
PHYSICAL REVIEW A 94, 013601 (2016)

Prethermalization and thermalization of a quenched interacting Luttinger liquid
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We study the relaxation dynamics of interacting one-dimensional fermions with band curvature after a weak
quench in the interaction parameter at zero temperature. Our model lies within the class of interacting Luttinger
liquids, where the harmonic Luttinger theory is extended by a weak-integrability-breaking phonon scattering
term. In order to solve for the nonequilibrium time evolution, we use quantum kinetic equations exploiting
the resonant but subleading character of the phonon interaction term. The interplay between phonon scattering
and the quadratic Luttinger theory leads to the emergence of three distinct spatiotemporal regimes for the
fermionic real-space correlation function. It features the crossover from a prequench to a prethermal state,
finally evolving towards a thermal state on increasing length and time scales. The characteristic algebraically
decaying real-space correlations in the prethermalized regime become modulated by an amplitude that is decaying
in time according to a stretched exponential as an effect of the interactions. The asymptotic thermalization
dynamics is governed by energy transport over large distances from the thermalized to the nonthermalized
regions via macroscopic, dynamical slow modes. This is revealed in an algebraic decay of the system’s effective
temperature. The numerical value of the associated exponent agrees with the dynamical critical exponent of the
Kardar-Parisi-Zhang universality class. We also discuss a criterion for the applicability of this theory away from
the integrable limit of noninteracting fermions.
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I. INTRODUCTION

It is a property of fundamental importance within statistical
physics that generic and realistic thermodynamic systems
exhibit one particular state, thermal equilibrium, which is
always approached, irrespective of the initial condition. Yet
the important question of which microscopic conditions are
necessary or sufficient for the thermalization of a closed
quantum many-body system is still largely unanswered [1].
This is of particular importance, especially because there exists
a specific class of isolated quantum systems, termed integrable,
for which relaxation to thermal states is prevented due to the
presence of an extensive number of (quasi)local conservation
laws [2–4]. Such particular systems often represent isolated
points in the parameter space of physical many-body systems
and demand a precise tuning of the microscopic parameters.
Nevertheless, these models are very valuable because they
often represent fixed points of renormalization-group theories
and as such contain the low-temperature equilibrium properties
of a much wider class of systems. This directly leads to an
apparent dilemma in quantum many-body theory that has
attracted a great deal of interest recently. In particular, beyond
equilibrium these integrable models become nongeneric as
they fail to thermalize. Instead, they are trapped in extended
prethermal states described by nonthermal generalized Gibbs
ensembles [1–8]. Resolving this dilemma is one of the major
challenges for the understanding of the coherent dynamics of
quantum many-body systems.

In this work we address this question for a paradigmatic
low-energy model: the Luttinger liquid [9–11], representing
the fixed point theory of systems of interacting fermionic
particles in one dimension at low temperatures. The Luttinger
liquid is an integrable theory failing to thermalize but rather
exhibiting a description in terms of a generalized Gibbs ensem-
ble [6,12,13]. Here we will be interested in the nonequilibrium

dynamics in the presence of a weak fermionic band curvature,
which represents a generic perturbation, irrelevant in the
low-energy equilibrium limit, but relevant on intermediate
to long-time scales in order to drive the crossover towards
thermalization.

The increasing number of cold-atom experiments per-
formed under out-of-equilibrium conditions [14–23] has
driven significant interest in the theoretical understanding of
the nonequilibrium dynamics in quantum many-body systems.
Importantly, these experiments share a remarkable isolation
from the environment, thereby probing the purely coherent
unitary time evolution on the experimentally relevant time
scales. This has paved the way to experimentally study the
constrained relaxational dynamics of quantum systems close
to integrability [15,24–26], showing unconventional properties
due to the anticipated (quasi)local conservation laws. Although
the inherent integrability-breaking terms, resulting from, e.g.,
imperfections in the particle-particle interactions or higher
orbital modes, are considered to be weak, they are believed
to eventually cause relaxation to thermal states on long-time
scales. Yet a full understanding of this process has not been
achieved so far. Within the current understanding, however, the
thermalization dynamics of quantum many-body systems with
weak-integrability-breaking perturbations is expected to occur
via a two-stage process. Initially, the dynamics of local observ-
ables at transient and intermediate-time scales are controlled
by the corresponding integrable theory serving as a metastable
attractor for the nonintegrable dynamics [4,27,28]. This trap-
ping in a metastable state has been termed prethermalization
[27,29] and is expected to exist for several nonintegrable
models and models close to integrability [4,27,30–38]. In
the quasiparticle picture, prethermalization is associated with
the initial formation of well-defined excitations [27], which
leads to a dephasing of all terms that are not diagonal in
quasiparticle modes, i.e., to a projection of the initial density
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matrix onto the diagonal ensemble in the quasiparticle basis.
After this intermediate quasiparticle formation, the dynamics
eventually crosses over to the thermalization regime, where
weak quasiparticle scattering leads to a slow redistribution
of energy and establishes detailed balance between the
different modes. This causes asymptotic thermalization on
long-time scales compatible with the eigenstate thermalization
hypothesis [5,39–42].

In equilibrium, the fermionic band curvature in the
Luttinger liquid, because irrelevant in the renormalization-
group sense, does not modify static correlation functions,
which are well described by the quadratic Luttinger theory.
Importantly, however, the curvature has a strong impact
on frequency-resolved fermionic quantities. This has been
observed in Coulomb drag experiments [43,44], which could
not be explained in terms of a quadratic Luttinger theory.
In a hydrodynamic representation, the band curvature de-
scribes resonant scattering processes between the elementary
phononic excitations of the system such that perturbation
theory is plagued by divergences due to the resonant nature of
the interactions. Important early approaches to the interacting
Luttinger liquid applied a self-consistent Born approximation
in order to determine the phonon self-energy on the mass shell
[45–47]. However, these works were unable to explain the
frequency dependence of the self-energy, which appeared to be
non-negligible for dynamic observables. Using a combination
of bosonization and subsequent refermionization, a general
theory has been developed that has been very successful
in determining spectral equilibrium properties such as the
dynamic structure factor and the fermionic spectral function
in thermal equilibrium [48–51]. Importantly for the scope of
the present work, however, it has not yet been possible to
generalize this methodology to systems out of equilibrium.
Only recently, these equilibrium results have been recovered
by a quantum hydrodynamic approach [52,53], showing that
hydrodynamics is also capable of controlling the resonant
phonon interactions.

The theoretical finding of these works is that the elementary
excitations are no longer described in terms of bosonic quasi-
particles with an exact energy-momentum relation ω = u|q|
but dissolve into a continuum of excitations. This continuum,
however, is energetically confined between two well-defined
excitation branches ε−

q < ω < ε+
q (with ε±

q → 0 as q → 0) at
which the spectral weight of the bosonic excitations features
algebraic divergences, reflected in corresponding divergences
of the dynamical structure factor. This fine structure in the
bosonic spectral weight, and equivalently self-energy, makes
the development of a general kinetic theory for frequency-
resolved observables a very demanding task, which has not
yet found a satisfactory solution. However, as will be shown
in this work, static properties and their time evolution are
nevertheless accessible.

The goal of this work is to study the escape out of the
prethermalization regime and the crossover towards thermal-
ization in Luttinger liquids with quadratic fermionic dispersion
on the basis of a hydrodynamic description. Specifically,
we aim at formulating a kinetic theory for the momentum
distribution of the phononic degrees of freedom taking into
account the leading nonlinear corrections due to the quadratic
dispersion. While in this way we are able to describe the

escape out of the prethermalization regime in a controlled
way, the final asymptotic thermalization of the system might be
modified by the more subleading off-resonance contributions,
which we do not consider here. The kinetic equation describes
the time evolution of the phonon momentum distribution and
is suitable in the long-wavelength limit and for weak quenches
but still goes beyond the regime of linear response. In turn
this kinetic theory gives a valid description for the fermionic
occupation distribution in the vicinity of the Fermi points
where the anticipated fine structure of the bosonic spectral
weight only gives subleading contributions. This semistatic,
and as a consequence tractable, description covers the forward-
time evolution of any static, i.e., frequency-independent,
observable. We show that the dynamics of precisely these
frequency-independent observables depend only on the time
evolution of the momentum distribution of excitations nq and
can be captured within a kinetic theory. The justification
for this approach is the subleading width of the excitation
spectrum |ε+

q − ε−
q | � u|q| compared to the phonon energy

for all relevant q (below the Luttinger liquid cutoff), which
is equivalent to the statement that even in the presence of the
nonlinearity the continuum of excitations in the hydrodynamic
description is tightly bound to the mass shell. This condition
replaces the common quasiparticle criterion [54] and enables
a thorough kinetic description.

The applicability of the kinetic equation requires the prefor-
mation of well-defined quasiparticles out of the bare particles,
which occurs during the process of prethermalization before
the quasiparticle scattering sets in. We find, however, that close
to the integrable point of vanishing fermionic interactions,
quasiparticle formation becomes very slow, shifting the appli-
cability of the theory for weakly interacting fermions to long-
time scales and far distances. We give quantitative estimates
of the corresponding spatiotemporal scales of the breakdown
of the kinetic theory. Not too close to the noninteracting point,
however, the kinetic equation is well justified and allows us to
study the escape out of the prethermalization regime towards
thermalization. In the regime of applicability, the kinetic
equation leads in the asymptotic long-time limit to a linearized
quantum Boltzmann equation whose attractor is the desired
thermal Gibbs state. We find that the thermalization dynamics
out of the prethermal state is triggered by short-wavelength
modes and afterward progresses algebraically slowly towards
longer wavelengths. Whether this is a generic feature of weakly
perturbed integrable theories is an important and interesting
question for future work.

