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Relativistic calculations of angle-dependent photoemission time delay
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reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
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I. INTRODUCTION

A measurable time delay in laser-driven atomic ionization
has been discovered recently [1,2]. Since the first pioneering
experiments, the time-delay spectroscopy of laser-induced
atomic ionization (attosecond chronoscopy) has become a
rapidly developing field [3]. Among other characteristic fea-
tures, an angular anisotropy of attosecond time delay relative to
polarization of laser light has been predicted theoretically [4,5]
and measured experimentally [6]. In single-photon ionization
of atomic np subshells, the time delay can show some angular
anisotropy due to the interplay of the εs and εd photoelectron
continua [4,5]. This anisotropy becomes particularly strong
near a Cooper minimum in the dominant np → εd channel,
making the nominally weak np → εs channel competitive.
In two-color (two-photon) XUV and IR experiments, the
interference of these photoemission channels can manifest
itself even in a spherically symmetric ns atomic subshell. This
leads to a strong angular anisotropy of the measured time
delay when the εd continuum has a kinematic node near the
magic angle of 54.7◦. Such a strong anisotropy has indeed been
measured in He in a recent RABBITT (Reconstruction of At-
tosecond Beating By Interference of Two-photon Transitions)
experiment [6]. Another interesting aspect of photoemission
time delay is its sensitivity to the fine structure of the ionized
target. Recent RABBITT experiments have detected such a
sensitivity in the valence shell photoionization of the Kr and
Xe atoms [7].

Atomic time delay measured in XUV/IR two-photon
ionization experiments contains two distinct components:

τa = τW + τCLC. (1)
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The so-called Wigner time delay τW is associated with the
XUV photon absorption and can be related to the photoelectron
group delay [8]. The second component τCLC is associated with
the IR photon absorption and appears due to the coupling of
the IR laser field and the Coulomb field of the ion remainder
[the Coulomb-laser coupling (CLC) [9], also known as the
continuum-continuum CC correction [10]].

In this paper, we concentrate primarily on the Wigner
component of the atomic time delay and investigate its
angular and spin dependence using the dipole relativistic
random phase approximation (RRPA). We expand our previous
relativistic studies of the Wigner time delay [11,12] and
include the full interference of all the spin-orbit coupled
photoionization channels. In the previous studies, only the
time delay in the dominant channel was evaluated. We validate
our theoretical model using the angular dependent time delay
near the Cooper minimum of the 3p subshell of Ar. For the
relatively light Ar atom, our RRPA results agree very well with
nonrelativistic random-phase approximation with exchange
(RPAE)1 calculations [4]. For heavier Kr and Xe atoms, we
clearly observe the manifestation of relativistic effects. One
such effect is a spin-orbit splitting of the time delay near
threshold.

We pay somewhat lesser attention to the CLC component
of the time delay. This correction is known to decrease rapidly
with a growing photoelectron energy. It is expected to be
relatively small near the Cooper minimum, which is at least
30 eV or more above the threshold in the valence shells of noble
gases. Hydrogenic estimates in Ref. [5] bound this correction
to less than 20 as in this photoelectron energy range. Also,
this correction is largely uniform across all the partial waves
(see, e.g., Fig. 7 of Ref. [10]) and hence is not expected to be
strongly angular dependent. However, this correction is very
large near threshold, and it has to be taken into account near

1The same exchange interaction is accounted for in both the RPAE
and RRPA, but E is dropped from the latter acronym for brevity.
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threshold. We do so by augmenting our RRPA results for τW

with hydrogenic results from Ref. [5] for τCLC.
The paper is organized as follows. In Sec. II a a brief

theoretical formulation is given. In Sec. III the results for
the angle and energy dependence of Wigner time delay for
photoemission from outer np1/2 and np3/2 subshells of atomic
Ar, Kr, and Xe are presented and discussed; Ne is omitted
because there is no Cooper minimum in its photoionization
cross section. Conclusions are drawn in Sec. IV.

II. THEORETICAL METHOD

A. Photoionization amplitude

We adopt the multichannel RRPA formalism of Johnson
and Lin [13]. In this formalism, the amplitude for a transition
from the ground state (ui) to an excited state (ωi±), induced
by a time-varying external field v+e−iωt + v−eiωt , is given by

T =
N∑

i=1

∫
d3r(ω†

i+�α · �Aui + u
†
i �α · �Aωi−). (2)

Here the electromagnetic interaction is written in Coulomb
gauge and expressed in terms of the Pauli spin matrices �α =
(0 �σ
�σ 0) and the vector potential �A.

