exceed the dimer binding energy, �ωL

+(q) > |εd |,
and as a result there exists an upper bound for the wave number
to observe an effective mass m� different from a bare particle
mass m.

In particular, for d = 0.27 around q̃a ∼ 14.5 we observe
a smooth transition from εq(q; 2m,ε0) to the free-particle
dispersion with a bare mass, εq(q; m,ε′

0). For larger d this
transition occurs earlier, and, typically, for qa � 12.5 we
recover m� ≈ m. The dimer dispersion εq(q; m� = 2m,ε0) is
recovered just beyond the roton feature for 8 � qa � 12. The
transition to the dispersion εq(q; m,ε′

0) starts around the wave
number q̃a corresponding to the excitation energy comparable
to the dimer binding energy at a given layer spacing,

�ωL
+(q̃a) ∼ g|εd (d)|, (69)

with the scaling factor g � 2.
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For stronger coupling D = 5.5 (see Fig. 24) our obser-
vations are similar but reveal some new feature. Our present
analyses are limited by the layer spacing d � 0.6 and the dimer
binding energy |εd (d)| � 20.

First, we observe (Fig. 24) the roton feature (around qa ∼
6.5) with a slope specified by the “roton mass.” Next, for 8 �
qa � 10 we recover the dimer dispersion εq(q; 2m,ε0). This
interval is followed by the transient region 10 � qa � 12.5,
where the dispersion exhibits a slight bending (flattens) once
it becomes comparable to the dimer binding energy, Eq. (69)
with g ∼ 1. Finally, for qa � 12.5 the dispersion converges
fast to a slope specified by a bare mass εq(q; m,ε′

0).
In conclusion, the effective mass m� > m due to the

interlayer coupling can be observed beyond the roton feature
with the upper bound for the momentum specified by Eq. (69).

In Fig. 17, some unsmooth behavior of the dispersion
relations (and their weights) at large q can be noted. This is a
numerical artifact due to statistical errors in the input values of
the frequency power moments (45)–(48). The errors, typically,
increase with the wave number. Possible solutions for the set of
equations (33)–(39) are found to be sensitive to any source of
numerical uncertainties. Still in a wide q range we reproduce
quite smooth dependencies and resolve a continuous evolution
of the dispersion relations with the layer spacing.

Next we discuss the observed transformation of the acoustic
branch in ωL

−(q) into the optical one. This occurs during
the superfluid-normal fluid phase transition in the interval
0.3 � d � 0.6 (Fig. 2). It was explicitly shown by Gavoret and
Nozières [64] that Bose condensation leads to hybridization of
a single particle and collective density excitations [65,66]. In
the long-wavelength and zero-temperature limit, both spectral
densities share a common pole: the compressional sound.
Presence of a gapless mode in the single-particle spectra (but
necessarily exhausted by this mode) has been theoretically
proven. Hence, a linear dispersion should be present in
S±(q,ω) as the lowest quasiparticle excitation (in addition
to other energy resonances) if there exists off-diagonal long-
range order. This fact can explain the presence of the acoustic
branch in ωL

−(q) in the superfluid phase. When the spatial
coherence disappears due to the dimerization, the acoustic
dispersion is substituted by the gapped mode. The density
excitations are dominated by the interlayer correlations of
the dimer states. The final conclusions can be drawn after
we analyze the full spectral densities S±(q,ω) and exclude a
possibility that the current results are a numerical artifact of
the two-mode ansatz.

Dynamic structure factor. The dynamic structure factors
(67) are reconstructed from the density-density correlation
functions (10). The details of the method are provided in
Ref. [36] and are briefly reviewed in the Appendix. In general,
any reconstruction procedure is strongly influenced by the
statistical noise present in the input data [36]. However, as
demonstrated in the Appendix, the use of known frequency
power moments can significantly reduce this dependence, and
our present results demonstrate a continuous and systematic
evolution of peak positions and their half-width with the layer
spacing.

In Fig. 18 the spectral density is presented for a set of
d values. The legend indicates d and the superfluid fraction
γs . Corresponding changes in the static characteristics can
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FIG. 18. Rescaled dynamic structure factor for the symmet-
ric (left panel), S+(q,ω)/S+(q), and antisymmetric (right panel),
S−(q,ω)/S−(q), modes. Coupling D = 1. The legend indicates the
layer spacing, 0.25 � d � 0.35, and the superfluid fraction γs . For
comparison, several upper bounds for the dispersion relation are
shown: ω±(q) � ω

χ
±(q) � ω

f
±(q) � ω

μ3± (q); see Eq. (31). The ansatz
ωL

± (indicated by blue symbols) provides best agreement with the
low-frequency resonances in S±(q,ω). The solid gray line denotes
the free-particle dispersion εq = q2/2m.

be followed in Fig. 1. At d = 0.3 we are in the regime of
a strong interlayer coupling. The dispersion ωL

+(q) shows a
well-pronounced roton minimum; see Fig. 17. For comparison,
d ∼ 0.4 corresponds to the onset of dimerization and d = 0.7
corresponds to a weak interlayer coupling. In the latter case,
the spectral density approaches the result for a single layer
[36].

In Fig. 18 the low-frequency resonances in S±(q,ω) are
compared with several upper bounds for dispersion relation
(indicated by different symbols). At low temperatures (and
T = 0) they satisfy the known inequality [37]

ω±(q) � 〈ω0〉±
〈ω−1〉± � 〈ω1〉±

〈ω0〉± �
√

〈ω3〉±
〈ω1〉± (70)
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and have been introduced in Sec. IV B as the key ingredients
for the two-mode solution ωL

±(q). We observe that the upper
bounds, indeed, form the correct sequence, but the best
agreement with the peak positions in S± is provided by ωL

±(q).
This proves the advantage of the two-mode ansatz over other
approximations, where the high-energy spectral features are
not treated explicitly. A typical situation when our methods
can fail is presented by S−(q,ω) at d = 0.30. The system
has a small superfluid response (γs = 0.01). At low q the
spectrum splits into one optical (gapped) and one acoustic
mode. In this regime ωL

−(q) characterizes some averaged
weighted frequency which is not relevant for any of the modes.
In contrast, the Feynman upper bound, ω

f
−(q), derived from

the f -sum rule, is more sensitive to high-frequency spectral
features. Therefore, it correctly predicts the gap value and the
optical mode up to qa � 2. The predictions based on ωμ3 (q)
are less reliable. The corresponding dispersion is shifted to
high frequencies for all wave numbers. Based on the third
moment μ3, it gets a main contribution from a slow decaying
high-frequency tail of S±(q,ω). Its applicability is limited to
the acoustic range in S+(q,ω), where only phonon resonances
are present and the corresponding spectral density fast decays
to zero at higher frequencies. As expected, in this case all
upper bounds (70) converge to a single phonon dispersion,
being the lowest energy mode for the in-phase density
excitations.

Similar observations hold also for d = 0.32. Now the
optical mode is shifted to lower frequencies and demonstrates
a significant broadening due to the overlap with the acoustic
mode. The ωL

− ansatz predicts an acoustic branch, while
the Feynman mode predicts an optical branch. Note that,
compared to d = 0.30, now the acoustic branch carries a
significant spectral weight and the superfluid fraction increases
to γs = 0.424. This suggests that the presence of the gapless
mode is related with the superfluid component. This mode
completely dominates the spectrum when γs increases further;
see S−(q,ω) for d = 0.35.

We assume that the split of the spectra into two modes is due
to the hybridization of a single particle and collective density
excitations, as discussed above. The single-particle spectra
should be gapless in the long-wavelength limit [64] and by
sharing a common pole with the density response function is
responsible for the low-frequency acoustic branch. Below we
investigate this result more in detail.

Now we concentrate on the range of layer spacings d where
the superfluid fraction increases from zero to a finite value, and
S−(q,ω) splits into two branches. Figure 19 makes it possible
to trace how relative contributions (the spectral weights) of
the optical and the acoustic branch in S−(q,ω) change with
the spacing d. The two smallest wave numbers, where the
splitting of the modes is more prominent, are chosen. The
second peak (optical branch) completely merges with a first
peak (acoustic branch) or drops out from the spectrum at d =
0.35, when the superfluid fraction increases to 80%. In the
opposite limit, at d = 0.25,0.27 only the optical branch is
observed. Simultaneously, the system undergoes a complete
dimerization (see discussion in Sec. V A) and γs drops below
0.1%.

To confirm that the presence of the acoustic branch is due to
a superfluid component, we have performed additional calcu-
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FIG. 19. The d dependence of S−(q,ω) for D = 1 at two wave
numbers q = q0n (q0 = 2π/L): n = 1 (left) and n = 2 (right). The
legend indicates the layer spacing, 0.25 � d � 0.35.

lations for d = 0.32 (same values of temperature and chemical
potential) but “switched off” the Bose statistics (PIMC
simulations for distinguishable particles). The comparison of
S−(q,ω) for Bose and Boltzmann particles (boltzmannons) is
presented in Fig. 20. One clearly observes the effect induced
by the Boltzmann statistics: The spectrum of boltzmannons is
composed of an optical branch. Such a clear distinction of the
excitation spectra in the normal and superfluid phases can be
used for practical applications, e.g., to distinguish both phases
in experiments on ultracold gases.

To further support our argument, we have repeated sim-
ulations at a higher temperature, TBose = 2, when the Bose
system is nondegenerate with the global superfluid density
ρs = 0. The Bose statistics plays only a minor role, is limited
to few-particle exchanges, and does not lead to a global spatial
coherence. Similar to the Boltzmann case (TBoltz = 1), the
main peak position is practically q independent and shows a
gap in the long-wavelength limit; see Fig. 20. The energy reso-
nances demonstrate some thermal broadening and are slightly
shifted to lower frequencies compared to TBoltz = 1. No sign
of an additional acoustic branch is observed. Instead, by the
reconstruction we recover a new low-frequency dispersionless
mode, which can be related with the intrinsic excitations of
the dimer states. It is interesting that in the superfluid phase
this mode is not observed, as the system behavior is dominated
by the collective modes. When temperature is increased, one
expects to observe a decay of the collective modes into
combinations of two and more quasiparticles. As a result
in the lower-frequency region the dimer mode is populated.
The q independence of this mode validates that it is of a
single-particle nature.