The main result of this work is a spatiotemporal decompo-
sition of correlations in the studied nonlinear Luttinger liquid,
which is illustrated in Fig. 1. By analyzing the equal-time
fermionic Green’s function G<

t,x, the Fourier transform of
the fermionic occupation distribution, we find three regimes,
which we term prequench, prethermal, and thermal, that are
separated by two crossover scales xth(t) and xpt(t) obeying
xth(t) < xpt(t). The crossover scale xpt(t) = 2ut sets the light
cone [7] with u the sound velocity of the elementary bosonic
excitations of the integrable theory. Causality implies that
for distances x � xpt(t) the system’s properties are not yet
influenced by the nonequilibrium protocol, but are rather given
by the initial state yielding the notion of the prequench regime.
Inside the light cone for distances x < xpt(t) we identify a
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FIG. 1. Illustration of the spatiotemporal thermalization and
prethermalization dynamics in terms of the fermionic Green’s
function G<

t,x . For long distances x > 2ut and x > xth, the Green’s
function is determined by the quasiparticles of the initial state and
feature algebraic decay in real space corresponding to the prequench
state of the system, modulated by a amplitude decaying as a stretched
exponential in time. In the intermediate regime 2ut < x < xth(t), the
corresponding quasiparticles correspond to the postquench Hamilto-
nian but are distributed according to a nonequilibrium distribution
function, inducing a prethermal real-space scaling behavior |G<

t,x | ∼
|x|−γeqγGGE . For short distances x < xth(t), the Green’s function is
thermal, ∼ exp −|x|/ξT , described by an effective temperature T̃t

and a corresponding thermal correlation length ξT . The scaling
xth(t) ∼ tαλ , α < 1, implies that there exists a minimal distance xm

for which no clear prethermal regime can be identified since the
scattering of quasiparticles is equally faster than the formation of
quasiparticles. In this regime, the kinetic theory cannot be applied.
The short-distance regime x < �−1, for which Luttinger theory is
invalid, occupies a negligibly small short-time regime.

further crossover scale xth(t) separating the prethermal and
thermal spatial regions. For distances xth(t) � x � xpt(t) the
system’s spatial correlations are controlled by the integrable
theory, which for long times are determined by the associ-
ated generalized Gibbs ensemble. This regime is therefore
called prethermal. Interestingly, the thermalization dynamics,
triggered by the weak fermionic nonlinearity, sets in at even
smaller scales x � xth(t). At these distances, the correlations
approach their thermal form. However, the associated effective
temperature T̃t is larger than the expected temperature T

for the asymptotic fully thermalized state. Instead T̃t is a
dynamical quantity approaching T only algebraically slowly
due to macroscopic dynamical slow modes.

Kinetic equations have been successfully applied to Lut-
tinger liquids with a cosine potential, resulting from particle
backscattering in Refs. [55,56]. For Luttinger liquids with
cubic interactions a kinetic equation approach has been derived
in Ref. [57]. The latter makes use of nonperturbative Dyson-
Schwinger equations in order to solve the time evolution
of the phonon distribution function in the presence of the
renormalization-group-irrelevant but resonant interactions.
This kinetic equation approach is particularly well suited for
Luttinger models close to the ground state, i.e., with a small
number of phononic excitations, but can also be applied to
excited states as long as the Luttinger criterion is satisfied

locally, i.e., as long as the phonon density nq < �/|q| for all
momenta |q|. Based on Ref. [57], we can give explicit criteria
for the validity of this approach for the fermionic dynamics
after we have introduced the quench scenario.

This paper is organized as follows. We introduce the studied
model system, the interacting Luttinger liquid, in Sec. II. The
main results are summarized in Sec. III. The derivation of the
kinetic equations, which is used to solve the complex quantum
many-body problem, is presented in Sec. V. It is analyzed
and numerically solved in Sec. VI, where we also give the
derivation of the main results.

II. INTERACTING LUTTINGER LIQUID

The simplest form of an interacting Luttinger liquid
emerges as the effective long-wavelength description of
spinless interacting fermions with quadratic (i.e., dispersive)
corrections to a perfectly linear dispersion around the Fermi
energy [9,10,58,59]. Although the fermionic band curvature is
irrelevant in the sense of the renormalization group (RG) [58]
and therefore does not modify the static infrared behavior of
the fermions, it is visible in dynamic observables, such as the
fermionic spectral function or the dynamical structure factor
[47,60–64]. In this work we will show that in a nonequilibrium
situation, the quasiparticle scattering induced by the band
curvature leads to a dynamical redistribution of energy and
allows the system to relax towards a thermal state. Thus, the
system becomes generic. This kind of relaxation is absent
for nondispersive fermions, since the corresponding model,
the linear Luttinger model, is integrable. The fermionic band
curvature breaks the integrability of the linear model and
therefore, even though RG irrelevant, is the leading-order
term that drives the system away from a prethermal, i.e.,
generalized Gibbs ensemble (GGE) -type, dynamical fixed
point and towards a thermal one.

The Luttinger liquid in its fermionic representation is
described in terms of left- and right-moving spinless fermions
(labeled with η = ±), created and annihilated by operators
ψ

†
η,x,ψη,x . The Hamiltonian is

H = −
∑

η

∫
x

ψ†
η,x

(
iηvF∂x + 1

2m
∂2
x

)
ψη,x

+1

2

∫
x,x ′

g(x − x ′)ρxρx ′ , (2.1)

with the combined density ρx = ρ+,x + ρ−,x = ψ
†
+,xψ+,x +

ψ
†
−,xψ−,x . The interaction, characterized by g(x − x ′), is

supposed to be short ranged in space (decaying faster than
algebraic) but has a short-distance cutoff of the order of the
Luttinger cutoff �−1. In the long-wavelength limit, particles
with a wavelength larger than the effective range of the
potential only experience a contact potential g(q) = g0, where
g0 is the interaction strength at zero momentum. In order
to regularize the interaction in the ultraviolet (UV) regime,
which is required to obtain a nondiverging quench-induced
interaction energy, it is cut off at the UV scale �, i.e.,
g(q) = g0θ (� − |q|).
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The bosonized version of the Hamiltonian in the absence
of band curvature describes the well-known Luttinger model

HLL =
∫

x

uK(∂xθx)2 + u

K
(∂xφx)2 (2.2)

with sound velocity u = vF
K

and Luttinger parameter K = (1 +
g0

πvF
)−1/2. In addition, due to the fermionic band curvature, a

cubic nonlinearity occurs [47,52,60,61,65]

HNL = 1

m

∫
x

(∂xθx)2∂xφx (2.3)

such that the complete bosonized Hamiltonian is H =
HLL + HNL. Due to the linear dispersion of the Luttinger
quasiparticles, HNL describes scattering processes on a highly
degenerate bosonic manifold, i.e., is governed by a large
set of energy-conserving scattering processes. This leads to
diverging perturbative corrections at any order of perturbation
theory. The bosonized fermionic interaction is quadratic in the
Luttinger fields, while the band curvature transforms into a
cubic nonlinearity proportional to 1

m
.

In the following, we will consider a nonequilibrium
scenario in terms of an interaction quench. Initially, the system
is supposed to be prepared in the ground state of the integrable
Luttinger liquid theory at an interaction potential gi(x). Due
to the interaction quench, the interaction potential is suddenly
switched at time t = 0 from an initial to a final value

g(x) =
{
gi(x) for t < 0
gf (x) for t > 0

(2.4)

and both the quadratic Hamiltonian and the nonlinearity are
modified by this interaction change. The eigenbasis of HLL,
which is expressed in terms of the physically more transparent
phononic creation and annihilation operators a

†
q,aq according

to the canonical Bogoliubov transformation

θx = θ0 + i

2

∫
q

(
2π

|q|K
)1/2

e−iqx−|q|/�(a†
q − a−q), (2.5)

φx = φ0 − i

2

∫
q

(
2πK

|q|
)1/2

sgn(q)e−iqx−|q|/�(a†
q + a−q),

(2.6)

is therefore obviously transformed by the quench. This
transformation depends on the interaction via the Luttinger
parameter K .

The state of the system before the quench no longer
corresponds, in general, to an equilibrium state after the quench
and the system will consequently undergo a nontrivial time
evolution according to the new Hamiltonian. The occupations
of bosonic modes after the quench can be computed via
the above Bogoliubov transformation. Before the quench,
the interacting system is in equilibrium at zero temperature
such that GK

q,t=0 = 〈{aq,a
†
q}〉 = 1 in the prequench basis. This

yields the postquench occupations

nt=0,q = 〈a†
qaq〉t=0 = 1

2

[
λ2 + 1

λ
ni,q + (λ − 1)2

2λ

]
,

mt=0,q = 〈a†
qa

†
−q〉t=0 = 1 − λ2

4λ
(2ni,q + 1), (2.7)

with λ = Kf
Ki

. Here ni,q is the initial occupation of the bosonic

modes and λ = Kf
Ki

the ratio between the final Kf=
√

1+ gf
πvF

and the initial Ki=
√

1+ gi
πvF

Luttinger parameter. In this work,
we focus on a zero-temperature initial state ni,q = 0 for all
q. The phonon density after the quench nt,q > 0 is always
larger than the density before the quench, resulting in a
nonzero excitation energy �E = 〈Hf〉 − 〈Hi〉 > 0 generated
by the quench. Nonzero off-diagonal occupations mt,q 	= 0
indicate that the correlations are not diagonal in the postquench
quasiparticle basis and in order to relax to an equilibrium
state, mt,q must decay to zero. In the present setting, we
choose mt,q = e−2iu|q|t 〈a†

qa
†
−q〉t such that the off-diagonal

occupations remain always real, being either positive or
negative, depending on the quench.