In a single active electron approximation, the multipole
transition amplitude is reduced to

T
(λ)
JM =

∫
d3rω

†
i+�α · �aλ

JMui, (3)

where the indices J and M are the photon angular momentum
and its projection and λ = 1 or 0 for electric or magnetic mul-
tipoles, respectively. Specifically, for a one-electron transition
from an initial state characterized by the quantum numbers
ljm to a final continuum state l̄j̄ m̄ with the spin described by
a two-component spinor χν , this equation becomes

T
(λ)
JM = i

√
2π2

Ep

√
(2J + 1)(J + 1)

J

ωJ

(2J + 1)!!

×
∑
κ̄m̄

[χ †
ν�κ̄m̄(p̂)](−1)j̄−m̄

(
j̄ J j

−m̄ M m

)

× i1−l̄ eiδκ̄
〈
ā
∥∥Q

(λ)
J

∥∥a
〉
(−1)j̄+j+J . (4)

Here E and p̂ are the photoelectron energy and momentum
direction, respectively, ω is the photon frequency, and δκ̄ is
the phase of the continuum wave with κ̄ = ∓(j̄ + 1

2 ) for j̄ =
(l̄ ± 1

2 ). The spherical spinor is defined as

�κm(n̂) =
∑

ν=±1/2

C
jM

l,M−ν,1/2νYlm−ν(n̂)χν. (5)

The corresponding Clebsch-Gordan coefficients are tabulated
in Ref. [14]. The reduced matrix element of the spherical
tensor between the initial sate a = (nκ) and a final energy
scale normalized state a = (E,κ̄) is written as

〈
ā
∥∥Q

(λ)
J

∥∥a
〉 = (−1)j+1/2[j̄ ][j ]

(
j j̄ J

−1/2 1/2 0

)

×π (l̄,l,J − λ + 1)R(λ)
J (ā,a). (6)

Here π (l̄,l,J − λ + 1) = 1 or 0 for l̄ + l + J − λ + 1 even or
odd, respectively, and R

(λ)
J (ā,a) is the radial integral. While

Eq. (6) is derived for a single-electron transition, it also applies
to closed-shell atomic systems. In order to include the RRPA
correlations, the only change in Eq. (4) is to replace 〈ā‖Q(λ)

J ‖a〉
with 〈ā‖Q(λ)

J ‖a〉RRPA. Finally, as we will be dealing with
electric dipole photoionizing transitions, we set λ = 1, J = 1
and choose M = 0, which corresponds to linear polarization
in the z direction. In this case, Eq. (4) is reduced to

T 1±
10 ≡ [

T
(1)

10

]
ν=±1/2 =

∑
κ̄m̄

C
jM

l,M−ν,1/2νYlm−ν(p̂)

×χν(−1)j̄+j+1+j̄−m̄

(
j̄ 1 j

−m̄ 0 m

)

× i1−l̄ eiδκ̄
〈
ā
∥∥Q

(1)
1

∥∥a
〉
. (7)

Here we dropped the common scaling factor for brevity of
notation. We will also be using a shorthand for a reduced
matrix element modified by the phase factors:

Dlj→l̄j̄ = i1−l̄ eiδκ̄
〈
ā
∥∥Q

(λ)
J

∥∥a
〉
. (8)

We note that Eq. (4) differs by the extra parity factor (−1)j̄+j+J

from the original equation (43) of Johnson and Lin [13]. We
added this factor to make it comply with the Wigner-Eckart
theorem [Eq. (107-6) of Landau and Lifshitz [15]].

B. Formulation of angular-dependent time delay

An electric dipole transition from a np initial state leads to
the following five ionization channels:

np1/2 → εs1/2, εd3/2,

np3/2 → εs1/2, εd3/2, εd5/2.