In Fig. 21 we compare the static characteristics for the
three cases discussed above. First, there is a difference in
the average density; see panel (i) with the particle number
distribution. The highest density corresponds to the superfluid
phase. Second, among the three cases the static structure factor
S11(12)(q) reaches its maximum value (around qa ∼ 7) for
TBoltz = 1; i.e., highest spatial correlations are reached in the
nonsuperfluid phase at low temperatures. At the same time the
static response function χ−(q,0) converges nearly to zero as
q → 0. This quantity provides information of the interlayer
particle number fluctuations. Using Eqs. (57)–(61) and the
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FIG. 20. Comparison of the antisymmetric mode spectra for Bose
bilayers at T = 1 (γs = 0.42), T = 2 (γs = 0) and the bilayer with
Boltzmann statistics at T = 1 (γs = 0). Layer spacing d = 0.32 and
D = 1. The right panels show the results on the log scale. The legend
indicates the wave numbers qa. In the partially superfluid phase
(γs = 0.42) the spectra is dominated by the acoustic branch. The
optical branch is suppressed and strongly overlaps with the acoustic
one. In contrast, in the simulations with γs = 0 the spectral weight
is carried by the optical branch. At low frequencies some additional
resonance (but with a much smaller spectral weight) is observed
for TBoltz = 1. The same resonance (but significantly enhanced) is
observed also for TBose = 2. This additional dispersionless branch is
formed in the wide range of wave numbers (0 < qa < 9) and can be
interpreted as intrinsic excitations of the dimer states.

symmetry relation (ρ11 = ρ12 = ρ) we can write

kBT

2
| Re χ−(0,ω = 0)| = ρ[S11(0) − S12(0)]

=
〈
N2

1

〉− 〈N1N2〉
V

. (71)

Thus, for boltzmannons at low temperatures the instantaneous
particle numbers in both layers Nα (α = 1,2) are strongly cor-
related. This becomes possible due the interlayer dimerization
when particles from different layers are pairwise coupled.

Similar behavior is observed for Bose statistics at d � 0.30.
The superfluid density drops to zero being a clear sign of the
dimerization. The many-body exchange effects are suppressed
due to a strong reduction of the mean dimer size; see Fig. 4.
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FIG. 21. Comparison of the static properties for d = 0.32 and
D = 1. Compared are Bose bilayers at T = 1,2 and the bilayer of
boltzmannons at T = 1.

The value χ−(0,0) reduces nearly to zero, similar to the case
TBoltz = 1.

For a nonzero value of Re χ±(0,0), the excitation spectrum
should necessarily have a gapless mode in the long-wavelength
limit. For the symmetric mode this is always the case: The
acoustic branch is present for all layer spacing; see S+(q,ω) in
Fig. 18. A finite value of Re χ+(0,0) is recovered independent
on the quantum statistics and temperature; see Fig. 21(g).

For the antisymmetric mode, a finite value of Re χ−(0,0)
also depends on a gapless mode, and is observed in two cases:
in the superfluid phase (TBose = 1) and in the normal phase
(TBose = 2). In the first case, the acoustic branch is an intrinsic
property of a superfluid. For TBose = 2, it is due to a new
low-frequency dispersionless mode; see Fig. 20.

Finally, we can conclude that the long-wavelength limit of
Re χ−(q,0) makes it possible to identify either a gapless or a
gapped mode.

Model for dynamic structure factor. The static character-
istics presented in Fig. 21 are frequently used in different
approximates for the density response function. Typically,
they are included in the local-field corrector, G(q,ω), treated
in the static approximation (ω = 0). The effects of quantum
statistics, as the above comparison shows, can be equally im-
portant. A correct model of G(q,ω) should be able to reproduce
the observed splitting into acoustic and optical branches in
a partially superfluid phase. Our example demonstrates the
importance of including dynamical correlations into correct
analyses of collective excitations in superfluids. Surprisingly,
the information on these correlations is present and can be
successfully recovered from the imaginary-time dynamics of
the density operator.
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Our next goal is to find a relation between the spectral
weight of the acoustic mode, intrinsic to a superfluid phase,
and the superfluid density. The results in Fig. 19 clearly
demonstrate that such a relation should exist. To split a
contribution of the acoustic and the optical branch, we
define the following procedure. Certainly, our treatment is
approximate and its range of applicability is limited by the
wave numbers where both energy resonances do not overlap
significantly.

In the first approach, the spectral density, in the vicinity
of a second maximum (corresponding to the optical branch),
is fitted with the equation of a damped harmonic oscillator
(DHO) [67],

− Im χDHO(q,ω)

πρ
=Z(q)

8 ω ω(q)�(q)

[ω2 − ω(q)2]2 + 4ω2�(q)2
, (72)

SDHO(q,ω) = − Im χDHO(q,ω)

πρ(1 − e−βω)
. (73)

The fit parameters are the width �(q) (which defines the
damping), the dispersion ω(q), and the spectral weight Z(q).
Their T dependence, as a second argument, is omitted. The
spectral density of the optical branch is defined by SDHO(q,ω).
For us, most important is a behavior of SDHO(q,ω) in the
region where the two modes overlap, producing a local
minimum between two resonances. Here their contribution to
the dynamic structure factor S±(q,ω) should be distinguished.
Using results of the fit, we can define the spectral density of
the acoustic branch as

SA,DHO(q,ω) = S(q,ω) − SDHO(q,ω). (74)

By the integration over frequency we get the spectral weight

SA,DHO(q) =
∫ ω�

0
dωSA,DHO(q,ω)(1 + e−βω). (75)

The integration is performed up to the frequency ω�, where
SA(q,ω) drops to zero or becomes negative due to the used
approximation (74).

Alternatively, the optical mode can be approximated by the
ansatz from the MM [38],

− Im χM(q,ω)

πρω
= 1

π

μ̃2
(
ω2

2 − ω2
1

)
�(q)

ω2
(
ω2−ω2

2

)2+�(q)2
(
ω2 − ω2

1

)2 , (76)

SM(q,ω) = − Im χM(q,ω)

πρ(1 − e−βω)
, (77)

with the fit parameters ω1(2)(q), μ̃2(q), and �(q). By its con-
struction the density response function (76) exactly satisfies
five frequency power moments {μ̃0,0,μ̃2,0,μ̃4,0},

μ̃k =
∫ ∞

−∞
dωωk

[
− Im χM(q,ω)

πρ ω

]
. (78)

A resonance position is constrained to ω1(q) � ω(q) � ω2(q)
and depends on the frequencies ω2

1 = μ̃2/μ̃0 and ω2
2 = μ̃4/μ̃2.

The role of the damping �(q), or, more generally, the
Nevanlinna parameter, is to shift a resonance position within
the interval [ω1,ω2], rescale the spectral weight defined the
frequency integral of (77), and define a half-width of the
resonance peak, also influenced by the width of the interval
[ω1,ω2].
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FIG. 22. Decomposition of the renormalized dynamic structure
factor, S̃−(q,ω) = S−(q,ω)/S−(q) at qa = 2π/L, into the acoustic
and the optical branch: S̃−(q,ω) = SA(q,ω) + SO (q,ω). The high-
frequency optical branch is fitted with the MM ansatz: SO = SM

[Eq. (77)]. The spectral weight of the acoustic mode SA is compared
in Table I with the superfluid fraction γs . The legend indicates γs at
different layer spacing d .

In our fit procedure, as a first approximation for the power
moments in Eq. (76), we use the results obtained from the
DHO: SDHO is set to zero below the acoustic resonance at
ωA(q),

SA(q,ω) =
{
S−(q,ω), ω � ωA(q),

S−(q,ω) − SDHO(q,ω), ω > ωA(q),
(79)

μ̃0/2 = 〈ω−1〉S− − 〈ω−1〉SA,DHO , (80)

μ̃2/2 = 〈ω1〉S− − 〈ω1〉SA,DHO , (81)

μ̃4/2 = 〈ω3〉S− − 〈ω3〉SA,DHO , (82)

where S−(q,ω) is the reconstructed spectral density with the
stochastic optimization (see the Appendix), SA,DHO(q,ω) is
the ansatz for the acoustic mode obtained with the DHO, and
〈ωk〉SA,DHO

is the contribution of the acoustic mode to different
sum rules. Once {ω1(2)} are fixed by this procedure (and
correspondingly the frequency interval for the resonance of the
optical branch), we proceed to a numerical fit using �(q) and
μ̃2 as free parameters. As a next step, {�(q),μ̃2} are kept fixed,
and the frequencies {ω1(2)} are varied. In the final iteration all
parameters are allowed to vary, but the convergence is fast, as
the fit parameters are already near their optimal values.

Once the MM fit is constructed, we reevaluate the spectral
density of the acoustic branch by replacing SDHO with SM in
Eq. (79).

The efficiency of this fit procedure for the high-frequency
part of the spectrum is demonstrated in Fig. 22. In all cases
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TABLE I. Dipole coupling D = 1.0. The d dependence of γs and the relative spectral weight of the acoustic mode SA(qn) =∫∞
−∞ SA(qn,ω)dω/S−(q) at qn = 2πn/L (n = 1,2). The last four columns represent the fit parameters for the optical branch [Eqs. (76)

and (77)]. The superfluid fraction has a statistical error δγs = 0.007. The second moment μ̃2 enters as a fit parameter in Eq. (76) and is limited
by the upper bound, μ̃2(q) < �

2q2/mS−(q) if SMM(q,ω) � S−(q,ω),∀ ω. The static structure factor is rescaled as S̃−(q) = 10S−(q).

d γs SA(q1) SA(q2) ω1(ω2) μ̃2 � S̃−(q1)

0.30 0.101 0.0684 0.106 20.51 (76.74) 42.96 558.8 0.107(6)
0.31 0.251 0.203 17.01 (46.28) 35.08 105.9 0.147(7)
0.32 0.424 0.516 0.523 14.06 (36.54) 17.88 64.86 0.238(5)
0.335 0.692 0.862 0.731 20.36 (38.64) 6.55 64.64 0.384(5)
0.35 0.790 0.928 0.860 21.95 (40.39) 3.67 47.31 0.466(4)
0.375 0.886 0.955 0.921 17.35 (39.60) 1.90 40.00 0.541(3)

the MM ansatz quite accurately reproduces an asymptotic
high-frequency decay of S−(q,ω). This is guaranteed by the
fulfillment of the sum rule, μ̃4/2 ≈ 〈ω3〉−. A contribution of
the acoustic branch in this moment is small.