In the phonon basis,

H =
∫

q

u|q|a†
qaq

+
∫

q,k

√
|qk(k + q)| v(k,q)(a†

q+kaqak + H.c.), (2.8)

with the vertex function v(k,q) = v( q

|q| ,
k
|k| ,

k+q

|k+q| ), which de-
pends on the signs of the ingoing and outgoing momenta. In the
interaction representation the phonon scattering Hamiltonian
is

HI (t) =
∫

q,k

√
|qk(k + q)| v(k,q)

× (a†
q+kaqake

iut(|q+k|−|q|−|k|) + H.c.). (2.9)

Instead of solving the full problem, we aim at extracting the
dominant contributions of the nonlinearity, which are relevant
for intermediate and long times and which drive the crossover
towards thermalization. In view of Eq. (2.9), off-resonance
processes, for which |q| + |k| 	= |k + q|, will dephase and as a
consequence become negligible for the intermediate- and long-
time evolution of the system [47]. Resonant processes, on the
other hand, here set by |q| + |k| = |k + q|, will at intermediate
and long times become relevant in the renormalization-group
sense, as discussed in Ref. [66]. The off-resonance processes
can be eliminated perturbatively [66], yielding subleading
corrections for intermediate and long times, which we will
neglect in the following. For the asymptotic thermalization
process, these subleading corrections will yield nonuniversal
corrections (i.e., observable in microscopic constants and
prefactors). For instance, the presence of off-resonance scat-
tering events will eventually lower the asymptotic temperature
compared to a system with purely resonant scattering events.
The influence of off-resonance interactions on the decay rate of
the bosonic and fermionic quasiparticles has been investigated
in Ref. [59]. The decay rate extracted from this computation is
orders of magnitude lower than the rate due to purely resonant
scattering processes. Furthermore, it has a subleading scaling
behavior ∼T q4 compared to ∼

√
q3T for resonant scattering

processes at small momenta q [45,47]. Consequently, it is
thus no influence on the leading-order long-time behavior.
This allows us for the present purpose to restrict the phonon
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scattering to the resonant processes alone:

H =
∫

q

u|q|a†
qaq + v0

∫ ′

q,k

√
|qk(k + q)| (a†

q+kaqak + H.c.),

(2.10)

where the integral
∫ ′
q,k

is performed for momenta |q + k| =
|q| + |k| and v0 = v(1,1) = 3

m

√
π
K

is the strength of the
nonlinearity at resonance [47,57].

As we are interested in fermionic correlation functions, we
switch from an operator-based formalism to a field-theoretic
formulation on the Keldysh contour, which is explained in
Appendix A; see also Ref. [57]. This allows us to treat both
spatial and temporal forward-time correlations on an equal
footing. We will focus our analysis on the so-called fermionic
lesser Green’s function

G<
t,x = −i〈ψ̄t,xψt,0〉 (2.11)

at equal forward times t from which all fermionic equal-time
correlations can be deduced. In particular, in terms of a
physical interpretation, it is the Fourier transform of the
fermionic momentum distribution

nF
t,q = i

∫
x

eiqxG<
t,x . (2.12)

In the field theory representation, the bosonized fermionic
lesser Green’s function at equal times is

G<
η,t,x = −i〈ψ̄η,−,t,xψη,+,t,0〉 = −i�

e−iηkFx

2π
e−(i/2)G<

η,t,x .

(2.13)

Here ψ̄ν,ψν label Grassmann fields with the index ν =
(η,γ,t,x) representing right and left movers (η = ±), the
contour variables on the Keldysh plus and minus contour
(γ = ±), the forward-time coordinate t , and the relative spatial
distance x. The corresponding lesser exponent G< is defined
as

G<
η,t,x = 2i ln〈ei(ηφ+,t,0−θ+,t,0−ηφ−,t,x+θ−,t,x )〉. (2.14)

The extra index ± of the Luttinger fields labels position on
the plus-minus contour (see Appendixes A and B). Combining
Eq. (2.14) and the Bogoliubov transformation above, one finds
that G<

−η,t,x = G<
η,t,−x . The Green’s function of the left movers

is the spatially mirrored Green’s function of the right movers
and it is sufficient to consider only the Green’s function of the
right movers

G<
t,ηx ≡ G<

+,t,ηx = G<
η,t,x (2.15)

and equivalently for the exponent G<. According to the linked
cluster theorem, the logarithm in Eq. (2.14) is defined as
the sum of all connected diagrams in an expansion of the
exponent. As a consequence, it can be expressed to leading
order in terms of the full Green’s functions, with the next
nonvanishing correction being proportional to the equal-time
one-particle irreducible four-point vertex, which is zero in the
microscopic theory. Its effective correction remains negligibly
small. In particular, the four-point vertex will only contribute to
O((um)−4), which is two orders of magnitude smaller than the
desired accuracy and its contribution can be safely neglected.
The static one-particle irreducible four-point vertex represents

a negligible correction for any equilibrium problem since it can
only be generated via multiple concatenation of subleading
three-point vertices. In particular, it is not responsible for
the modifications of the dynamic structure factor reported in
Refs. [49,50,52], since at zero temperature vertex corrections
vanish exactly due to causality [57,67]. Consequently, the
modifications of the dynamic structure factor happen entirely
on the basis of the irreducible two-point vertex, i.e., the
phonon self-energy. In the present case, the four-point vertex
is exactly zero before the quench since this state corresponds
to a zero-temperature state as well as immediately after the
quench, since a flat quasiparticle distribution in Eq. (2.7) leads
to a vanishing vertex correction. In terms of the Luttinger fields
and apart from four-point vertex corrections, the exponent for
the fermionic Green’s function is

G<
t,x =

∑
α,β=θ,φ

(2δαβ − 1)

× [
GK

αβ,t,0 − GK
αβ,t,x + GA

αβ,t,x − GR
αβ,t,x

]
, (2.16)

where G
R/A

αβ is the retarded, advanced Green’s function for
α,β = θ,φ and GK

αβ is the corresponding Keldysh Green’s
function, i.e., GR

αβ,t,x = −i〈αq,x,tβc,0,t 〉. Applying the Bo-
goliubov transformation to the phonon basis, the equal-time
exponent becomes

G<
t,x = i

∫
q

[
πe−|q|/�

|q| [cos(qx) − 1]

×
(

K2 + 1

K
(2nt,q + 1) + 2

K2 − 1

K
cos(2u|q|t)mt,q

)]
+2 arctan(�x)

+4i

∫
q

[
πe−|q|/�

|q| sin(|q|x) sin(2u|q|t)mt,q

]
. (2.17)

Here nt,q = 〈a†
t,qat,q〉 and mt,q = |〈at,−qat,q〉| are the equal-

time normal and anomalous phonon densities, which evolve in
time due to phonon scattering. The absence of the quasiparticle
self-energy in this expression is caused by the equal-time
properties of the Green’s function and underlines the fact that
time local, i.e., static, observables, even if explicitly forward-
time dependent, are not modified by the frequency-resolved
fine structure of the self-energies once the time-dependent
distribution nt,q is known. In the remainder of this paper, we
will analyze the time evolution of the exponent (2.17) after
the interaction quench and its implications for the fermionic
Green’s function (2.13).

Concerning the relevance of the interacting Luttinger
model, before closing the section, we would like to men-
tion that only recently pioneering experiments in ultracold
gases both in and out of equilibrium explored the transient
and prethermalization dynamics of systems [16–26,68–70]
effectively described by a quadratic Luttinger model, the
bosonic theory of the Hamiltonian in Eq. (2.2). In particular,
in Refs. [16–18,24] prethermal states in the relative phase of
a suddenly split condensate have been identified that have
been stable on the experimentally accessible time scales.
For the latter experiments, the cubic nonlinearity studied in
the present work constitutes the leading-order correction to
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the quadratic theory in a gradient expansion. Therefore, the
framework developed in the subsequent sections to describe
the relaxation dynamics in the system is of direct experimental
relevance once the time scales are experimentally accessible
to study the escape out of the prethermalization plateau. It
is important, however, to note that the concrete experimental
setup of the suddenly split condensate requires a further but
straightforward extension of the considered model system
to include two species of coupled bosonic fields. Moreover,
let us emphasize that these experimental systems do not
simulate the Luttinger liquid of interacting fermions—our
initial motivation—but directly simulate the effective bosonic
low-energy theory. In this way, it might be possible to obtain
experimental access to the dynamics of the bosonic occupation
distributions, governed by the kinetic theory formulated below,
via time-of-flight imaging.

III. SUMMARY OF MAIN RESULTS

Before formulating and solving the kinetic theory for the
interacting Luttinger liquid in detail, we briefly summarize the
main results reported in this work. In the subsequent sections,
we will then present the detailed calculations. Specifically, the
known results on the purely integrable system are reformulated
within the present framework in Sec. IV B. The kinetic
equation, used to address the presence of the nonlinear phonon
scattering, is derived in Sec. V. This kinetic equation is then
solved in Sec. VI.

It is the aim of this work to study the thermalization
dynamics of the fermionic equal-time Green’s function (2.11),
which is the Fourier transform of the fermionic momentum
distribution (2.12) and contains the information on quadratic
equal-time fermion observables. Without loss of generality,
we focus on the distribution of the right movers, i.e., η = +.
In the presence of phonon scattering, we determine the time
evolution of G<

t,x via a set of kinetic equations derived later in
Sec. V.

We find that G<
t,x features two distinct spatiotemporal

crossover scales xth(t) and xpt(t), separating three regimes with
distinct scaling behavior:

xpt(t) � |x| (prequench),

xth(t) � |x| � xpt(t) (prethermal),

|x| � xth(t) (thermal).