Using Eq. (7), we derive the following expressions for the
np1/2 ionization amplitude:

[
T 1+

10

]m= 1
2

np1/2
= + 1√

15
Y20Dnp1/2→εd3/2 + 1√

6
Y00Dnp1/2→εs1/2 ,

[
T 1−

10

]m= 1
2

np1/2
= − 1√

10
Y21 Dnp1/2→εd3/2 .

Here and throughout the text, Yl,m ≡ Ylm(p̂). The correspond-
ing amplitudes with the m = −1/2 projection will have a
similar structure with the simultaneous inversion of the spin
projection T + ↔ T − and the second index of the spherical
harmonic Y21 → Y2−1. Each amplitude has its own associated
photoelectron group delay (the Wigner time delay [8]) defined
as

τ = dη

dE
, η = tan−1

[
ImT 1±

10

ReT 1±
10

]
. (9)

The spin-averaged time delay can be expressed as a weighted
sum:

τ̄np1/2 =
τ

m= 1
2 ,+

np1/2

∣∣[T 1+
10

]m= 1
2

np1/2

∣∣2 + ∣∣[T 1−
10

]m= 1
2

np1/2

∣∣2
τ

m= 1
2 ,−

np1/2∣∣[T 1+
10

]m= 1
2

np1/2

∣∣2 + ∣∣[T 1−
10

]m= 1
2

np1/2

∣∣2
. (10)
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The angular resolved amplitudes for the np3/2 initial state take
the following form:

[
T 1+

10

]m=1/2

np3/2
= 1√

6
Y00Dnp3/2→εs1/2 − 1

5
√

6
Y20Dnp3/2→εd3/2

− 1

5

√
3

2
Y20Dnp3/2→εd5/2 ,

[
T 1−

10

]m=1/2

np3/2
= 1

10
Y21Dnp3/2→εd3/2 − 1

5
Y21Dnp3/2→εd5/2 ,

[
T 1+

10

]m=3/2

np3/2
= −

√
3

10
Y21Dnp3/2→εd3/2 − 2

√
3

15
Y21Dnp3/2→εd5/2,

[
T 1−

10

]m=3/2

np3/2
=

√
3

5
Y22Dnp3/2→εd3/2 −

√
3

15
Y22Dnp3/2→εd5/2 .

The corresponding spin-averaged time delay becomes

S τ̄np3/2 = τ
m= 1

2 ,+
np3/2

∣∣[T 1+
10

]m= 1
2

np3/2

∣∣2 + τ
m= 1

2 ,−
np3/2

∣∣[T 1−
10

]m= 1
2

np3/2

∣∣2

+ τ
m= 3

2 ,+
np3/2

∣∣[T 1+
10

]m= 3
2

np3/2

∣∣2 + τ
m= 3

2 ,−
np3/2

∣∣[T 1−
10

]m= 3
2

np3/2

∣∣2

with S = ∣∣[T 1+
10

]m= 1
2

np3/2

∣∣2 + ∣∣[T 1−
10

]m= 1
2

np3/2

∣∣2

+ ∣∣[T 1+
10

]m= 3
2

np3/2

∣∣2 + ∣∣[T 1−
10

]m= 3
2

np3/2

∣∣2
.

Here we restricted ourselves to positive m = 1/2,3/2. The
corresponding time delay with negative m will be identical.

C. Nonrelativistic limit

Using Eqs. (6) and (8), we can express the amplitudes via the
corresponding radial integrals modified by the phase factors.
For a mildly relativistic atom, the radial integrals with j̄ =
l̄ ± 1/2 orbitals will be very similar. Hence we can neglect
this difference and reduce the amplitudes to the following
expressions:

T 1+
10 (np1/2) = −1

3
Y00Rnp→εs − 2

3

1√
5
Y20Rnp→εd ,

T 1+
10 (np3/2) =

√
2

3
Y00Rnp→εs + 2

3

√
2

5
Y20Rεd,

T 1−
10 (np1/2) =

√
2

15
Y21Rnp→εd ,

T 1−
10 (np3/2) =

√
1

15
Y21Rnp→εd .

This is to be compared with the corresponding nonrelativistic
amplitudes [16]:

Tnpm=0→εs = 1√
3

Y00(n̂) Rnp→εs,

Tnpm=0→εd = 2

√
1

15
Y20(n̂) Rnp→εd ,

Tnpm=1→Ed = −
√

1

5
Y21(n̂) Rnp→Ed.

By comparing the weakly relativistic and strictly nonrel-
ativistic amplitudes, we can observe the following scaling

properties:

[T +]m=1/2
np1/2

� 1√
3
Tnpm=0 , [T −]m=1/2

np1/2
� −

√
2

3
Tnpm=1 ,

[T +]m=1/2
np3/2

�
√

2

3
Tnpm=0 , [T −]m=1/2

np3/2
� − 1√

3
Tnpm=1 ,

[T +]m=3/2
np3/2

� Tnpm=1 , [T −]m=3/2
np3/2

� 0. (11)