Finally, in Table I we compare a spectral weight of
the acoustic branch, SA(q), with the superfluid fraction γs .
Both SA(q) and the static structure factor S−(q) increase
progressively with the superfluid fraction γs . The used fit
parameters for the high-frequency part of the spectrum (76)
are also included.

In Fig. 23 we analyze our results more in detail. The panels
(a) and (c) show the d dependence of the static density response
function Re χ±(q1,0) and S±(q1) taken at the wave number
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FIG. 23. (a),(c) The d-dependence of the renormalized static
structure factor, S±(q1,d) = S±(q1,d)/S±(q1,d = 0.7), the static
response function χ̃±(q1,d) = Re χ±(q1,d)/ Re χ±(q1,d = 0.7) for
the (anti)symmetric mode, and of the square of the super-
fluid fraction γ 2

s (d). The normalization factors: S±(q1,d = 0.7) =
0.076 63(0.067 41) and 1

2 Re χ±(q1,d = 0.7) = 0.021 12(0.017 04).
(b) The integrated spectral weight of the acoustic branch, SA(qn,d),
versus γs . The considered wave numbers: qn = 2πn/L (n = 1,2).
The system size: L = 9. (d) Same as in panel (c) plotted versus γ 2

s (d)
to demonstrate a linear dependence.

q1 = 2π/L (L = 9). For comparison we also plot the square
of the superfluid fraction γ 2

s (d).
For the symmetric mode, we can easily identify two regions

characterized by a strong and a weak d dependence. For
d � 0.32, the superfluid fraction quickly drops to zero from
50%. As discussed in Sec. V A, in this regime thermodynamic
properties are dominated by properties of a single-dimer state.
In contrast, for d > 0.32 a weak d dependence is observed.
The interlayer coupling effects are screened by a homogeneous
superfluid phase within each layer.

More interesting features are observed for the asymmetric
mode; see Fig. 23(c). The system response to compressibility
modes with a phase shift quite closely reproduces the d

dependence of the superfluid response. After rescaling the
plotted quantities converge to a single curve with the d-
dependent slope which reproduces the square of the superfluid
fraction γ 2

s (d). The similarity of S−(q) and χ−(q) is not
surprising, as both values at the smallest wave number q1

cannot differ significantly from S−(0) and Re χ−(0,0) related
by the compressibility sum-rule (57)–(61), independent on the
many-body correlation effects and quantum statistics. This
dependence is demonstrated more explicitly in panel (d),
where a nearly linear dependence on γ 2

s (d) is reported in a
wide range of layer spacing. The plotted data corresponds to
0.27 � d � 0.7.

The excitation spectrum of the antisymmetric mode is also
influenced by the superfluidity. In a partially superfluid phase
it splits into one acoustic and one optical branch. The relative
spectral weight of the acoustic mode SA (taken at two smallest
wave numbers; see Table I) is plotted in Fig. 23(b) versus γs (d).
Almost a linear dependence on γs is observed, validating that
presence of the acoustic branch is directly related with the
superfluid density. The acoustic branch can either dominate
the excitation spectra, S−(q,ω), when γs → 1, or completely
vanish in the opposite limit, when it is substituted by the
spectrum of the normal component. In the latter case, a finite
energy gap develops in the spectrum in the long-wavelength
limit; see Fig. 18.

Our results allow us to conclude that the out-phase density
excitations, once experimentally measured, can be efficiently
used as a probe for the inlayer superfluidity.

C. Strong coupling D = 5.5

Dynamic structure factor. Now we discuss the case of strong
dipole coupling. It can be realized by the increase of either the
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FIG. 24. The low-frequency modes, ωL
±(q), and their spectral

weights, SL
±(q,ω), for D = 5.5. Both solutions demonstrate an

acoustic behavior in the long-wavelength limit for d > 0.75. An
optical branch is present in the out-of-phase mode, ωL

−(q), for
d � 0.75. Its behavior for qa < 2 and the gap value is better
described by the Feynman ansatz ω

f
−(q) (denoted by solid dots for

d = 0.6,0.65,0.7). The legend indicates the layer spacing. Different
colors are used to distinguish a superfluid (γs � 0.9 and d � 0.8) and
a normal phase (γs = 0 and d � 0.65).

dipole moment, the particle mass, or the inlayer density. Many
features in the excitation spectrum observed for D = 1 are also
reproduced here. A key difference is the onset of the inlayer
crystallization below d ∼ 0.7; see Fig. 9. A sign of a triangular
Wigner lattice can be observed in the density snapshots in
Fig. 8; however, the temperature is not low enough and many
structural defects are present.

The dispersion relations for the symmetric and antisym-
metric density modes from the two-mode ansatz are compared
in Fig. 24. For d > 0.75 both solutions predict the acoustic
dispersion for qa � 2 and a roton feature around qa ∼ 2π .
When the interlayer spacing reduces below d ≈ 0.8, the roton
gap is also reduced and saturates for d < 0.7. This behavior is
different from the case D = 1, where a continuous evolution
of the roton parameters with d was observed, and the existence
of the roton was attributed to formation of bound dimer states.
In the present case, the roton is present also at large d (e.g.,
d = 1); hence, its origin is the intralayer correlations which
are enhanced at low d. Indeed, the pair distribution function
g11(r) in Fig. 9 shows formation of a quasi-long-range order
at d � 0.7, being a precursor for crystallization. The spatial
ordering is also reflected in the increased spectral weight
around the roton wave number; see SL

+(q) in Fig. 24.
In Fig. 25, similar to Fig. 18, we perform comparisons of

the reconstructed dynamic structure factor S±(q,ω) with the
upper bounds (70). The best agreement again is given by the
two-mode ansatz ωL

±(q). At low wavelengths the symmetric
mode remains acoustic independent on d and the superfluid
fraction. The spectrum of the antisymmetric mode shows
similar features as for D = 1. In the superfluid phase with
γs > 0.8 only one acoustic branch is present. In the partially
superfluid phase (see d = 0.71,0.70 in Fig. 25), both an
acoustic and an optical branch are observed simultaneously.
When γs is reduced, the spectral weight continuously transfers
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FIG. 25. The same as in Fig. 18 for D = 5.5. The legend indicates
the layer spacing, 0.65 � d � 0.75, and the superfluid fraction γs .
The symbols show three upper bounds {ωχ

±,ω
f
±,ω

μ3± } and the low-
energy mode ωL

± is indicated by the blue symbols. The solid gray line
denotes the free-particle dispersion εq = q2/2m.

to the optical branch. In the normal phase with γs = 0 only the
optical branch remains; see d = 0.65 in Fig. 25. Here the same
scenario applies as for D = 1. With a loss of spatial coherence,
the antisymmetric mode probes the intrinsic properties of
dimer states. The reduction of d increases the binding energy
and the interlayer coupling. As a result, the gap value is
increased. See the long-wavelength limit of ωL

−(q) in Fig. 24
and, in more detail, the d dependence of S−(q,ω) in Fig. 26.

Next we repeat our analyses to find a relation between the
superfluid response and the spectral weight of the acoustic
mode SA. The high-frequency optical mode is fitted with
the DHO (73) and the MM ansatz (77) following the same
procedure as for D = 1. The range of layer spacing and the
dynamic structure factor used for these analyses is illustrated
by Fig. 26. The results are presented in Table II and Fig. 27(b).
We confirm a linear dependence between γs(d) and SA(q1,d)
[and also SA(q2,d) used as an independent test].

For a nonvanishing superfluid response (γs > 0.1), a linear
dependence, but now on γ 2

s (d), is observed for the static
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The legend indicates the layer spacings: 0.60 � d � 0.725. Dipole
coupling D = 5.5.

structure factor S−(q1) and the density response function
χ−(q1). Both are taken at the smallest wave number q1, when
they are mutually related via the particle number fluctuations
(71). In the normal phase at d < 0.68, the interlayer particle
number fluctuations are significantly reduced due to the
pairwise coupling in the dimer states. Hence, in a partially
superfluid phase the density fluctuations are mainly due
to the superfluid component. This explains the observed
dependencies in Figs. 27(c) and 27(d).

Similar results for the symmetric mode are presented in
Fig. 27(a). In contrast, they capture only the collective proper-
ties of the dimer states and the inlayer density fluctuations,
which are not much sensitive to whether the dimer states
are weakly or strongly bound. Some nonmonotonic behavior
observed in the range 0.68 � d � 0.85 is related to the phase
transition from a superfluid to a normal phase and the onset of
formation of a Wigner-type lattice with defects.

Similar to the case D = 1, we repeat the test with the
distinguishable boltzmannons to prove that the origin of the
acoustic branch is a superfluid component. Both spectra are
taken at the same temperature and layer spacing (d = 0.725)
and are compared in Fig. 28. The Boltzmann case shows an
optical branch with a finite gap in the long-wavelength limit.
Difference in the quantum statistics is also reflected in the
static properties; see Fig. 29. The enhanced amplitude of the
peaks in g11(12)(r), S11(12)(q), χ11(12)(q), and χ+(q) testifies that
in the Boltzmann case particles positions are more correlated.
This can be interpreted as an earlier onset of crystallization,
which starts at a larger layer spacing compared to the bosonic
case.

Spectrum in the phonon and roton regions. Now we analyze
in more detail the d dependence of the phonon and roton
resonances. Here we combine the discussion of moderate
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FIG. 27. (a),(c) The d dependence of the renormalized static
structure factor, S±(q1,d) = S±(q1,d)/S±(q1,d = 0.7), the static
response function χ̃±(q1,d) = Re χ±(q1,d)/ Re χ±(q1,d = 0.7) for
the in-phase and out-of-phase modes, and the square of the superfluid
fraction γ 2

s (d). (b) The integrated spectral weight of SA(q1,d) vs γs .
(d) Same as in panel (c) plotted vs γ 2

s (d) to demonstrate a linear
dependence. The wave number q1 corresponds to the smallest wave
number in the simulation 2π/L (L = 9). The normalization values:
S±(q1, d = 1.0) = 0.037 75(0.033 34) and 1

2 Re χ±(q1, d = 1.0) =
0.5874 × 10−2(0.4629 × 10−2).

(D = 1) and strong (D = 5.5) coupling, as they demonstrate
similar trends. To extract resonance positions, we use the
dispersion relation ωL

+(q) derived from the sum rules and
the full dynamic structure factor S+(q,ω). The phonon and
roton spectrum is analyzed at the wave numbers qn = 2πn/L

(n = 1,2) and qn = 2πn/L (n = 9,10), correspondingly. The
results are presented in Figs. 30 and 31.