We find for the associated crossover scales xpt(t) and xth(t),

xpt(t) = 2ut, xth(t) = xλ

�
(v0�

2t)αλ . (3.1)

The first crossover at xpt(t) determines the light cone [7]
set by the sound velocity u of the phononic elementary
excitations and is known from the noninteracting Luttinger
model. Two space points a distance x � xpt(t) apart from
each other have not been able to exchange information after
the quench due to causality. Therefore, the properties at such
distances are solely given by the initial condition before the
quench such that we term this regime prequench. For distances
x < xpt quasiparticles are starting to form, marking the onset
of prethermalization. The second crossover takes place at
x = xth(t) setting the scale for the onset of thermalization due

to quasiparticle scattering. The exponent αλ with 0 < αλ < 1,
as well as the dimensionless length xλ, depends on the quench
parameter λ only and can be determined numerically. The
upper bound of αλ is guaranteed by the subleading nature of
the vertex, which forbids ballistic spreading in the thermal
region. The treatment of quasiparticle scattering in terms of a
kinetic equation approach is only valid on distances for which
a well-defined prethermal plateau has been established. Given
this, we estimate the kinetic equation approach to be valid on
distances

x < xc(t) = xth(t) exp

(
− K2 + 1

|K2 − 1|

√
3nλ

|mλ|

)
(3.2)

and in the scatterless region x > xth. In the intermediate
regime xc(t) < x < xth, quasiparticle scattering is as fast as
the formation of quasiparticles such that both effects have no
distinguishable time scale. While the results obtained from
our approach might not be reliable in this region, xth(t)
remains the crossover scale below which the nonlinearity
becomes non-negligible. The fact that xth(t) has an explicit
dependence on the Luttinger cutoff � (αλ > 1/2 generally)
is not surprising. The nonlinearity in the Luttinger model
introduces a microscopic energy scale v0�

2 that represents
the characteristic time scale of the dynamics induced by
the nonlinearity, i.e., in the present case the thermalization
dynamics beyond the quadratic theory. Additionally, the
nonlinearity breaks the scale invariance of the quadratic model,
which is responsible for the fact that all microscopic scales
can be eliminated from macroscopic observables in that case.
In the absence of scale invariance, however, the microscopic
length scale � will appear in certain observables, expressing
that their explicit value depends on model specific details.

As we show in our detailed analysis below, we find that
this separation into three spatiotemporal regimes, prequench,
prethermal, and thermal, reflects itself in a remarkable factor-
ization property of the Green’s function

G<
t,x = G<

0,xZpt(spt)Zth(sth), (3.3)

which holds everywhere except in the vicinity of the crossover
scales xth(t) and xpt(t). Here we have introduced the following
shorthand notation:

spt =
{
clx for x < xpt(t)
2ut for x > xpt(t),

sth =
{
x for x < xth(t)
xth(t) for x > xth(t). (3.4)

While the factorization into G<
0,x and Zpt is already known for

the exact solution of the integrable model [6], here we show
that the influence of the nonlinearity can be captured by a
further factor in terms of Zth. The thermal contribution Zth(sth)
exhibits interesting spatiotemporal dynamics in particular in
the long-time regime ut � xth(t). It is defined as

Zth(sth) = exp

(
−K2 + 1

K

πT̃t |sth|
u

)
(3.5)

and features two different spatiotemporal regimes.
(i) Thermalized regime. Deep in the thermalized region

|x| � xth(t), where sth = x, Zth = exp(−|x|/ξT̃t
) exhibits the
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conventional exponential decay with distance that the system
experiences in thermal states with an associated thermal length

ξT̃t
= K

1 + K2

u

πT̃t

. (3.6)

The effective temperature T̃t , however, entering this equation
remains a dynamical quantity with

T̃t = T + u��λ(v0�
2t)−μ, (3.7)

approaching the temperature T of the final thermal ensemble
algebraically slowly. We find that the numerical simulations of
the kinetic equation are consistent with an analytical estimate
for the exponent μ = 2/3. Thus, the system in this spatial
region appears to be hotter than in the final asymptotic thermal
state. The associated excess energy stored at short distances
has to be transported to larger distances, which, however, is
an algebraically slow process since this energy transport in the
presence of detailed balance is carried out by dynamical slow
modes, emerging as a consequence of exact conservation laws
[71].

(ii) Prethermal and prequench regime. Within the
prethermal and prequench region xth(t) � x, the amplitude
Zth(sth) = Zth[xth(t)] approaches a space-independent but
time-dependent constant quantifying the temporal decay of
the prethermal correlations:

Zth[xth(t)] = exp[−xth(t)/ξT̃t
]. (3.8)

Because xth(t) ∝ (v0�
2t)αλ , we have, remarkably, that this

amplitude decays in stretched exponential form. This decay is
subexponential and thus inherently nonperturbative in nature,
highlighting the capabilities of our present approach.

IV. DYNAMICS IN THE ABSENCE OF PHONON
SCATTERING

In order to systematically understand the effect of phonon
scattering on the relaxation dynamics after the interaction

quench, we first determine the dynamics of the exponent
G<

t,x in the absence of scattering, i.e., for 1
m

,v0 → 0. This
quench scenario has been extensively discussed in Refs.
[6,12,13,72,73] and we will only briefly list the known results
in the present formalism in order to make a connection with
the relaxation dynamics in the presence of phonon scattering,
which are discussed subsequently.

A. Ground-state properties

For a system in the ground state, nt,q = mt,q = 0 and the
exponent evaluates to

G<
t,x = −i

K2 + 1

2K
ln(1 + �2x2) + 2 arctan(�x), (4.1)

which leads to a time-independent fermionic Green’s
function

G<
t,x = − i�

2π
e−ikFx−i arctan(�x)

√
1 + �2x2

−(K2+1)/2K

, (4.2)

well known from the literature [9,11]. It features an algebraic
decay in space ∼x−(K2+1)/2K and a power-law singularity
of the fermionic momentum distribution close to the Fermi
momentum nF

q ∼ |q − kF|−(K−1)2/2K [11].

B. Quench from the ground state

Initializing the fermions in the ground state and performing
an interaction quench leads to constant nonzero phonon
densities in the postquench basis, according to Eq. (2.7). In
the absence of scattering, the phonon densities are constants
of motion and remain time independent, nt,q = n0,0 ≡ n and
mt,q = m0,0 ≡ m. In this situation, only dephasing of the
off-diagonal Green’s functions induces relaxation and the
exponent is

G<
t,x = 2 arctan(�x) − i

K2 + 1

2K
(2n + 1) ln(1 + �2x2) + im ln

(
1 + �2(x − 2ut)2

1 + �2(x + 2ut)2

)

− i
K2 − 1

2K
m

[
ln

(
1 + �2(x − 2ut)2

1 + 4u2t2�2

)
+ ln

(
1 + �2(x + 2ut)2

1 + 4u2t2�2

)]

= G<
0,x + im ln

(
1 + �2(x − 2ut)2

1 + �2(x + 2ut)2

)
− i

K2 − 1

2K
m ln

[
(1 + �2(x + 2ut)2)(1 + �2(x − 2ut)2)

(1 + 4u2t2�2)2(1 + x2�2)2

]
. (4.3)

HereG<
0,x is the exponent corresponding to the prequench state,

i.e., the ground state of interacting fermions with the prequench
Luttinger parameter Ki . Consequently, the fermion Green’s
function (2.13) factorizes

G<
t,x = G<

0,xZ̃pt(x,t). (4.4)

The factor Z̃pt is defined by Eqs. (4.3) and (2.13) and
describes the time-dependent modification of the initial zero-
temperature Green’s function due to the quench. In view
of the following discussion it is useful to investigate this
factor for distances away from the light cone x = 2ut .

For distances |x| � 2ut , the temporal factors in Eq. (4.3)

cancel each other and Z̃pt(t,x)
|x|�2ut−→ Zpt(x) loses its time

dependence. On the other hand, for distances |x| � 2ut , the

spatial dependence drops out and Z̃pt(t,x)
|x|�2ut−→ Zpt(2ut).

This defines the prethermal amplitude

Zpt(s) = (
√

1 + �2s2)[(K2−1)/2K][(1−λ2)/4λ]. (4.5)

The process associated with the crossover of Zpt(s) from a
temporal to a spatial dependence as a function of time is the
formation of quasiparticles corresponding to the postquench
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Hamiltonian. This is the typical prethermalization scenario
in the absence of quasiparticle scattering. For short times,
the properties of the system are dominated by the initial
state of the system and the fermion Green’s function is only
modified by a global amplitude but has the same spatial
scaling behavior as for the initial state. The effect of the
quadratic Hamiltonian in the time evolution is the dephasing
of all terms, which are not diagonal in the basis of the
postquench quasiparticles, leading to a diagonal ensemble
in the quasiparticles with a nonequilibrium phonon density.
This nonequilibrium distribution of phonons induces a scaling
behavior of the fermion Green’s function in real space, which
is different from the zero- and finite-temperature cases.

In the absence of phonon scattering, the diagonal phonon
densities nt,q are constants of motion and do not relax; the
density matrix ρ therefore does not approach a Gibbs state
but is rather described in the asymptotic limit t → ∞ by a
GGE, which respects the constants of motion and maximizes
the entropy. It is given by

ρGGE = Z−1
GGE exp

(
−

∫
q

νq n̂q

)
, (4.6)

where the Lagrange parameters νq = 2 ln( λ+1
|λ−1| ) depend on the

quench parameter and ZGGE is the normalization factor.
The fermion Green’s function for the two different regimes

is then

G<
t,x = G<

0,x ×
{
Zpt(2ut) for |x| � 2ut

Zpt(x) for |x| � 2ut,
(4.7)

with the nonequilibrium scaling behavior

G<
t,x

t→∞∼ |x|−γEqγGGE , (4.8)

where γeq = K2+1
2K

is the equilibrium exponent and γGGE =
λ2+1

2λ
= 2n + 1 [see Eq. (2.7)] is the nonequilibrium correction

resulting from a nonthermal quasiparticle distribution.

V. PHONON SCATTERING AND THE KINETIC EQUATION

In the preceding sections, we have demonstrated that the
forward-time evolution of the fermionic equal-time Green’s
function can be determined solely from the momentum-
dependent excitation distributions nt,q ,mt,q . All quadratic
equal-time observables, on the other hand, can be com-
puted from the fermionic equal-time Green’s function via
a unitary transformation such that the knowledge of nt,q

and mt,q gives access to the forward-time evolution of all
the frequency-independent quadratic fermion observables.
Therefore, the time evolution of this specific set of observables
can be captured by the time evolution of the frequency-
independent and well-defined quantities nt,q ,mt,q , which does
not necessitate the frequency-resolved fine structure in the
fermionic spectrum. In order to determine the time evolution
of the phonon densities, we derive kinetic equations for the
excitation distribution function [54] in the limit of well-defined
excitations, closely following the steps in Ref. [57] and briefly
discussing the approximations.