By feeding this scaling into the spin-averaged time delay
expressions, we get

τ̄np1/2 = τnpm=0 |Tnpm=0 |2 + 2τnpm=1 |Tnpm=1 |2
|Tnpm=0 |2 + 2|Tnpm=1 |2

� τ̄np,

which represents the magnetic projection average nonrelativis-
tic time delay as used in Ref. [4]. By the same token,

τ̄np3/2 = 2τnpm=0 |Tnpm=0 |2 + 4τnpm=1 |Tnpm=1 |2
2|Tnpm=0 |2 + 4|Tnpm=1 |2

� τ̄np.

D. Angular anisotropy parameters

As an additional test, we plugged the reduced matrix el-
ements (8) into expressions for the angular anisotropy β

parameters [17]:

βnp1/2 =
|Dd3/2 |2 − 2

√
2Re[D∗

d3/2
Ds1/2 ]

|Dd3/2 |2 + |Ds1/2 |2
,

Sβnp3/2 = 4|Dd5/2 |2 − 4|Dd3/2 |2 + 6Re[D̃∗
d5/2

D̃d3/2 ]

− 2
√

5Re[D̃∗
d3/2

D̃s1/2 ] − 6
√

5Re[D̃∗
d5/2

D̃s1/2 ],

with S = 5(|Dd5/2 |2 + |Dd3/2 |2 + |Ds1/2 |2), (12)

which both should converge, in a weakly relativistic limit, to
the nonrelativistic expression [18]

βnp = {3|Dd |2 + 6
√

2Re(D∗
dDs)}

3{|Dd |2 + |Ds |2} . (13)

This test is indeed satisfied.

III. RESULTS AND DISCUSSION

The RRPA calculations have been performed with the
following channels coupled: 14 channels for Ar (all dipole
excitations from the 3p, 3s, and 2p subshells), 18 channels
for Kr (excitations from the 4p, 4s, 3d, and 3p subshells),
and 18 channels for Xe (the 5p, 5s, 4d, and 4p subshells).
In addition, where available, experimental threshold energies
from Ref. [19] were used to facilitate better comparison with
experiment. These energies are identical to those displayed in
Table 1 of Ref. [11].

A. Argon

Argon is hardly a relativistic target and chosen here only
for validation and calibration of our theoretical model against
the previous calculations [4,5] and experiment [21]. It is also
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used to test numerical compatibility of the RRPA code with
the nonrelativistic RPAE code used in previous time delay
calculations [16].

Results of the Ar calculations in the photon energy
range encompassing the Cooper minimum are summarized
in Fig. 1. On the top panel we show the angular anisotropy
β parameters calculated by the RRPA and RPAE codes
using the relativistic (12) and nonrelativistic (13) expressions,
respectively. A slight displacement of the very close relativistic
curves for β3p1/2 and β3p3/2 with respect to the nonrelativistic
result β3p can be seen near the Cooper minimum. The
experimental data [20] agree well with both the RRPA and
RPAE calculations, with a sight tendency towards the RRPA.
However, the error bars are too large to discriminate between
the two models. Given the fact that the β3p1/2 and β3p3/2 curves
are hardly distinguishable on the scale of the figure, their
difference with nonrelativistic β3p is more indicative of the
numerical compatibility of the two codes rather than true
relativistic effects.

The Wigner time delay τW of Ar 3p1/2 and 3p3/2 subshells
is shown in Fig. 1 for the fixed emission angles θ = 0◦ (the
second top panel) and θ = 45◦ (the third panel). Comparison
is made with the two nonrelativistic RPAE calculations [16]
and [4] (marked as RPAE and RPAE-2, respectively) and the
third RPAE calculation augmented by the exterior complex
scaling (ECS-RPAE) to implement boundary conditions [5].
The latter calculation returned the total atomic time delay (1)
and contained the CLC component, whereas neither the present
RRPA results nor the literature RPAE results [4,16] were
corrected for CLC. The bottom panel displays the angular-
averaged results from different calculations and a comparison
with a RABBITT experiment [21] in which no discrimination
with the photoelectron direction was made.