In Fig. 30(a) positions of the phonon resonances and their
half-width in S+(q,ω) are indicated by the symbols with error
bars. There is a nice agreement with the d dependence of
the two-mode ansatz, ωL

+(q,d), shown by a solid line. The
increase of the acoustic sound speed c+(d) for d � 0.4 is
directly correlated with the reduction of the superfluid response
γs(d) and formation of bound dimer states. After a transition
into a normal phase at d � 0.28, the value of the sound speed
saturates.

TABLE II. Same as in Table I for the dipole coupling D = 5.5. The static structure factor is rescaled as S̃−(q) = 10S−(q).

d γs SA(q1) SA(q2) ω1(ω2) μ2 � S̃−(q1)

0.68 0.0165 0.064 13.66 (16.71) 29.53 33.21 0.178(2)
0.70 0.157 0.142 0.135 10.07 (16.08) 22.30 25.99 0.217(1)
0.71 0.348 0.355 0.269 9.81 (15.87) 19.35 21.91 0.247(2)
0.725 0.652 0.618 0.539 8.5473 (14.28) 10.89 20.80 0.283(1)
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FIG. 28. Comparison of the antisymmetric mode spectra for a
bosonic bilayer at TBose = 1 [γs = 0.625(5)] and TBose = 2 (γs = 0)
and a bilayer with Boltzmann statistics at TBoltz = 1 (γs = 0). Layer
spacing d = 0.725 and D = 5.5. The right panels show the results
on the log scale. The legend indicates the wave numbers qa. In
the superfluid system (TBose = 1) the spectra are dominated by the
acoustic branch. For the Boltzmann case (γs = 0) the spectral weight
is carried by the optical branch. For TBose = 2 a new dispersionless
branch is formed around �ω/E0 ∼ 6, most probably due to intrinsic
excitations of the dimer states.

At strong coupling, D = 5.5, the dimerization and the
superfluid-normal phase transition does not show some pro-
nounced d dependence; see Fig. 31(a). The sound speed of
the symmetric mode shows a nonmonotonic behavior with
a local minimum around d ∼ 0.7. The absolute value of c+
changes within 15%. Below d ∼ 0.7 the system goes into the
normal phase and γs reduces to zero. Note that c+(d) should
reproduce the d dependence of the static response function and
the static structure factor shown in Fig. 27. This follows from
the compressibility sum rule,

lim
q→0

S±(q)

kBT
= lim

q→0

| Re χ±(q,0)|
2ρ

= κ±ρ = 1

mc2±
. (83)

The last equality is written in the assumption that as q → 0
two upper bounds converge to the acoustic dispersion, i.e.,
ω

χ
±(q) ≈ ω

f
±(q) ≈ c±q. Note that once the spectrum contains

an additional mode (as the antisymmetric mode with an optical
branch), the estimate of the sound speed from Eq. (83) will
be wrong. For the symmetric mode the dispersion contains
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Boltzmann statistics.

a single acoustic branch and Eq. (83) remains valid. As a
result, a local maximum in S+(q) and χ+(q) around d ∼ 7,
as observed in Fig. 27, translates into a local minimum in
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FIG. 30. The d dependence of the phonon and roton parameters
of the symmetric mode S+(q,ω) for D = 1.0. (a) The position of the
maximum in S+ with its half-width (shown as error bars). The solid
line is the prediction from the two-mode ansatz ωL

+. (b),(c) The energy
resonances and their half-width (symbols with error bars) in the roton
region, qn = 2πn/L (n = 9,10). The solid line with bold symbols is
a fit to ωL

+(q) by the roton-ansatz εr
+ (84). (d) The d dependence of

the roton wave number qr
+ from (84).
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FIG. 31. Similar analyses as in Fig. 30 for D = 5.5.

c+(d). For D = 1, by decreasing d both S+(q) and χ+(q)
show a monotonic decrease; see Fig. 23. In this case, c+(d)
monotonically increases being in agreement with (83).

The acoustic sound speed for the antisymmetric mode
can be determined from (83) when the dispersion relation
is linear and no optical branch is present. This holds in the
superfluid phase with γs � 0.8. For smaller γs the spectrum
splits into one acoustic and one optical branch, and Eq. (83) is
invalid.

Next, in Figs. 30 and 31(b)–31(d) we show the d depen-
dence of the roton parameters: the roton frequency (value of
the roton gap) and the roton wave number qr . We compare the
resonances ω+(q) in S+(q,ω) and their half-width (indicated
by the error bars) with the two-mode ansatz ωL

+(q) in the
roton region at the wave numbers qn = 2πn/L (n = 9,10).
In addition, we plot the curve εr (qr ) (solid lines with bold
symbols), a fit to ωL

+(q) around qr ,

ωL
+(q) = εr

+(qr
+) + (q − qr

+)2

2mr+
. (84)

The numerical results for the roton frequency and the fit to the
two-mode ansatz (84) are in reasonable agreement. We observe
a systematic trend: The resonances in the reconstructed spectra
are shifted to lower frequencies and predict a more deep roton
minimum, typically by 10% in the superfluid phase, and by up
to 50% in the normal phase, when strongly bound dimer states
are formed [see d � 0.3 in Figs. 30(b) and 30(c) and d � 0.7 in
Figs. 31(b) and 31(c)]. A discrepancy between the resonances
in S+(q,ω) and ωL

+(q) starts to increase quite rapidly beyond
the roton region; see the left columns in Figs. 18 and 25.

For both coupling strengths we observe a systematic
reduction of the roton gap at low d, which follows the reduction
of the superfluid density. The roton energy saturates after
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FIG. 32. Dynamic structure factors S±(q,ω) and S11(q,ω) =
1
2 [S+(q,ω) + S−(q,ω)] for D = 1. Each spectral density is identified
by a color as specified in the legend. Left and right columns show
the results for the phonon (qa = 0.70) and roton (qa = 6.28) wave
numbers, respectively. Vertical arrows indicate positions of the peaks
predicted by the sum-rules analyses: ωL

+(q) (brown), ωL
−(q) (green),

and ω
f
−(q) (gray, shown only for qa = 0.70).

transition in the normal phase. For D = 1 this happens below
d ∼ 0.3 and for D = 5.5 it happens below d ∼ 0.7.

The roton wave number shows just an opposite trend; see
Figs. 30(d) and 31(d). It decreases during the transition from
a normal to a superfluid phase.

An excitation of the symmetric and antisymmetric mode
requires a special experimental setup which induces the
in-phase and the out-phase density fluctuations in both layers.
More common is a direct probe of a single layer corresponding
to the inlayer partial structure factor, S11(q,ω) = 1

2 [S+(q,ω) +
S−(q,ω)]. The comparison of three spectral densities is
presented in Figs. 32 and 33. Several layer spacings are
considered and two wave numbers: for acoustic phonons and
a roton. The vertical arrows indicate the resonances predicted
by the two-mode ansatz, ωL

±(q). For the antisymmetric mode

at qa = 0.70 we also show the Feynman ansatz, ω
f
−(q).

It provides a better agreement with the resonances of the
optical branch in S−(q,ω) in the partially superfluid phase;
see d = {0.3,0.31} for D = 1 and d = {0.6,0.65,0.70} for
D = 5.5.

The presented comparison clearly shows how the reso-
nances in S11(q,ω) can be explained in terms of the symmetric
and antisymmetric density excitations. For d � 0.31 (D = 1)
and d � 0.7 (D = 5.5) the contribution of the symmetric
and antisymmetric mode is well distinguished. In particular,
the observed high-frequency tail in S11(q,ω) (in the phonon
region) is due to the out-of-phase density excitations. In
contrast, the sharply peaked acoustic resonances originate
from the in-phase excitations and are present for all d.

013603-23



A. FILINOV PHYSICAL REVIEW A 94, 013603 (2016)

10−7

10−5

10−3

10−1

0 10 20 30 40 50 60
h̄ω/E0

d = 0.6
10−7

10−5

10−3

10−1
d = 0.65

10−7

10−5

10−3

10−1
d = 0.7

10−7

10−5

10−3

10−1
d = 0.8

10−7

10−5

10−3

10−1
d = 1.0qa = 0.70

10−5

10−3

10−1

0 10 20 30 40 50 60
h̄ω/E0

d = 0.6
10−5

10−3

10−1
d = 0.65

10−5

10−3

10−1
d = 0.7

10−5

10−3

10−1
d = 0.8

10−5

10−3

10−1
qa = 6.28 d = 1.0

S11

S+

S−

FIG. 33. Same as in Fig. 32 for D = 5.5.

At large layer spacing, i.e., d = 0.6 (D = 1) and d = 1
(D = 5.5), a clear distinction of both modes in S11(q,ω)
is problematic. The corresponding spectral densities signifi-
cantly overlap and the resonances are in a close vicinity. In this
regime the interlayer dynamic structure factor vanishes, i.e.,
S12(q,ω) � S11(q,ω), and both spectra are similar, S+(q,ω) ≈
S−(q,ω).

The layer spacing d = 0.35 (D = 1) and d = 0.8 (D =
5.5) represents an intermediate case. The acoustic resonances
in S+ and S− nearly coincide (see the left panel with
qa = 0.70), but both spectra are well distinguished in the
roton region (see the right panel, qa = 6.28). A similarity
in the acoustic range is related, as was discussed above, with
the hybridization of the collective density excitations with the
single-particle spectra in a superfluid phase.

D. Weak coupling D = 0.1

A weakly coupled regime is currently accessible with the
experimental setups for ultracold dipolar systems [58–60].

First, we note an order of magnitude larger compressibility
compared to the strong and moderate coupling; see Fig. 16.
The inlayer density increases fast below d ≈ 0.2 due to the
dimerization identified by formation of a peak in g12(r) (see
Fig. 12) and a slight reduction of the superfluid fraction (see
Fig. 13).