Before we start with the explicit derivation, we review
very briefly the known results for nonlinear Luttinger liquids
(see [64]) and place the present approach in this context. At

zero temperature and without band curvature, long-wavelength
physics of the interacting fermion model can be exactly
mapped to the quadratic Luttinger model and therefore has
well-defined sharp phononic excitations, expressed by a
spectral function of the phonons Aq,ω = i(GR

q,ω − GA
q,ω) =

2πδ(ω − u|q|). In the presence of band curvature, however,
the phonons themselves interact via a resonant three-point
scattering vertex, which leads to a broadening of the spectral
function around the mass shell ω = u|q|. This broadening can
be described in terms of two excitations branches at frequen-
cies ω = ε±

q , where ε−
q < u|q| labels a solitonic branch and

ε+
q > u|q| labels a phononic branch (such that |ε+

q − ε−
q |/q →

0 for q → 0) [52,64]. The spectral weight of the excitations
in the nonlinear Luttinger liquid is distributed continuously
between these two branches. Whereas the solitonic branch
represents an exact boundary (i.e., no spectral weight is located
at frequencies ω < ε−

q ), featuring a power-law singularity
for frequencies above ε−

q , the phononic branch represents
an algebraically sharp boundary (i.e., the spectral weight
for frequencies ω > ε+

q is strongly algebraically suppressed),
featuring a power-law singularity from both sides [64]. While
the power-law singularities at the edges of the spectral weight
obviously cannot be explained by a frequency-independent
self-energy, the characteristic width of the spectral weight
δωq = ε+

q − ε−
q = q2

m∗ can be captured by an imaginary part
of the on-shell value of the self-energy �R

q,ω=u|q|, which
determines the renormalized mass m∗ [47,52,64,65]. These
results hold for the zero-temperature limit of the problem.
At finite temperature T > 0, however, a self-consistent Born
approximation for the on-shell self-energy predicts a scaling
of the spectral weight δωq ∼

√
|q|3T [74,75], which has

also been observed in numerical simulations of interacting
one-dimensional bosons [74]. For δωq � u|q|, i.e., the width
of the spectral weight of the excitations being much smaller
than the average excitation energy, the spectral weight is
still sharply concentrated at the mass shell and one can still
think of (physically) well-defined excitations, although the
fine structure of the spectral weight is very different from
what one is used to for weakly interacting quasiparticles. As
a consequence, it is possible to derive a kinetic equation
for the excitation densities in this regime, applying the
common quasiparticle and local time approximations, and we
will implement this approach below. It neglects the specific
structure of the spectral weight of nonlinear Luttinger liquids,
which is valid for static variables in the quasiparticle limit
δωq � u|q|. We begin by introducing the interaction picture
for the Heisenberg operators

āt,q → āt,qe
−iu|q|t , (5.1)

which leaves the Hamiltonian (2.10) unmodified but shifts
the spectral weight of diagonal modes to zero frequency
and eliminates the phase ∼ei2u|q|t of off-diagonal correlation
functions [57]. The Green’s functions in the interaction
representation are labeled with a tilde. The Keldysh Green’s
function in Nambu space is

iG̃K
t,q,δ =

(〈{at+δ/2,q ,āt−δ/2,q}〉 〈{at+δ/2,q ,at−δ/2,−q}〉
〈{āt+δ/2,−q,āt−δ/2,q}〉 〈{āt+δ/2,q ,at−δ/2,q}〉

)
,

(5.2)
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where {·,·} is the anticommutator and we introduced an addi-
tional relative time shift δ associated with spectral properties
of the system. The retarded Green’s function is

iG̃R
t,q,δ = θ (δ)

(〈[at+δ/2,q ,āt−δ/2,q ]〉 〈[at+δ/2,q ,at−δ/2,−q ]〉
〈[āt+δ/2,−q,āt−δ/2,q ]〉 〈[āt+δ/2,q ,at−δ/2,q ]〉

)

= θ (δ)

(〈[at+δ/2,q ,āt−δ/2,q ]〉 0
0 〈[āt+δ/2,q ,at−δ/2,q ]〉

)
.

(5.3)

The off-diagonal retarded and advanced Green’s functions
are exactly zero. This is a consequence of the Hamiltonian,
which does not introduce a coupling between the modes q

and −q, such that the commutator [at+δ/2,q ,at−δ/2,−q ] = 0 for
all times t,δ. The anti-Hermitian Keldysh Green’s function is
parametrized according to [54,57]

G̃K
t,q,δ = (G̃R ◦ σz ◦ F − F ◦ σz ◦ G̃A)t,q,δ (5.4)

in terms of the time-dependent Hermitian quasiparticle distri-
bution function F and the Pauli matrix σz, the latter preserving
the symplectic structure of bosonic Nambu space. The ◦
represents matrix multiplication with respect to momentum
space and convolution with respect to time. Switching to
Wigner coordinates by Fourier transforming the Keldysh
Green’s function with respect to relative time

G̃K
t,q,ω =

∫
δ

G̃K
t,q,δe

iωδ (5.5)

and applying the Wigner approximation, which, due to the
RG-irrelevant interactions, is justified in the same regime for
which the Luttinger description is applicable [57,76], we find

G̃K
t,q,ω = G̃R

t,q,ωσzFt,q,ω − Ft,q,ωσzG̃
A
t,q,ω, (5.6)

which is diagonal in momentum and frequency space. Inverting
Eq. (5.6) by multiplying it with (G̃R)−1 from the left and
(G̃A)−1 from the right yields the kinetic equation for the
distribution function

i∂tFt,q,ω = σz�
R
t,q,ωFt,q,ω − Ft,q,ω�A

t,q,ωσz − σz�
K
t,q,ωσz.

(5.7)

The retarded, advanced self-energies �
R/A
t,q,ω are diagonal in

Nambu space, while the Keldysh self-energy �K
t,q,ω consists

of nonvanishing diagonal and off-diagonal entries due to the
initial off-diagonal occupations m0,q 	= 0.

The kinetic equation for the phonon occupations is obtained
by multiplying Eq. (5.7) on both sides with the spectral func-
tion Ãt,q,ω = i(G̃R

t,q,ω − G̃A
t,q,ω) and integrating over frequency

space. For interacting Luttinger liquids, the spectral function
Ãt,q,ω is very narrowly peaked at the mass shell and the
kinetic equation is essentially locked onto ω = 0 in this way
(in the interaction picture, the mass shell is at ω = 0). As
a consequence, one finds kinetic equations for the diagonal
densities

∂tnt,q = −σR
t,q(2nt,q + 1) + σK

t,q (5.8)

and the off-diagonal densities

∂tmt,q = −2σR
t,qmt,q − �K

t,q . (5.9)

FIG. 2. Diagrammatic illustration of the Dyson-Schwinger equa-
tions up to cubic order. Here G represents the full Green’s function,
S(3) the bare three-body vertex, and �(3) the full three-body vertex.
For convenience, this displays only the topology of the diagrams,
which has not been extended to Keldysh space.

They can be expressed in terms of the imaginary part of the
retarded on-shell self-energy

σR
t,q = 1

2

∫
ω

Ãt,q,ω

(
�R

t,q,ω − �A
t,q,ω

)
≈ 1

2

(
�R

t,q,ω=0 − �A
t,q,ω=0

)
(5.10)

and the Keldysh on-shell self-energies

σK
t,q = i

2

∫
ω

Ãt,q,ω

(
�K

t,q,ω

)
11 ≈ i

2

(
�K

t,q,ω=0

)
11 (5.11)

and

�K
t,q = i

2

∫
ω

At,q,ω

(
�K

t,q,ω

)
12 ≈ i

2

(
�K

t,q,ω=0

)
12. (5.12)

The Keldysh self-energy is always anti-Hermitian and there-
fore purely imaginary in frequency and momentum space,
such that Eqs. (5.8) and (5.9) are real. Since the criterion
|ε+

q − ε−
q | � u|q| is equivalent to σR

t,q � u|q| at zero- and
finite-temperature equilibrium, we also apply the latter crite-
rion for the present out-of-equilibrium situation in order to
estimate the validity of our approach.

The phonon scattering terms in Eq. (2.10) are resonant, i.e.,
they describe scattering between a continuum of energetically
degenerate states, and as a consequence, perturbation theory
diverges. In order to determine the self-energies σR

t,q ,σ
K
t,q ,�

K
t,q ,

we apply nonperturbative Dyson-Schwinger equations, which
are truncated at cubic order. This takes into account renormal-
ization effects of the cubic vertex and yields nonperturbative
self-energies. The topology of the corresponding diagrams is
shown in Fig. 2. If we neglect the cubic vertex correction,
the Dyson-Schwinger equations reduce to the self-consistent
Born approximation [57]. For an initial state with constant
phonon density, as is the case for the present setup, the
vertex correction has been shown to be exactly zero [57,67];
however, it obtains a nonzero value in the time evolution of
the system. The kinetic equations (5.8) and (5.9) are solved
iteratively, starting at a certain time t , and the self-energies and
vertex correction are computed as functions of the distributions
nt,q ,mt,q . Subsequently ∂tnt,q ,∂tmt,q are determined and used
in turn to compute the distributions nt+�,q,mt+�,q for an
infinitesimally later time. This procedure is repeated in order
to determine the time evolution of the phonon densities and
self-energies. A more detailed technical derivation of the
iterative solution for the kinetic equation, self-energies, and
vertex correction can be found in Ref. [57].
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VI. THERMALIZATION AND PRETHERMALIZATION
DYNAMICS

As one can see from the kinetic equations (5.8) and (5.9),
the diagonal and off-diagonal phonon densities are no longer
constants of motion in the presence of phonon scattering
and energy is redistributed between the different momentum
modes. On a general level, when the system thermalizes, as
we will show below, the steady state of the dynamics in
the presence of a cubic scattering as in Eq. (2.10) is solely
determined by the associated temperature T and independent
of any further details of the initial nonequilibrium state.
Specifically, the diagonal modes acquire a Bose-Einstein
distribution n∞,q = nt→∞,q = (eu|q|/T − 1)−1, whereas the
off-diagonal distributions mq = 0 have to vanish.