In the polarization direction at θ = 0◦, the present RRPA
results and nonrelativistic RPAE results [4,16] agree very well.
Displacement of the RRPA and RPAE time delays at the
bottom of the Cooper minimum is slightly bigger than the
corresponding β results on the top panel. The time delay of
the 3p1/2 and 3p3/2 subshells is very close, indicating that the
spin-orbit interaction is not important here. The ECS-RPAE
calculation [5] includes both the components of the atomic
time delay (1) and hence differs noticeably.

At the fixed photoelectron emission angle θ = 45◦, the
RPAE results [4,16] and the present RRPA calculation are
still rather close. However, the ECS-RPAE calculations is
considerably further away than in the case of θ = 0◦. In a
private communication, Dahlström [22] explains this deviation
by the following consideration. The εd continuum is converted
to the p and f waves by the IR photon absorption in
two-color photoionization experiments. The f wave passes
through a kinematic node close to 45◦ and hence diminishes
the effective contribution of the d wave to the Wigner
time delay. Hence the energy dependence of the time delay
near the Cooper minimum becomes less pronounced. When
the angular average is taken (bottom panel), the difference
between all the calculations is not so pronounced, and they
compare reasonably well with the experiment [21]. A more
accurate angular-resolved measurement is needed to validate
various theoretical predictions in the directions away from the
polarization axis.
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FIG. 1. Top: The angular anisotropy parameters β3p1/2 (green
dashed line) and β3p3/2 (blue dotted line) from the RRPA calculation
and β3p from the RPAE calculation (red solid line). The experiment
(error bars) is from Ref. [20]. Other panels: The Wigner time delay
τW of Ar 3p1/2 and 3p3/2 (same line styles). The nonrelativistic RPAE
results from Ref. [16] and RPAE-2 from Ref. [4] are shown by the
red solid line and red filled circles, respectively. The total atomic time
delay τa from the ECS-RPA calculation of Ref. [5] is plotted with
open circles. The second top panel: θ = 0◦, third panel: θ = 45◦,
bottom panel: angular average. The experimental data from Ref. [21]
are shown on the bottom panel with error bars.
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FIG. 2. The time delay of Kr 4p1/2 (green dashed line) and 4p3/2

(blue dotted line) is plotted versus the photon energy in the fixed
emission directions θ = 0◦ and θ = 45◦. The nonrelativistic RPAE
result from Ref. [16] is shown by the red solid line. The angular-
averaged experimental data from Ref. [21] are shown with error bars.

B. Krypton and xenon

The time delay of Kr 4p1/2 and 4p3/2 subshells in the energy
range encompassing the Cooper minimum is shown in Fig. 2
in the two fixed directions θ = 0◦ and θ = 45◦. The time delay
displays the characteristic dip near the Cooper minimum but
not as deep as in the case of argon. The depth of the minimum
indicates the relative strength of the nominally weaker channel
near the Cooper minimum of the normally stronger channel.
In the nonrelativistic RPAE model, this stronger channel can
be identified with the 4pm=0 → εd transition. Other angular
momentum projections m = ±1 in this channel are excluded
in the θ = 0◦ polarization direction. Away from this direction,
weaker channels 4pm=±1 → εd, along with the 4pm=0 → εs

channel, also make their contribution to the photoionization
amplitude and the time delay. Hence the Cooper minimum
in the time delay is getting shallower. Overall the angular
dependence is much weaker in Kr than in the case of
Ar. Nevertheless, the RRPA calculations show a noticeable
deviation from the RPAE, and the spin-orbit splitting of the
time delay becomes visible.

The analogous set of data for the Xe 5p1/2 and 5p3/2

subshells is shown in Fig. 3. The photon energy range near the
Cooper minimum encompasses two series of autoionization
resonances 5s1np [23] and 4d9np [24]. These resonances
cause rapid oscillations of the time delay, which are well
resolved in the present RRPA calculation but not so well in
the RPAE [16]. As in the case of Kr, the relativistic effects are
noticeable in Xe. Similar to other atoms, the Cooper minimum
of the time delay is flattening away from the polarization
direction.

C. Near-threshold region

The time delay near the threshold is dominated strongly
by the Coulomb singularity. The scattering phase of the
photoelectron propagating in the field of the singly charged
parent ion diverges to negative infinity as the photoelectron
energy goes to zero [25]. Correspondingly, the photoelectron
group delay (the Wigner time delay) tends to positive infinity
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FIG. 3. The time delay of Xe 5p1/2 (green filled circles) and
5p3/2 (blue open circles) is plotted versus the photon energy. The
nonrelativistic RPAE result from Ref. [16] is shown by the red solid
line. Regions of the autoionization series 5s1np [23] and 4d9 np [24]
are marked by vertical arrows.

near threshold. The CLC correction has a similar logarithmic
singularity [10], but it is negative. So the total atomic time
delay (1) is the sum of the two divergent terms of the opposite
signs.