The dispersion relation predicted by the two-mode ansatz
is presented in Fig. 34. For all layer spacing (d � 0.1) we
observe no sign of rotonization similar to D = 1(5.5). In the
former case the roton feature was always accompanied by the
oscillations in the pair distribution function g11(r). This is
not the case here (see Fig. 14); nor do we observe an optical
branch. The spectrum of the symmetric and antisymmetric
mode remains acoustic for all considered d values. The
amplitude of the dimerization peak in g12(r) can be relatively
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FIG. 34. The low-frequency modes, ωL
±(q), and their spectral

weights, SL
±(q,ω), for D = 0.1. Both solutions demonstrate an

acoustic behavior in the long wavelength limit for d � 0.1. Formation
of an optical branch at these layer spacings is not observed due to a
high superfluid fraction, γs > 0.9.

large (see d = 0.1 and d = 0.12 in Fig. 12); however, the
observed long decaying tail of the dimer distribution gd results
in a significant overlap of the adjacent dimer states. The net
effect is that the inlayer spatial coherence is not perturbed
and the system remains in the superfluid phase. Based on
our previous analyses for D = 1(5.5), we expect that the
acoustic branch will completely dominate the spectrum of
the antisymmetric mode once γs � 0.8. In the present case,
even for the smallest (considered) layer spacing d = 0.1 the
superfluid fraction does not drop below 0.93. Hence, to observe
an optical branch and probe intrinsic properties of dimer states,
the layer spacing should be reduced further. According to the
introduced coupling strength U0 of a single-dimer problem
(63), the interlayer spacing d = 0.1 and the inlayer coupling
D = 0.1 used in the many-body simulations correspond to
U0 = 1. As Fig. 4 shows, in this regime the interlayer binding
dimer energy is significantly reduced, whereas the dimer size
diverges to several inlayer interparticle spacings.

Presence of a second layer has a largest effect of the
antisymmetric mode. By lowering d, the dispersion relation
ωL

−(q) shifts to higher frequencies, and its tangent in the low-q
range and the acoustic sound speed increases; see Fig. 34. The
net effect is a systematic reduction of the spectral weight; see
the d dependence of SL

−(q) in Fig. 34. In contrast, the interlayer
coupling shows a minimal influence on the symmetric mode
dispersion ωL

+(q) and SL
+(q). Such a result is expected when the

interlayer coupling does not enhance the inlayer correlations,
being opposite to the case D = 1(5.5) when the reduction of
d has led to the oscillations in g11(r).

In Fig. 35 we perform comparisons of the reconstructed
dynamic structure factor S±(q,ω) with the upper bounds
for the dispersion relation. In the acoustic range ω

f
±(q)

and ω
χ
±(q) converge to a single dispersion relation with a

linear q dependence. Beyond the acoustic domain, similar to
D = 1(5.5), the two-mode solution ωL

±(q) provides the best
agreement with the resonances in S±(q,ω). On the contrary,
the largest deviations are found for ω

μ3
± (q), specifically for
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FIG. 35. Rescaled dynamic structure factor for the symmetric
(left), S+(q,ω)/S+(q), and antisymmetric (right), S−(q,ω)/S−(q),
modes. Coupling: D = 0.1. The legend indicates the layer spacing,
0.1 � d � 0.2, and the superfluid fraction γs . For comparison,
several upper bounds for the dispersion relation are shown: ω±(q) �
ω

χ
±(q) � ω

f
±(q) � ω

μ3± (q); see Eq. (31). The ansatz ωL
± (indicated

by blue symbols) provides best agreement with the low-frequency
resonances in S±(q,ω). The solid gray line denotes the free-particle
dispersion εq = q2/2m.

small d and for the antisymmetric mode. As discussed above,
the main contribution to the 〈ω3〉-sum rule is given in the
high-frequency behavior of the spectral density. At low d (e.g.,
d = 0.10,0.12) a slow decaying high-frequency asymptotic
behavior of S−(q,ω) can be resolved on the log scale.

For all d the system remains in a superfluid phase with
γs > 0.9 and, therefore, no sign of an optical branch is
observed in S−(q,ω). In more detail, the d dependence, for
the two smallest wave numbers, is shown in Fig. 36. For low d

there is a systematic shift of the acoustic resonances to larger
frequencies. This testifies to an increase of the acoustic sound
speed.

We repeat our analyses for distinguishable boltzmannons to
check a relation between an optical branch and a superfluidity.
Figure 37 presents the spectrum for the antisymmetric mode.
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FIG. 36. The d dependence of S−(q,ω) for D = 0.1. Used wave
numbers q = q0n: n = 1 (left) and n = 2 (right). The legend indicates
the layer spacing: 0.1 � d � 0.2.

The simulations with the Bose statistics are performed at the
two temperatures, TBose = {1,3.3}, and show a single acoustic
branch. For TBose = 3.3 we observe a systematic shift of the
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FIG. 37. Comparison of the antisymmetric mode spectra for a
bosonic bilayer at TBose = 1 (γs = 0.93) and TBose = 3.3 (γs = 0)
and a bilayer with Boltzmann statistics at TBoltz = 1 (γs = 0). Layer
spacing: d = 0.1 and D = 0.1. The right panels show the results on
the log scale. The legend indicates the wave numbers qa. For the Bose
statistics only the acoustic branch is observed. Both the acoustic and
the optical branch are present in the Boltzmann case.
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FIG. 38. Same as in Fig. 37 for the symmetric mode.

resonances to lower frequencies and reduction of the acoustic
sound speed.

On the contrary, for the Boltzmann case we observe a
splitting into two branches for qa � 1.4. The lower branch
is dispersionless with the energy �ω/E0 ∼ 3.5. A weak
dependence of the wave number indicates its relation with
intrinsic excitations of the interlayer dimers. The second
high-frequency branch is acoustic with the sound speed
which exceeds the one for the Bose system. A shift of the
“dimer mode” to a low-frequency domain can be explained
by a significantly reduced dimer binding energy compared to
D = 1(5.5); see εd in Fig. 4 for U0 = 1. The dimer binding
energy can be also estimated from εT (d) in Figs. 3 and 10 and
ε(d)(rc,γ r3) in Fig. 15.

For the boltzmannons a similar splitting into two branches
(“dimer” and acoustic), but not so pronounced, is also observed
in the symmetric mode spectra; see Fig. 38.

In the Boltzmann case for qa < 1.4, both modes collapse
into a single resonance; see qa = 0.70 in Fig. 37. In contrast to
D = 1(5.5), presence of an optical gap in the long-wavelength
limit here cannot be clearly confirmed. At the smallest wave
number (qa = 0.70) only a single resonance is recovered in
the symmetric and antisymmetric modes; see Figs. 37 and 38.
To check whether the spectrum splits again into two branches
at lower q, the simulations with a significantly larger system
size (to access smaller wave numbers) are required.
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FIG. 39. Comparison of the static properties for d = 0.1 and D =
0.1. Compared are a bosonic bilayer at the three temperatures, TBose =
{1,2,3.3}, and a bilayer with Boltzmann statistics at TBoltz = 1.

The presence of the low-frequency dispersionless mode for
TBolt = 1 is related to a strong interlayer coupling identified by
a peak g12(0) in Fig. 39(d). In the superfluid phase we observe
a similar value of g12(0), but the “dimer mode” is masked
(or substituted) by the collective excitations of a superfluid
component and acoustic phonons.

The effect of quantum statistics on the static properties can
be followed in detail in Fig. 39. The Bose case is presented
by three temperatures which cover the transition from the
superfluid to the normal phase.

First, in Fig. 39(a) we note a significantly higher inlayer
density for the Bose system, by 20%–35% compared to the
boltzmannons (for the same chemical potential μ). The inlayer
static characteristics, g11(r) and S11(q), remain structureless
for all temperatures. No qualitative changes are observed
during the superfluid-normal transition by variation of TBose.
In contrast, in the Boltzmann case we observe an enhancement
of the peak amplitude of χ11(12)(q) and their symmetrized
counterparts, χ±(q). The effect is more pronounced for the
symmetric mode and can be explained by the Kramers-Kronig
relation, which states the relation between the static limit of
the density response function and the low-frequency behavior
of the spectral density,

−Re χ±(q,0)

2
=
∫ ∞

−∞

1

ω
S±(q,ω)dω. (85)

The observed enhancement of χ±(q) for the boltzmannons
can be uniquely identified with an additional low-frequency
dispersionless (“dimer”) branch in S±(q,ω), which is not
observed in the Bose system; see Figs. 37 and 38.

In both cases, up to the wave number qa ∼ 8 the spectral
weight of the “dimer” mode is comparable with the one of
the main excitation branch, specified by the Bogolyubov-type
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FIG. 40. The d dependence of the low-frequency resonances
ω±(q) [maximum in S±(q,ω)] and their half-width for D = 0.1. The
wave numbers qn = 2πn/L in the phonon (n = 1,2) and “roton”
(n = 9) domain are considered. Predictions from the two-mode ansatz
ωL

± are indicated by solid lines.

dispersion ω±(q) ∼ ωL
±(q) (Fig. 34). As a result, a pronounced

difference between Bose and Boltzmann statistics can be
observed in χ±(q) in Figs. 39(g) and 39(h).

Spectrum in the phonon and roton region. Now we analyze
the d dependence of the resonances in the range of phonon,
qn = 2πn/L (n = 1,2), and “roton” wave numbers. For D =
0.1 the roton feature is absent; therefore, as the “roton” wave
number we use similar values as for D = 1(5.5), i.e., qn =
2πn/L (n = 9,10).

To extract resonance positions, we use the dispersion ωL
±(q)

and the dynamic structure factor S±(q,ω). The results are
presented in Fig. 40.

As Figs. 40(a) and 40(b) show, when d is reduced the
phonon resonances are shifted to higher frequencies, i.e., the
acoustic sound speed c±(d) increases. The effect is larger
for the antisymmetric mode. The increase of c±(d) means
an increase of the intralayer coupling. The latter originates
from two effects. First, from the density increase (see Fig. 16)
and, second, from the spatial localization of particles due to
onset of the interlayer dimerization below d ∼ 0.2 [see g12(r)
in Fig. 14].