Importantly, in the resonant approximation, the final tem-
perature T (kB = 1 in the following) can be computed directly
from the initial state as will be shown now. In a closed system,
the total energy is conserved. Moreover, the conservation of
the kinetic energy is an additional exact feature of the derived
kinetic equation. As a consequence, also the interaction energy
itself is individually conserved. The latter is not an artifact of
the kinetic equation but a feature of the resonant nature of
the interactions, which, by definition of resonance, commute
with the quadratic part of the Hamiltonian (2.10) already on an
operator level. This implies that the relaxation dynamics due
to the interactions takes place in closed subsets of degenerate
eigenstates of the quadratic Hamiltonian, which would, in
the absence of phonon scattering, only acquire a global phase
and would not be able to thermalize. Consequently, the kinetic
energies of the initial (e0) and final (ef ) states have to be equal,
which yields

e0 = unλ�
2 =

∫
q

u|q|n0,q
!=

∫
q

u|q|n∞,q = T 2
λ π2

3u
= ef .

(6.1)

Here n0,q is the initial momentum distribution [see Eq. (2.7)]
and n∞,q = (eβu|q| − 1)−1 is the final thermal distribution. This
gives

Tλ = u�

π

√
3nλ, (6.2)

which depends on the details of the quench only through
the quench parameter λ such that we denote the temperature
via Tλ in the following. Importantly, this temperature yields
a criterion for the applicability of the Luttinger theory for
the present quench scenario, since Luttinger theory is only
well defined for temperatures lower than the cutoff Tλ < u�.
Evaluating this inequality results in a bound for the quench
parameter λ, i.e., for 1

15 � λ � 15, the quench can be described
in the framework of Luttinger theory.

In the remainder of this section, we will discuss the time
evolution of the phonon densities according to the kinetic
equation and derive the form of the Green’s function in
Eq. (3.3).

A. Phonon densities

The time evolution of the phonon densities is determined by
the kinetic equations (5.8) and (5.9). In order to make the time

evolution of the phonon densities dimensionless, we rescale the
self-energy according to σ̃ R,K = σR,K

v0�2 , the momentum q̃ = q

�
,

and time τ = v0�
2t . In these units, the time-evolved phonon

densities depend only on the initial state and are independent
of the microscopic details of v0 and � [57], i.e., in the present
setting the time evolution of the phonon density is completely
determined by the quench parameter λ, which characterizes
the initial state. Additionally, as a consequence of Eq. (2.7),
the dynamics remains invariant under λ → 1/λ and mτ,q →
−mτ,q and we therefore consider only the case λ > 1.

The time evolution of the phonon densities for three
different quench parameters λ is shown in Fig. 3. It features
two characteristic regimes, which are separated by a time-
dependent crossover momentum qth(τ ), which turns out to be
the inverse thermal length scale xth(τ ) = 1/qth(τ ). According
to the numerical simulations, qth(τ ) can be parametrized as
qth(τ ) = Qλτ

αλ , where the exponent αλ and the amplitude Qλ

are monotonic functions of the quench parameter (for λ > 1).
According to Fig. 3, away from the crossover, the phonon
distribution can be written as

nτ,q =
{

nλ + cτ,λ|q| for |q| < qth(τ )
T̃τ,λ

u|q| for |q| > qth(τ ).
(6.3)

For small momenta |q| < qth, the phonon density increases
linearly in momentum, with a time-dependent prefactor cτ,λ,
which has to be computed numerically but is determined solely
by the quench parameter. This linear increase is guaranteed
by the structure of the cubic vertex, which induces a scaling
of the one-loop diagrams ∼|q| for small momenta q. This
scaling is imposed by the U(1) symmetry of the action, which
forbids a smaller exponent in the scaling of the local vertex
as discussed in Ref. [57], where the same scaling behavior
was found, although with a different amplitude cτ reflecting
the driven nature of the system in that case. The very same
mechanism guarantees the pinning of the distribution at q = 0
to its initial value nt,q=0 = nt=0,q=0, expressed by the constant
nλ in Eq. (6.3).

For larger momenta |q| > qth fast quasiparticle scattering
events have established a local equilibrium and the phonon
density is well described by a Bose distribution function
nB(u|q|,T̃τ,λ) = (eu|q|/T̃τ,λ − 1)−1, which can be approximated
by a classical Rayleigh-Jeans distribution, as in Eq. (6.3),

for intermediate momenta qth < q <
T̃τ,λ

u
. The effective tem-

perature T̃τ,λ approaches the final temperature Tλ = T̃τ→∞,λ

asymptotically, following a power law T̃τ,λ − Tλ ∼ τμ, consis-
tent with μ = 2/3 for large times (see Sec. VI C). An important
exception is represented by the q = 0 mode, which does not
thermalize. The thermal momentum scale qth ∼ τ−αλ is larger
than zero for any finite time τ < ∞. As a consequence, for any
realistic experiment, there will always exist a small momentum
window q ∈ [0,qth(tmax)], which does not thermalize during
the run-time of the experiment tmax. However, even in the
limit τ → ∞, nτ,q=0 is pinned to its initial value by the
exact U(1) symmetry of the fermionic system. This symmetry
corresponds to the exact particle-number conservation of
the fermionic theory. The occupation nτ,q=0 of the zero-
momentum mode is directly related to the variance of the
total particle number nτ,q=0 ∼ 〈N̂2〉τ − 〈N̂〉2

τ , where N̂ is the

013601-10



PRETHERMALIZATION AND THERMALIZATION OF A . . . PHYSICAL REVIEW A 94, 013601 (2016)

FIG. 3. Simulation of the time evolution of the diagonal phonon density nτ,q (left column) and off-diagonal density mτ,q (right column) for
different quench parameters λ. In each row, the individual lines correspond to different times τ = (0,1,2,3,4,5). In the left column the total
phonon density increases in time (from light to dark green) and the dotted lines represent the corresponding asymptotic density in the limit
τ → ∞, which is a Bose distribution with the quench dependent temperature Tλ = (0.035,0.124,0.24)u� (from the top to the bottom row).
The distribution function is separated into two regimes according to Eq. (6.3), with a linear increase in momentum for small momenta and
a corresponding thermal distribution for larger momenta. The crossover momentum separating the two regimes is marked with a dot. In the
right column the off-diagonal phonon density is decreasing in time (from light to dark red), displaying two distinct momentum regimes: For
momenta larger than the crossover q > qth, the off-diagonal occupation decreases exponentially in momentum, while it remains close to its
initial value m0,q = mλ for momenta smaller than the crossover. While any momentum mode nτ,q>0 will thermalize at a finite time τ < ∞, the
zero-momentum mode remains pinned to its initial value nτ,q=0 = nτ=0,q=0. The latter is not an artifact of the approximation but a consequence
of exact fermionic particle number conservation, as outlined in the main text.

total fermionic number operator [76,77]. For particle-number-
conserving dynamics, it is therefore an integral of motion.
Consequently, the asymptotic bosonic distribution function in
the limit τ → ∞ is a perfect Bose-Einstein distribution, with
a discontinuity at q = 0.

In order to express the factor cτ,λ in terms of the temperature
T̃τ,λ, we equate both forms of the distribution function nτ,q in
Eq. (6.3) at the crossover scale q = qth. This yields an estimate
for the nonequilibrium prefactor

cτ,λ = T̃τ,λ

uq2
th

. (6.4)

The off-diagonal densities mτ,q are decaying in the long-
time limit, with mτ,q → 0 in the limit τ → ∞. Their time
evolution is shown in Fig. 3 for the same quench parameters as
used for the diagonal densities. For momenta larger than the
crossover scale qth, the off-diagonal densities decay exponen-
tially fast in momentum, while they remain close to their initial

value mλ for momenta smaller than the crossover. The number
of scattering events into the off-diagonal modes is proportional
to �K

τ,q , which decreases in time very fast ∼m2
τ,q . This stands

in contrast to the large number of out-scattering processes,
which are given by σR

τ,qmτ,q ∼ nτ,qmτ,q and dominate over
the ingoing scattering events for a thermalizing diagonal
distribution.

B. Fermion Green’s function

The fermionic lesser Green’s function G<
t,x can be computed

using the time-evolved densities according to Eq. (2.17). The
numerically determined fermion Green’s function for a quench
scenario with λ = 1.6 are shown in Fig. 4, as discussed in the
beginning of the section. One can identify three spatiotemporal
regimes, with individually different, generic scaling behavior
described by Eqs. (3.3)–(3.6). By exploiting the generic form
of the time-evolved phonon densities for interacting Luttinger
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FIG. 4. Time evolution of the thermal length scale Tλxth(τ ) =
Tλ

qth(τ ) for three different quench scenarios λ = (1.1,1.4,1.9), normal-
ized with the corresponding final temperature Tλ. The thermal length
scale evolves according to a power law in time Tλxth(τ ) = xλτ

αλ ,
where both the amplitude and exponent depend nontrivially on
the quench parameter and the exponent is invariant under a basis
transformation from the dimensionless basis to the microscopic basis.
In the present example, α1.1 = 0.7, α1.4 = 0.85, and α1.9 = 0.92. The
exponent is bounded from above αλ < 1 due to the subleading nature
of the interactions and from below 0 < αλ by stability properties. For
exponents αλ < 1, the thermalization dynamics will always feature a
finite spatiotemporal prethermalized region as indicated in Fig. 1.

liquids, we will in the following derive the form of the
fermionic Green’s function as given in Eq. (3.3).