The phonon resonances ω±(q) and their half-width recov-
ered from S±(q,ω) are indicated by symbols with error bars.
The resolved d dependence is found to be in a nice agreement
with the two-mode ansatz, ωL

±(q,d), shown by solid lines. A
rapid increase of c−(d) for d � 0.15 is directly correlated with
the reduction of the superfluid fraction γs(d) and enhancement
of the interlayer coupling. Formation of the dimerization
peak g12(0) is observed in Fig. 39; however, in contrast to
D = 1(5.5), the dimer states cannot be resolved individually,
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FIG. 41. (a),(c) The d dependence of the renormalized static
structure factor, S±(q1,d) = S±(q1,d)/S±(q1,d = 0.5), the static re-
sponse function χ̃±(q1,d) = Re χ±(q1,d)/ Re χ±(q1,d = 0.5) for the
symmetric and antisymmetric mode, and the square of the superfluid
fraction γ 2

s (d). (b) The dispersion ωL
±(q) from the two-mode ansatz

at two layer spacings. (d) The d dependence of the acoustic sound
speed obtained from the linear fit, ωL

±(q,d) = c±(d)q, for qa � 2.
The increase of d has a larger effect on the antisymmetric mode
(see also Fig. 34). The normalization values: S±(q1,d = 0.5) =
0.2239(0.2045) and Re χ±(q1,d = 0.5)/2 = 0.092 09(0.082 96).

as in each layer the system stays in a homogeneous superfluid
phase.

The interlayer coupling also influences the “roton” region,
see Figs. 40(c) and 40(d). The resonances of the antisymmetric
mode shift to higher frequencies. There is a good agreement
between ω−(q9) and ωL

−(q9). As Fig. 35 (right panels) shows,
ωL

−(q) remains quite accurate, practically, for all d and in a
wide range of wave numbers. In contrast, ωL

+(q) agrees with
the resonances in S+(q,ω) only for d � 0.2. As Fig. 35 (left
panels) shows, at small d around the “roton” wave number
and beyond, the spectrum splits into two branches. In this case
ωL

+(q) becomes an estimate of their average. The lower branch
can be considered as a continuation of the acoustic dispersion.
Its formation is due to decay processes of the quasiparticles
with the quadratic dispersion q2/2m�. This splitting is the
main reason for the discrepancy between ωL

+(q) and ω+(q) as
observed in Fig. 40(c) for d � 0.15.

Next, in Figs. 41(a) and 41(c) we analyze the d dependence
of the static structure factor and the static response function
in the long-wavelength limit. Both the symmetric and the an-
tisymmetric spectra show only the acoustic branch; therefore,
the compressibility sum rule (83) can be applied to determine
the isothermal sound speed. The interlayer dimerization, as
observed in g12(r) at d � 0.2, results in a strong reduction of
both S±(q1) and χ±(q1) at the smallest wave number q1. In
this case Eq. (83) predicts a strong enhancement of c±. This
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FIG. 42. Dynamic structure factors S±(q,ω) and S11(q) for D =
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number qa = 0.70 (qa = 6.28). Vertical arrows indicate positions of
the peaks predicted from the sum rules: ωL

+(q), ωL
−(q), and ω

f
−(q).

result is in a full agreement with the independent estimate
obtained from the fit, ωL

±(q) ≈ c±q; see Figs. 41(b) and 41(d).
The effect is more pronounced for the antisymmetric mode.

The dispersion relation ωL
±(q,d) for several layer spacings

is presented in Fig. 41(b). Two modes corresponding to the
same d value are indicated by the same color: ωL

− (upper curve)
and ωL

+ (lower curve). Again a more strong d dependence is
demonstrated by ωL

−(q).
We can conclude that while the interlayer dimerization has

only a little effect the inlayer superfluidity, it has a strong
influence on both static and dynamic properties. We observe
the pronounced effect in the d dependence of the acoustic
sound speed c±(d). This example can be complemented by the
case D = 5.5, where the interlayer dimerization leads first to
formation of strongly bound dimers and, second, as a result
of spatial localization of these dimers and suppression of the
inlayer superfluidity, to formation of a Wigner-like crystalline
structure. The latter, in its turn, modifies all static and dynamic
characteristics.

Similar to D = 1(5.5), in Fig. 42 we compare a relative
contribution of the symmetric and antisymmetric modes in
the partial dynamic structure factor S11(q,ω). The results are
shown for several d in the region of acoustic phonons (qa =
0.70) and the “roton” (qa = 6.28). The predictions from
the two-mode ansatz are indicated by vertical arrows. Both
spectral densities, S− and S+, can be well distinguished for
d � 0.15. The lower (higher) frequency resonance in S11(q,ω)
corresponds to the symmetric (antisymmetric) mode. In the
“roton” domain both resonances can be well distinguished,
whereas in the acoustic one they are quite close and the spectral
densities strongly overlap. Certainly, the symmetrization of the

density response function in the terms of its eigenmodes “±”
significantly simplifies physical interpretation of the observed
spectral features and helps make clear the evolution of the
spectral density with variation of the layer spacing.

Mean-field analyses. At large d, we are in the regime
of weak inlayer coupling and can compare our results with
the mean-field predictions. They are improved by the local
field corrector to take into account effects of many-body
correlations. This type of analyses have been recently per-
formed in Ref. [68] to investigate instability of a homogeneous
dipolar bilayer against the formation of density waves. The
diagonalization of the density response function in the mass-
symmetric bilayer written in the random-phase approximation
(RPA) form leads to

χ±(q,ω) = �(q,ω)

1 − �(q,ω)W±(q,ω)
, (86)

where W± = W11 ± W12 is the effective potential (EP) for the
symmetric-antisymmetric mode, and

�(q,ω) = 2nεq

(ω + iδ) − ε2
q

(87)

is the polarization function of a noninteracting system written
in the so-called mean-spherical approximation. In general case
the frequency dependence of the EP in Eq. (86) can be used to
satisfy different frequency power moments [69]. Substitution
of W (q,ω) with its static value in the low- or high-frequency
limits [W (q,0), W (q,∞)] is related to the STLS [70] and
QLCA [62] approximations.

In the RPA case the EP is taken as Fourier transform of the
bare intralayer (interlayer) interaction potential, Vαα(αβ). The
interlayer potential in the momentum space takes the form

Vαβ(q) = −2πDqe−qd . (88)

To remove divergence of the intralayer potential Vαα(q)
in the Fourier space (for a 2D dipolar system), the latter
can be smoothed over the layer thickness in the r space
[71]. Alternatively, Vαα(q) can be substituted by an effective
potential Ṽ which satisfies the FDT

Sαα(q) = − 1

πρ

∫ ∞

−∞
dω Im

�(q,ω)/(1 − e−βω)

1 − �(q,ω)Ṽαα(q,ω)
. (89)

At zero and low temperature (when the dispersion relation sat-
isfies �ω(q) � kBT ), by neglecting the frequency dependence
of the EP, i.e., Ṽ (q,ω) ≈ Ṽ (q,0), the integration in Eq. (89)
can be performed analytically with the result

Ṽαα(q) = εq

2ρ

[
1

S2
αα(q)

− 1

]
. (90)

Obviously, a similar result holds also for W̃±(q,0) by sub-
stituting Sαα in Eq. (89) for the symmetrized static structure
factor S±(q). Note that the effective interactions partially take
into account the exchange (Bose statistics) and many-body
correlation effects via S±(q). In the following we compare
χ± from (86) for the two cases, with the direct interlayer
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correlations and with the exchange effects

Wd
±(q) = Ṽ11(q) ± V12(q), (91)

W ex
± (q) = εq

2ρ

[
1

S2±(q)
− 1

]
. (92)

Note that, due to the relations

lim
q→∞ S12(q) = 0, lim

q→∞ S±(q) = lim
q→∞ S11(q) = 1, (93)

lim
q→∞ Wd

±(q) = 0, lim
q→∞ W ex

± (q) = 0, (94)

both cases reproduce the static response function in the free-
particle limit, i.e.,

Re χ±(q,ω = 0) = − 1

εq/2ρ + W±(q)
, (95)

lim
q→∞ Re χ±(q,ω = 0) = − 4mρ

�2q2
. (96)

Note that the above approach [the ansatz (95) with the
EP (92)] cannot simultaneously reproduce the correct long-
wavelength limit and the compressibility sum rule. This
can be shown by using the result in Figs. 35, 41(b), and
41(d). In the superfluid phase the spectrum is acoustic in the
long-wavelength limit and, hence, in Eqs. (95) and (92) we can
substitute, S±(0) = kBT /mc2

± and limq→0 〈w1〉±/〈w0〉± =
limq→0 εq/S±(q) ≈ c±q, with the result

lim
q→0

Re χ±(q,ω = 0)

ρ
= − lim

q→0

2

qmc3±/kBT − εq

. (97)

This expression predicts a divergence of the static response
function in the long-wavelength limit, being in contradiction
with the exact relation

Re χ±(0,ω = 0)

2ρ
= −S±(0)

kBT
= 1

mc2±
, (98)

which predicts a finite value at q = 0. This disagreement can
be removed by a new effective potential in the form

W
χ
± (q) = − 1

Re χ±(q,0)
− εq

2ρ
. (99)

This choice allows to exactly satisfy the compressibility sum
rule, however, at the expense of violating the fluctuation-
dissipation theorem (89).

We can conclude that all considered approximations are
a trade-off to satisfy a restricted number of frequency power
moments for the spectral density.

The comparison of the effective potentials [Eqs. (91), (92),
and (99)] for several interlayer spacings is shown in Fig. 43. At
large spacing (d = 0.24), the EP with the direct and exchange
correlations, Wd,ex, nearly coincide; see Fig. 43(a). This proves
that the interlayer correlations can be well described by a bare
potential (88). Simultaneously, we are able to reproduce the
reference result, Re χ±(q,0), evaluated via (59), in a wide
range of wave numbers; see Fig. 43(d). As expected, at small
q, the ansatz χ

d,ex
± (q) shows a divergence due to violation of

the compressibility sum rule. This can be avoided by the use of
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FIG. 43. (a)–(c) Comparison of the effective potentials in the
RPA-type ansatz for the symmetric (lower set of curves) and
antisymmetric (upper set of curves) mode for D = 0.1 and the
layer spacing d = 0.24,0.15,0.10. (d)–(f) The reference value of the
static density response function, χ±(q) = | Re χ±(q,0)|/2ρ, versus
the RPA-type approximations, χ ex,d

± (q). Note that in all cases χ+(q) >

χ−(q).

W
χ
± in this q range. Note that a noticeable disagreement with

Re χ±(q,0) appears at small q when W ex
± drops below W

χ
± .