In order to approximate the contribution from the off-
diagonal densities, we exploit the fact that they remain close
to their initial value mτ,q ≈ mλ for momenta smaller than the
crossover q < qth and decay exponentially for larger momenta,
yielding a negligible influence on short distances. To account
for this behavior, we replace in the corresponding integrals
the cutoff � → qth by the thermal crossover and approximate
mτ,q ≈ mλ for small momenta. The result is

G<
t,x = G<

0,x + imλ ln

(
1 + q2

th(x − 2ut)2

1 + q2
th(x + 2ut)2

)
− i

(K2 − 1)mλ

2K

× ln

[(
1 + q2

th(x + 2ut)2
)(

1 + q2
th(x − 2ut)2

)
(
1 + 4u2t2q2

th

)2(
1 + x2q2

th

)2

]

+ i
K2 + 1

K

∫
q

2πe−|q|/�

|q| (cos(qx) − 1)(nt,q − nλ).

(6.5)

In this expression, G0,x contains again the initial postquench
exponent; the terms proportional to mλ represent the time-
dependent contributions stemming from the off-diagonal
densities, whereas the first term vanishes for distances away
from the prethermal crossover x 	= 2ut and the second term
vanishes for distances x < 1/qth(τ ) = xth(τ ) smaller than
the thermal length. The latter expresses the fact that off-
diagonal occupations vanish in the asymptotic thermal limit.
The term in the third line of Eq. (6.5) takes into account
the deviation of the diagonal phonon occupation from the
flat initial distribution. Applying Eq. (6.3) to the third line

FIG. 5. Numerical results for the absolute value of the fermionic
lesser Green’s function G<

t,x (green solid lines) after a quench
with λ = 1.6 for different times t = 40

u�
l, l = 1, . . . ,9 (magnitude

decreasing with l). The initial state corresponds to noninteracting
fermions (K = 1) and the interaction was chosen such that v0�

2 =
u�

4 . The figure illustrates the two crossovers and the three different
spatiotemporal regimes of the Green’s function. The red lines are
determined according to the factorization (3.3)–(3.6) in the different
regimes and describe the Green’s function very well apart from the
crossover regions.

of (6.5) with a smooth crossover function ∼ exp(−|q|/qth),
1 − exp(−|q|/qth), respectively, amounts to

G<
t,x = G<

0,x − i
K2 − 1

2K
mλ ln

×
[[

1 + q2
th(x + 2ut)2

][
1 + q2

th(x − 2ut)2
]

(
1 + 4u2t2q2

th

)2(
1 + x2q2

th

)2

]

−2πi
K2 + 1

K

T̃τ,λ

u

[
q2

thx
2

1 + q2
thx

2

+|x|
(

1 − 2 arctan(qth|x|)
π

)]
, (6.6)

yielding the form of the fermionic Green’s function in
Eqs. (3.3)–(3.6). The prethermal amplitude Zpt is determined
by the contribution ∼mλ in the first line of Eq. (6.6), while
the thermal amplitude Zth is given by the exponential of the
∼T̃τ,λ term in the second line of Eq. (6.6). This form of the
fermionic Green’s function holds away from the crossover
lines |x| = 2ut and x = xth(t). As shown in Fig. 5, it is a very
good approximation for the fermionic Green’s function and
illustrates perfectly the different thermalization regimes and
their scaling behavior.

The form of Eq. (6.6) allows us to estimate the distance xc,
below which the kinetic theory is applicable and which we have
given already in Eq. (3.2). One realizes immediately that the
prethermalization described by the first line of (6.6) is absent
for K = 1, i.e., for a quench to the noninteracting theory.
This is due to the absence of a coupling of the single-particle
sector to the many-body sector of the theory. A clear condition
for the applicability of the kinetic theory can be obtained by
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comparing the time-dependent variation of the two lines of
Eq. (6.6) with each other. A well-defined prethermal plateau
has then been established for |1st line of (6.6)| > |2nd line of
(6.6)|, which leads to the condition on the distance x < xc(t),
where xc(t) is given in Eq. (3.2).

We want to close the section by a discussion of the way in
which the microscopic scales enter the thermalization dynam-
ics discussed in the present context. For the noninteracting
Luttinger liquid in equilibrium, the microscopic details are
completely encoded in the sound velocity u and the Luttinger
parameter K as well as the temperature of the system T � 0
and the Luttinger cutoff �. For a nonequilibrium setting in the
quadratic Luttinger framework, one has to add the information
on the initial state, which in the case of an interaction quench
can be summarized in a single quench parameter λ. In the
presence of interactions, we added the cubic vertex ∼v0. This
lead to the emergence of a crossover scale xth(t), below which
the system is effectively thermal, described by an effective
time-dependent temperature T̃t,λ. In the effective description
of a factorizing Green’s function, these quantities are sufficient
to describe the postquench dynamics.

In the next section, we will discuss the time-dependent
temperature and find T̃λ,τ = Tλ + �λτ

−μ, where Tλ is the final
temperature of the system, depending on the energy induced
by the quench and �λ the quench-dependent amplitude,
while μ is a universal exponent. In original units, T̃t,λ =
Tλ + u��λ(v0�

2t)−μ. In the simplified picture, these are the
only relevant quantities, which show a functional dependence
on the nonlinearity v0, naturally containing the limit v0 → 0,
for which the thermal crossover is at zero distance and the
temperature is not defined due to the absence of thermalization.

The thermalization dynamics for interacting Luttinger
liquids presented so far is not restricted to interaction quenches
or global quenches in general but is expected to represent quite
generically the relaxation dynamics of Luttinger liquids out of
equilibrium. First of all, the dephasing of the off-diagonal
modes due to the quadratic Hamiltonian will be present in any
setup for which off-diagonal modes have been excited in the
initial state and it spreads in space with the light cone x = 2ut .
On the other hand, due to U(1) symmetry and the imposed
scaling of the one-loop correction ∼q for small momenta
q [57], the change in the diagonal phonon distribution has
to scale ∼|q| as well. The determination of the crossover
scale thus proceeds along the same lines as outlined above
and thus separating thermalized short-distance modes with
occupation nt,q ∼ 1/|q| from nonthermal long-distance modes
nt,q − n0,q ∼ |q|, leading to a similar three-stage process for
equilibration as described in the present setup.

C. Asymptotic thermalization in the resonant approximation

After the quench, momentum modes larger than the
temporally decreasing crossover momentum qth establish a
local detailed balance between in- and out-scattering pro-
cesses. This in turn defines the thermalized region in real
space, for which, for distances x < xth(t) = 1/qth(t), the
fermionic Green’s function has the typical thermal form. In
this regime, the corresponding momentum modes for q > qth

are described by a single well-defined temperature T̃t,λ such
that nt,q = nB(u|q|,T ) ≈ T/u|q|. For momenta q < qth the

phonon distribution is however smaller than the corresponding
thermal distribution u|q|nt,q < T (see Fig. 3) and in order to
reach equipartition, energy has to be shifted from the thermal
regime to the nonthermalized infrared modes. Consequently,
the effective temperature of the high-momentum modes is
decreasing in time, expressing the energy flow from the
high- to the low-momentum regime, i.e., T̃t→∞,λ → Tλ in
the limit xth(t) → ∞. The local equipartition of energy in
the thermal regime is a consequence of a locally established
detailed balance between in- and out-scattering processes.
This local detailed balance in combination with exact energy
conservation enforces that the energy transport to the long-
wavelength modes in the system is performed by a global
mechanism, which reveals the presence of dynamical slow
modes in the system. They are a consequence of exact
conservation laws, i.e., global symmetries, and in the present
system emerge as a consequence of exact momentum and
energy conservation. These modes are hydrodynamic gapless
modes featuring an algebraic decay of the temperature in time
towards its final value.

In order to determine the asymptotic dynamics in the ther-
malized regime, we define a momentum- and time-dependent
temperature by inverting the on-shell Bose distribution func-
tion

T̃t,λ,q = u|q|
ln

( nt,q+1
nt,q

) . (6.7)

The time evolution of T̃t,λ,q is shown in Fig. 6. For momenta
q < qth it varies as a function of momentum, indicating that
the system has not thermalized on this scale and the notion of a
temperature is absent. On the other hand, for momenta q > qth,
T̃t,λ,q becomes momentum independent and a global property
of the high-momentum modes. The decay of T̃t,λ = T̃t,q>qth,λ

follows a power law in time, which can be expressed

T̃t,λ = Tλ + u��λ(v0�
2t)−μ, (6.8)

where μ is the relaxation exponent associated with the
dynamical slow modes. For a one-dimensional system with
energy- and momentum-conserving dynamics μ = 2/3, since
this behavior corresponds to the Kardar-Parisi-Zhang uni-
versality class [74,78–81]. Performing a single parameter fit
from the numerical simulations, we find that for long times
μ = 2/3 agrees very well with the numerical data for various
different quench scenarios. However, for intermediate times,
we find scaling behavior with μ > 2/3 for some quenches,
which might be traced back to the presence of subleading
correction terms due to couplings to other diffusive modes
[71,82,83]. Numerically a distinction of these possible scaling
contributions is only possible for simulation times of multiple
decades such that we cannot exclude a different exponent
μ < 2/3 at the longest times [71], which is however not
observed in our simulations.

While the establishment of a local detailed balance, leading
to effective thermalization and thermal-like fermionic correla-
tion functions, is an effect of local quasiparticle scattering,
the asymptotic thermalization dynamics describing energy
transport over large distances in momentum space is deter-
mined by macroscopic diffusive modes in the system. This is
observable by an algebraically decaying temperature towards
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FIG. 6. Momentum-dependent temperature T̃τ,q,λ as defined in Eq. (6.7) after two distinct quenches. For momenta smaller than the crossover
qth, the temperature is a momentum-dependent function and cannot be seen as a global property. On the other hand, for momenta q > qth,
the modes are described by the same temperature, indicating the presence of local detailed balance in the momentum regime larger than the
crossover. In this regime, the temperature decays algebraically, revealing energy transport from the thermalized to the nonthermalized region,
carried by dynamical slow modes. The inset shows the decay of the effective temperature for large times, allowing for the numerical estimate
μ = 2/3, which corresponds to the red dotted line.

the final temperature of the system Tλ. The discussion of the
dynamical slow modes remains valid even in the presence of
off-resonance scattering processes and therefore the universal
properties of the asymptotic thermalization process remain
unmodified. However, nonuniversal properties such as the final
temperature and the relaxation rate will be modified by the
off-resonance processes. Their precise computation would be
a task for numerical simulations.