Similar observations hold also for the layer spacing, d =
0.15 and d = 0.10, characterized by a stronger interlayer
coupling. Here the largest deviations to the exact result, χ±,
are observed for the bare potential (91). For d � 0.1 this type
of approximation cannot be used for prediction of structural
changes, as the density wave formation. The analyses of the
phase transition from a homogeneous to an inhomogeneous
density phase, similar to Ref. [68], should be restricted to
larger layer spacing. The use of W ex in combination with
Wχ at small q can produce more accurate results. Indeed, for
qa � 2 we observe a nice agreement between χ± and χ ex

± .
For qa � 2 the potential W

χ
± helps to avoid the divergence as

observed in χ
d,ex
± .

In Figs. 44 and 45 we repeat similar analyses for the
dipole coupling D = 1 and D = 5.5. For large layer spacing,
d = 0.35 (D = 1) and d = 0.70,0.75 (D = 5.5), the devia-
tions between all three EP [Eqs. (91), (92), and (99)] are
minimal. At smaller d, the predictions based on the exchange
potential remain quite accurate for qa � 7, whereas with the
pure interlayer potential (88) demonstrates steadily increasing
deviations.

The static response function χ ex
± reproduces χ± at qa � 2

and shows its divergent character only for small q. The
divergence region shrinks significantly with the coupling
strength D. For D = 5.5 it can be hardly resolved and is
restricted to qa � 1; see Figs. 45(d)–45(f). The onset of this
unphysical behavior is observed when W ex

± < W
χ
± .

In general, for D = 1(5.5) the approximation based on the
EPs (91) and (92) fails to quantitatively reproduce the form and
the peak height of the static response function χ±(q) for qa >

2. There is a significant underestimation of the half-width of
the main peak.
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FIG. 44. Same as in Fig. 43 for D = 1.0 and the layer spacing
d = 0.35,0.30,0.27.

Next we discuss the dispersion of collective modes, pre-
dicted by the RPA, by analyzing singularities of the density
response function (95). We end up with the result

ω2
±(q) = ε2

q + 2ρεqW±(q). (100)

The substitution of the exchange potential (92) provides the
ansatz which coincides with the Feynman mode, ωex

± (q) =
εq/S±(q) = ω

f
±(q). With the EP (99) we get a new estimate,

ω̃
χ
± = √2ρεq/ Re χ±(q,0).

Both results can be expressed as the ratio of the frequency
power moments, which, similar to (32), form a sequence of
upper bounds for a true dispersion relation,

ω±(q) � ω̃
χ
±(q) � ω

f
±(q), (101)

ω±(q) �
√

〈ω1〉±
〈ω−1〉± � 〈ω1〉±

〈ω0〉± . (102)

Note that the similar inequality holds also for the ef-
fective potentials, W

χ
± (q) � W ex

± (q), as is demonstrated in
Figs. 43–45.
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FIG. 45. Same as in Fig. 43 for D = 5.5 and the layer spacing
d = 0.75,0.70,0.65.

In Figs. 18, 25, and 35 we provided a comparison of ω
f
±(q)

with the more accurate two-mode ansatz, ωL
±. The new solution

introduced here as ω̃
χ
±(q) is an improvement to ω

f
±(q), but is

only an upper bound for ω
χ
±(q) [Eq. (29)]. This follows from

the general relation [37]

〈ωk〉2 � 〈ωk−1〉〈ωk+1〉 (103)

and results in the sequence of upper bounds

〈ωk〉
〈ωk−1〉 �

√
〈ωk+1〉
〈ωk−1〉 � 〈ωk+1〉

〈ωk〉 . (104)

The use of the direct potential in Eq. (100) does not satisfy
any sum rules, and, hence, the obtained dispersion relation
does not represent either a lower or an upper bound. At strong
interlayer coupling, d = 0.27 (D = 1) and d = 0.65 (D =
5.5), corresponding results significantly overestimate the peak
height of the static response function. The effective potential
predicts a much deeper roton minimum (around qa ∼ 7), being
in disagreement with more accurate and physically grounded
two-mode solution ωL

±(q).
We can summarize that the RPA-type ansatz does not

provide any new information on the dispersion relations. In its
more accurate form, involving W ex

± and/or W̃
χ
± , it reproduces

the results which can be obtained by the method of moments
(Sec. IV).

VII. CONCLUSION

Recent progress with ultracold polar molecular gases
motivates the analyses in the spatial geometries, where a role
of the anisotropic dipole-dipole interaction is more prominent.
One example is the vertically polarized quantum gases in a
quasi-2D bilayer. Such a system undergoes dramatic changes
in the collective and single-particle properties as the layer
separation is varied.

In the present work we performed a detailed study of
this problem. The diagonalization of the density response
function allows to analyze the excitation spectrum in terms
of the symmetric-antisymmetric mode S±(q,ω) (particles in
two layers oscillate in phase and out of phase). The systematic
analyses of these modes and their dependence on the dipolar
coupling strength D (controlled via dipole moment, particle
mass, and inlayer density), the layer spacing d, the superfluid
fraction γs , and temperature are presented. The dynamic
structure factor, S±(q,ω), is reconstructed from the imaginary-
time density response function via the stochastic optimization
method [36]. During the reconstruction the 〈ω1〉 and 〈ω3〉
power moments are satisfied exactly, and 〈ω0〉 and 〈ω−1〉 are
within the statistical error bars.

For the three cases, classified here as strong, moderate,
and weak coupling, we discussed characteristic features of
the excitation spectrum. The predicted dispersion relations of
collective modes can be used as a practical tool in experiments
to readout a thermodynamic state of a dipolar gas. The stronger
the inlayer dipolar coupling D, the larger is the critical layer
spacing d for the onset of interlayer dimerization, accompanied
by a fast reduction of the inlayer superfluidity. This leads to
the formation of the strongly bound dimers characterized by
an enhanced coupling D� > D.
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In this regime the spectrum of the symmetric mode,
S+(q,ω), is strongly influenced by the interlayer dimerization
and reduction of the inlayer superfluidity. With the formation
of strongly bound dimer states, it demonstrates a strong
rotonization (a deep roton minimum). For D = 5.5 we even
observe the onset of dimer crystallization in a Wigner lattice.
This can be identified from the behavior of the intra(inter)layer
pair correlation functions by the appearance of the pronounced
(quasi)long-range order below some characteristic d value.

The spectrum of the antisymmetric mode, S−(q,ω), shows
a clear dependence on the inlayer superfluidity. In a pure
superfluid [normal] phase we recover an acoustic [optical
(gapped)] mode. In contrast, in a partially superfluid phase,
both are present simultaneously, and the dispersion splits into
two branches corresponding to a normal and a superfluid
component. We demonstrated that the spectral weight of the
acoustic mode scales linearly with γs . This testifies that its
origin is related to the fluctuations of the superfluid density.
When γs is reduced, the weight of the acoustic mode decreases
and transfers to the optical branch, interpreted as a response
of a normal component. The latter dominates the spectrum
S−(q,ω) when dimer states are formed.

The acoustic mode completely vanishes from S−(q,ω)
once we repeat our analyses for distinguishable particles
(boltzmannons). Here only the optical branch is recovered. The
gap value, ω−(q → 0), increases by lowering the layer spacing
and can be quite accurately predicted from the sum-rules
analyses.

In addition to the reconstruction of a full dynamic structure
factor, we developed a more simplified treatment based on a
generalized (canonical) solution of the momentum problem.
We have introduced the two-mode ansatz for the density
response function, Im χ±(q,ω), which satisfies four frequency
power moments of the spectral density S±(q,ω). The obtained
dispersion relations, ωL

±(q), quite accurately reproduce the
positions of the low-frequency resonances in S±(q,ω) for
most of the considered layer spacing d and dipolar coupling
D. The predictions become inaccurate in two cases: first,
in a partially superfluid phase, when the spectrum of the
antisymmetric mode splits into one acoustic and one optical
branch, and when their contribution (spectral weight) to the
static structure factor S±(q) becomes comparable; Second, for
the symmetric mode at the wave numbers beyond the roton.
Here the spectral density shows two characteristic maxima.
The first maximum is positioned slightly below the recoil
energy εq and corresponds to the multiexcitation continuum.
The second peak and the corresponding low-frequency branch
beyond the roton wave number have been observed also in a
single-layer system. It can be explained by the quasiparticle
decay processes into different combinations of quasiparticles
with lower energy, e.g., two rotons for D = 1(5.5) or phonons
for D = 0.1. More detailed discussion can be found in
Ref. [36].

Both methods, the stochastic reconstruction and the method
of moments, clearly demonstrate the presence of the gapped
optical mode in the nonsuperfluid and partially superfluid
phase of dipolar bosons. Here it is worth mentioning the
long-standing theoretical issue [63]. The effects of interlayer
and intralayer correlations, essential for strongly coupled
bilayers, have been addressed in STLS [70] and QLCA [62].

The two methods arrive at different predictions regarding the
out-of-phase mode: The QLCA predicts a nonzero energy gap
as q → 0, while the STLS does not. Our results for S−(q,ω)
in Figs. 18 and 25 validate that the presence of the gap can
be strongly influenced, besides the many-body correlations,
also by quantum statistics. The inlayer superfluidity in Bose
systems can completely mask the interlayer correlations,
which are responsible for the formation of the gap, and lead
to the acoustic dispersion in the long-wavelength limit. Note
that the upper bound for the dispersion relation based on
the third power moment, ω3

−(q) = √〈ω3〉−/〈ω〉−, completely
overlooks this physical effect and becomes unreliable in the
weakly coupled regime (D = 0.1). Here (see Fig. 25) the gap
value, ω3

−(0), and the whole dispersion relation are shifted
to the high-frequency domain, being in strong contradiction
with S−(q,ω). This result is expected due to the intrinsic
restriction of QLCA [62], originally derived for moderate and
strongly interacting liquids. Indeed, for the strong coupling
D = 5.5 (see Fig. 25) the agreement with S−(q,ω), at least
in the phonon-maxon range and for the optical gap ω−(0), is
significantly improved.

In conclusion, we demonstrated how the interlayer dimer-
ization in dipolar bilayers can be uniquely identified by the
static, energy, and dynamic characteristics. In particular, the
formation of dimer states leads to (i) the increase (decrease)
of the thermodynamic sound speed (inlayer compressibility);
(ii) the shift of the acoustic dispersion to larger frequencies;
(iii) the reduction of the roton gap in the symmetric mode for
D � 1; (iv) the increase of the optical gap of the antisymmetric
mode in the nonsuperfluid and partially superfluid dimer
phase; (v) in the acoustic and roton part of the in-phase
density excitation spectrum, the increase of the excitation
lifetime, compared to a single layer, is due to the mass (m� =
2m) and the dipolar coupling (D� > D) effects. All these
features should be present and observable in the partial inlayer
dynamic structure factor, S11(q,ω) = 1

2 [S+(q,ω) + S−(q,ω)],
which is accessible with the available experimental techniques
[39,40,72].
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APPENDIX

1. Reconstruction of spectral density: Method
of stochastic optimization

In its core, the method of stochastic optimization [36,48]
(SO) solves, by a stochastic sampling, the minimization
problem of the least deviation,

Dn[G̃n] =
∫ β

0
|1 − G̃n(q,τ )/G(q,τ )| dτ, (A1)

Dmin ≈
∑
τi

�τ |δG(q,τi)|G−1(q,τi), (A2)

where δG(q,τi) is the statistical error of the correlation
function G(q,τi) numerically evaluated [e.g., by Quantum
Monte Carlo (QMC)] at a set of imaginary-time points τi
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(�τ = τi+1 − τi). The trial function G̃n is generated from the
Laplace transform of a trial spectral density S̃n(q,ω),

G̃n(q,τ ) =
∫ ∞

−∞
e−τωS̃n(q,ω)dω. (A3)

A similar relation holds between the dynamic structure factor
and the density-density correlation function; see Eq. (10).

As a final result of the reconstruction we take a linear
combination of all trial solutions (ensemble average),

SSO(q,ω) = 〈S̃n(q,ω)〉, (A4)

which satisfy the acceptance criteria,

Dn[G̃n] � Dmin. (A5)

A specific stochastic Monte Carlo sampling algorithm [48] is
used to probe a wide class of functions parametrized into some
basis set and select those which satisfy (A5).

The quality of the reconstructed spectra 〈S̃n(q,ω)〉 can be
judged based on the estimated deviation from the QMC data,

δrG(q) =
∫ β

0
dτ |1 − 〈G̃n(q,τ )〉/G(q,τ )|, (A6)

〈G̃n(q,τ )〉 =
∫ ∞

−∞
dωe−τω〈S̃n(q,ω)〉. (A7)

In the numerical implementation it is convenient to make
parametrization of trial solutions in the basis of rectangular
functions,

S(q,ω) =
Kq∑

m=1

P q
m(ω), (A8)

P q
m(ω) =

{
h

q
m, ω ∈ [cq

m − w
q
m

2 ,c
q
m + w

q
m

2

]
,

0, otherwise;
(A9)

here Kq denotes a number of rectangles used for a wave
number q. This number can vary significantly depending on a
form of spectral density; e.g., either it consists of a single
sharp resonance, a broad multiexcitation continuum, or a
combination of both. The algorithm decides which number
Kq is more appropriate and performs a stochastic sampling of
the fit parameters {cq

m,w
q
m,h

q
m}.

With the choice of rectangular functions some important
properties of the reconstructed spectral density can be written
down analytically. These include the imaginary-time density-
density correlation function and a set of frequency power
moments,

G(q,τ ) =

⎧⎪⎪⎨
⎪⎪⎩

S(q), τ = 0,

2τ−1
Kq∑

m=1

hq
me−c

q
mτ sinh

(
wq

mτ/2
)
, τ 	= 0,

(A10)

〈ω0〉 =
Kq∑

m=1

hq
m

[
wq

m + 2

β
e−βc

q
m sinh

w
q
mβ

2

]
, (A11)

〈ω1〉 =
Kq∑

m=1

hq
mwq

mcq
m − 2h

q
m

β
e−βc

q
m

[
1

β
+ cq

m

]
sinh

w
q
mβ

2

+ h
q
mw

q
m

β
e−βc

q
m cosh

w
q
mβ

2
, (A12)

〈ω−1〉 =
Kq∑

m=1

hq
m ln

c
q
m + w

q
m

2

c
q
m − w

q
m

2

−hq
m

{
Ei

[
−β

(
cq
m+w

q
m

2

)]
−Ei

[
−β

(
cq
m−w

q
m

2

)]}
,

(A13)

with Ei(x) = ∫ x

−∞ dtet/t .
The expression for the third-frequency-moment takes the

form

〈ω3〉 =
∫ ∞

0
dωω3(1 − e−βω)

Kq∑
m=1

P q
m(ω)

=
Kq∑

m=1

(
I q
m + J q

m

)
, (A14)

where the last two terms are expressed as

I q
m = hq

m(ω4
+ − ω4

−)/4, (A15)

J q
m = hq

m[F (ω+) − F (ω−)]/β4, (A16)

F (ω) = e−βω[6 + 6βω + 3(βω)2 + (βω)3]. (A17)

Here we have introduced the end points, ω± = c
q
m ± ω

q
m/2.

All power moments get their wave-number-dependence via
the q-dependent fit parameters {cq

m,w
q
m,h

q
m}.

An important improvement of the method is to include
information available from the frequency power moments; see
Sec. IV A. During the Monte Carlo sampling, we in addition
minimize the deviations of the first and third power moments
(A12) and (A14) from their reference values known from (17)
and (18). This is done by inclusion of two additional deviation
measures δr〈ωk〉(q) (k = 1,3) in the acceptance criteria (A5).
This procedure makes the reconstruction results more stable
with respect to the statistical noise δG(q,τi) and significantly
reduces a class of possible solutions. Below we demonstrate
accuracy of the reconstruction procedure on two examples.

2. Examples of the reconstruction

For the mass-symmetric bilayer, the stability of the re-
construction with respect to the statistical noise δG can
be checked by comparison of the dynamic structure factor
Sαα(q,ω) of two layers (α = 1,2). They should coincide due
to the symmetry reason. In general, the reconstruction results
can differ as the density correlation function Gαα(q,τ ) is
evaluated independently for each layer. A similarity and/or
discrepancy of the reconstructed spectral densities S11 and S22

will characterize quality of the reconstruction and the effect
of statistical noise. In the following we present results for a
dipolar bilayer specified by the parameters {β = 1,D = 5.5}
at the layer spacing d = 0.7.

The results are shown in Fig. 46. In the first case, the
reconstruction is performed with no constraints on the power
moments 〈ω〉 and 〈ω3〉. The recovered spectrum Sαα(q,ω) (α =
1,2) corresponds to the ensemble average which produces the
best fit to Gαα(q,τ ) within the statistical error bars. From
Fig. 46 (left panel) we find that the spectral densities are quite
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FIG. 46. Comparison of the dynamic structure factor Sαα(qn,ω)
(α = 1,2) in the mass-symmetric bilayer for a set of wave numbers
qn = 2πn/L (L = 9). The left (right) panel is without (with)
minimization of δr〈ωk〉(q) (k = 1,3). The reconstruction on the left
panel demonstrates much larger deviations between S11(q,ω) and
S22(q,ω). Here the statistical errors in the density correlation function
allow for a broader class of different trial solutions which satisfy (A5).

different. In particular, for the wave number q3 two possible
solutions are found during the reconstruction: one with a broad
peak and the second with two narrow peaks. Both spectral
densities fit within the statistical error bars the corresponding
correlation functions, Gαα(qn,τ ) ± δGαα(qn,τ ). The similar
situation is observed for the wave numbers q4 and q7. For
q12 ∼ 8.5 there are two peaks in both spectral densities with a
broad continuum at high frequencies, but the peak position is
different.

To characterize the obtained results, we can evaluate the
spectral power moments and compare with the reference values
(27). The first moment, i.e., the f -sum rule, is known explic-
itly, 〈ω1〉 = q2/2m. Other moments, 〈ωk〉(k = −1,0,3), are
estimated numerically and contain statistical relative errors δr

shown in Fig. 47 by the open gray triangles. The 〈ω3〉-sum rule
can be quite accurately estimated via (46) and has the relative
error below 10−6. The relative errors present an upper bound
for possible deviations with the spectral moments evaluated
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FIG. 47. Absolute relative deviations of the spectral power
moments (A11)–(A14) from the reference values (27). The upper
bound is given the relative errors of (27) shown by open gray triangles.
The largest deviations are observed in the third power moment (shown
by open circles), up to δr〈ω3〉 ∼ 0.38 (38%).
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FIG. 48. The same as in Fig. 47 with additional minimization of
δr〈ωk〉(q) (k = 1,3).

via (A11)–(A14). These deviations for different wave numbers
are presented in Fig. 47. The deviations in 〈ωk〉 (k = −1,0)
are well below the upper bound. The reconstructed spectra,
however, fail to satisfy the first and third power moments.
For 〈ω3〉 the relative error can reach up to 38%. Note that
〈ω3〉-sum rule is determined by the high-frequency behavior of
the spectral density specified by the high-frequency resonances
(if any) and the multiexcitation continuum. Hence, large
errors in δr〈ω3〉 signal that these features are not reproduced
correctly. This information, however, is very important for the
bilayers where the high-frequency behavior is dominated by
the out-of-phase density excitations. In contrast, the 〈ω0(−1)〉
sum rules are dominated by the low-frequency phonon-maxon-
roton branch due to the in-phase excitations. Hence, the
accuracy of the reconstruction, based on the criteria (A6),
is guaranteed only for the low-frequency domain. All high-
frequency features in S(q,ω) are exponentially damped [see
Eq. (A3)] and, correspondingly, make only a small contribution
to the imaginary-time density correlation function used for
the fit. This contribution is disturbed significantly due to the
presence of the statistical noise (same order of magnitude) and
cannot be resolved correctly during the reconstruction.

In the second example, we perform the reconstruction when
in the stochastic algorithm two additional deviation measures,
δr〈ωk〉(q) (k = 1,3), are minimized. With the annealing steps
used in the stochastic optimization, these moments are satisfied
with the relative error δr � 10−7; see Fig. 48. The improved
spectral densities S11 and S22 are shown in Fig. 46 (right panel)
and demonstrate much better convergence for the same level of
statistical noise δG as in the first example. In particular, in the
roton region the spectral shape demonstrates more systematic
behavior and shaper resonances. This behavior is reproduced
for both layers. The relative deviations from all available
frequency power moments are within the allowed statistical
errors; see Fig. 48.

To conclude, the addition of the first and third power
moments in the reconstruction algorithm can significantly
improve the convergence both in low- and high-frequency
domains. This approach always has an advantage over the
minimization of the single deviation measure determined
solely by the imaginary-time correlation function (A5).
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