VII. CONCLUSION

In this work we have analyzed the relaxation dynamics
of interacting Luttinger liquids, microscopically represented
by one-dimensional interacting fermions with band curvature,
after a sudden quench in the fermionic interaction. The
theoretical analysis is based on quantum kinetic equations
for the phonon distribution function and nonperturbative
Dyson-Schwinger equations, which are both well suited to
determine the time evolution of static observables for inter-
acting Luttinger liquids with resonant cubic interactions and
applicable in a broad parameter regime within the Luttinger
framework. The central result is a two-step thermalization
procedure including a spatiotemporal prethermalized regime
for intermediate distances and times, which leads to fermionic
correlation functions described by a generalized Gibbs state on
these distances and corresponds to fast quasiparticle formation
after the quench. For smaller distances, a thermalized regime
occurs due to the scattering and associated redistribution of en-
ergy between the quasiparticle modes. This regime is described
by thermal correlation functions with a characteristic thermal
correlation length and a thermal quasiparticle distribution with
an effective temperature that decays algebraically in time
towards its asymptotic value.

This work shows in which way thermalization and prether-
malization occur and spread in space for RG-irrelevant, and
in this sense weak, integrability-breaking interactions. In
this setup both thermalization and prethermalization occur
locally in space. While the prethermalized region spreads
ballistically in space, the thermalized region spreads sub-
ballistically due to the subleading, RG-irrelevant nature of

the interactions. This allows for a well-defined prethermal
regime in time and space, which would not be possible for a
constant momentum-independent scattering vertex, for which
thermalization would occur immediately on all different length
scales. This underpins the statement that typical candidates
for clearly observable prethermalized regimes within generic
thermalization dynamics are quasiparticle theories with RG-
irrelevant interactions.
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APPENDIX A: KELDYSH ACTION

In this Appendix we derive the Keldysh action for the
interacting Luttinger liquid after the quench. The partition
function as the generating functional of all possible correlation
functions has the form

Z(t) = tr
(
e−iH tρ0e

iHt
)
, (A1)

where t is the time, ρ0 is the initial state at t = 0, and H

is the Hamiltonian (2.10), since we are interested in bosonic
correlation functions. In order to express the partition function
in terms of a path integral, one inserts bosonic coherent states
at each infinitesimal time step and derives in a straightforward
way the action on the (±) contour

Z(t) =
∫

D[ā+,X,ā−,X,a+,X,a−,X]eiS (±)
, (A2)
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where D[· · · ] is the common functional measure on the (±)
contour, X = (x,t) the spatiotemporal coordinate, and

S (±) =
∫

X

∑
α=±

α(āα,Xi∂taα,X − H [āα,X,aα,X]) + F (A3)

is the action on the (±) contour. In the action (A3), the
Hamiltonian is expressed in terms of (±) fields by replacing
the operators in Eq. (2.10) by complex fields. The functional
F carries the information on the initial state (i.e., is the
initial density matrix ρ0 expressed in terms of the bosonic
fields) and, depending on the precise initial stay, in general
contains higher-order vertices of arbitrary power [84,85]. After
performing the Keldysh rotation to classical and quantum
fields āc = (ā+ + ā−)/

√
2, āq = (ā+ − ā−)/

√
2 in the action,

one obtains the Keldysh action

S =
∫

t,p

(āc,p,t ,āq,p,t )

(
0 i∂t − u|q| − i0+

i∂t − u|q| + i0+ 0

)

×
(

ac,p,t

aq,p,t

)
(A4)

+
∫ ′

t,p,k

v0

√
|pk(p + k)| [2āc,k+p,t ac,p,t aq,k,t

+āq,k+p,t (ac,k,t ac,p,t + aq,k,t aq,p,t ) + H.c.] + F . (A5)

In this representation, the functional F contains only quantum
fields [84–86] and, since it contains the information on the
initial state, is uniquely determined by the complete set
of irreducible correlation functions at t = 0. In the present
case, we consider an initial state, which is a thermal state
corresponding to the prequench Hamiltonian and therefore the
initial correlations correspond to thermal correlations, which,
according to the Dzyaloshinkii-Larkin theorem [84], are only
of quadratic order. In the basis of the prequench fields, which
we label as b̄α,p,t ,bα,p,t ,α = c,q, Ft=0 is therefore nothing but
the thermal Keldysh self-energy

Ft=0 = 2i0+
∫

p

b̄q,p,t=0[2n(u|p|) + 1]bq,p,t=0, (A6)

where n(u|p|) is the Bose distribution. The transformation
from the prequench to the postquench basis can be performed
by subsequently applying the canonical Bogoliubov transfor-
mation (2.5) and (2.6) and reads

āα,p,t = 1

2

[√
λ(b̄α,p,t − bα,−p,t ) + 1√

λ
(b̄α,p,t + bα,−p,t )

]
.

(A7)

Combining these results, the quantum part of the action can be
expressed solely by the Keldysh self-energy

F =
∫

p,t,t ′
(āq,p,t ,aq,−p,t )�

K
p,t,t ′

(
aq,p,t ′

āq,−p,t ′

)
, (A8)

with the initial condition

�K
p,0,0 = 2i0+

2λ
[2n(u|p|) + 1]

(
1 + λ2 λ2 − 1
λ2 − 1 λ2 + 1

)
. (A9)

The time evolution of the Keldysh self-energy and the
corresponding phonon distribution function is determined via
the kinetic equation approach in the main text.

APPENDIX B: FERMIONIC GREEN’S FUNCTIONS

In this Appendix we derive the expression for the exponent
(2.13) in the fermionic Green’s function (2.16). The fermionic
lesser and greater Green’s functions for right movers at equal
times are defined as

G<
t,x = −i〈ψ̄t,xψt,0〉 = −i〈ψ̄−,t,xψ+,t,0〉, (B1)

G>
t,x = −i〈ψt,xψ̄t,0〉 = i〈ψ̄+,t,−xψ−,t,0〉, (B2)

where the second equality in both equations indicates the
average with respect to the functional integral and the indices
± denote the corresponding contour. The corresponding
Green’s functions for left movers are obtained by x → −x,
as discussed in the main text. Obviously, in a spatially
translationally invariant system, the greater Green’s function
is obtained from the lesser Green’s function by a contour
exchange (+ ↔ −) and spatial inversion (x → −x). Right-
moving fermion operators are expressed in terms of Luttinger
fields according to

ψ̄α,t,x =
√

�

2π
eikFxei(φα,t,x−θα,t,x ), (B3)

where α = ± labels the contour. It is important to perform
the transformation (B3) on the ± and not on the Keldysh
contour since the transformation to the Luttinger basis does
not commute with the Keldysh rotation. The lesser Green’s
function expressed in terms of the Luttinger fields is

G<
t,x = −i

�

2π
eikFx〈ei(φ−,t,x−θ−,t,x−φ+,t,0+θ+,t,0)〉

= − i
�

2π
eikFxe−(i/2)G<

t,x . (B4)

The exponent

G<
t,x = 2i ln〈ei(φ−,t,x−θ−,t,x−φ+,t,0+θ+,t,0)〉 (B5)

is, according to the linked cluster theorem, nothing but the sum
of all one-particle irreducible contractions of an expansion of
the exponential. The generating functional for the one-particle
irreducible contractions is the effective action �[āα,X,aα,X],
which we determine up to cubic order by Dyson-Schwinger
equations. The four-point irreducible vertex is subleading and
negligibly small on all relevant scales. On the other hand, the
three-body irreducible vertex remains local [57] and therefore
in the expansion of the exponential (B4), only purely local
terms (e.g., ∼θ3

t,x) give a contribution at cubic order. Due
to translational invariance, these contributions yield only a
constant amplitude for the Green’s function, which, due to
the Green’s function, must be unity. Consequently, only the
quadratic terms contribute to the expansion and the sum of all
quadratic irreducible vertices is the full Green’s function, i.e.,

G<
t,x = −i〈(φ−,t,x − θ−,t,x − φ+,t,0 + θ+,t,0)2〉. (B6)

Performing the Keldysh rotation, one straightforwardly arrives
at the expression for the exponent (2.16).

The various Green’s functions can be evaluated using the
Bogoliubov transformation to the phonon basis, which yields
the set of Green’s functions

GR
θθ,t,x = GR

φφ,x,t = 0, (B7)
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GK
φφ,t,x =

∫
q

πK

|q|
[
GK

t,q + i Im
(
GKA

t,q

)]
cos(qx)e−|q|/�, (B8)

GK
θθ,t,x =

∫
q

π

|q|K
[
GK

t,q − i Im
(
GKA

t,q

)]
cos(qx)e−|q|/�, (B9)

GR
θφ,t,x − GA

θφ,t,x = −i

∫
q

π

q
sin(qx)

(
GR

t,q − GA
t,q

)
e−|q|/�

= − arctan(�x), (B10)

GK
θφ,t,x = −i

∫
q

π

q
sin(qx)Re

(
GKA

t,q

)
e−|q|/�. (B11)

Here GK
t,q = −i〈ac,q,t āc,q,t 〉 = −i(2nt,q + 1) is the equal-

time diagonal Keldysh Green’s function and GKA
t,q =

−i〈āc,−q,t āc,q,t 〉 = −i2mt,qe
2iu|q|t is the anomalous equal-

time Keldysh Green’s function. Inserting these expressions
in the exponent (2.16), one finds (2.17), which is G<

t,x for equal
times up to fourth-order irreducible vertex corrections.
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