In the near-threshold experiment [7], it is the difference of
the atomic time delays in the np1/2 and np3/2 subshells that
is measured. Because of the different ionization potentials,
the photoelectron ejected from the deeper np1/2 subshell has
a smaller kinetic energy than the one ionized from the np3/2

subshell. Hence the Wigner time delay in the np1/2 subshell is
larger than the np3/2 subshell at the same photon energy. This
characteristic behavior is seen on the top panels of Fig. 4 for
Kr and Fig. 5 for Xe. The same difference in the photoelectron
kinetic energies will affect the respective CLC corrections to
the time delay in the np1/2 and np3/2 subshells. To account
for this effect, we used the values of τCLC plotted in Fig. 5 of
Ref. [10] as a function of the photoelectron energy. We fitted it
with an analytical formula and calculated the difference τ

3/2
CLC −

τ
1/2
CLC due to the difference in respective ionization potentials.

The corresponding difference for the Wigner time delay τ
3/2
W −

τ
1/2
W was extracted from the RRPA calculations. The area of the

autoionization resonances was excluded from this procedure
because of the rapid variation of the Wigner time delay in this
region.
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FIG. 4. The atomic time delay in the Kr 4p subshell. Top: The
Wigner time delay from the 4p1/2 and 4p3/2 subshells is shown with
filled green circles and open blue circles, respectively. Bottom: The
time delay difference τ 3/2

a − τ 1/2
a . The raw RRPA calculations at θ =

0◦ and 45◦ are shown with the red solid and purple dashed lines,
respectively. The CLC correction from Ref. [10] is visualized with a
thin dotted line. The RRPA result at θ = 0◦ corrected by the CLC is
shown with a thick solid line.

The resulting values of the time delay difference are shown
in the bottom panels of Fig. 4 and Fig. 5 for Kr and Xe,
respectively. In the case of Kr, the angular dependence of the
time delay difference τ

3/2
W − τ

1/2
W is small as can be seen in

comparison of the values obtained for the two fixed scattering
angles θ = 0◦ and θ = 45◦. Hence the values of the atomic
time delay difference τ

3/2
a − τ

1/2
a evaluated in the direction

of the polarization axis can be compared with the angular-
averaged experiment [7]. In the case of Xe, this difference is
even smaller and not noticeable in the scale of the bottom panel
of Fig. 5.

In comparison to Kr, Xe has smaller ionization thresholds.
Hence, at the same photon energy, the photoelectrons have
larger kinetic energy, which takes them farther away from the
threshold. Therefore, the effect of the Coulomb singularity
on the Wigner time delay and the CLC correction is weaker.
The net atomic time delay difference in Xe becomes positive
near threshold, whereas it is negative or close to zero in
the case of Kr. These findings are in line with the experi-
ment [7] except of the two points at higher photon energy.
This difference persists in a new set of experimental data
[26].
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FIG. 5. Same as Fig. 4 for Xe 5p subshell. The experimental data
from Ref. [7] are plotted with error bars.

IV. CONCLUSIONS

We applied the relativistic formalism and RRPA computa-
tional scheme to evaluate the time delay in the valence shell
of noble gas atoms, Ar, Kr, and Xe. The two characteristic
features of the time delay are analyzed: the angular dependence
near the Cooper minimum and the effect of the spin-orbit
splitting near the threshold. Comparison with nonrelativistic
calculations serves as a convenient test and a calibration tool.
The effect of the spin-orbit splitting is not strong near the
Cooper minimum, which is relatively far from the ionization
threshold. However, the angular dependence is significant
in this photon energy range due to efficient competition of
the nominally weak and strong photoionization channels.
This dependence is most pronounced in Ar. Indirectly, this
angular dependence is confirmed by the angular integrated
experiment [21], which agrees much better with angular-
averaged calculations rather than angular specific data. In
heavier noble gases, Kr and Xe, the angular dependence is
also noticeable but not as pronounced as in Ar.

The time delay in the near-threshold region shows little or
no angular dependence while the spin-orbit splitting effect is
large. At the same photon energy, the photoelectron ejected
from a deeper np1/2 subshell has smaller kinetic energy and
is less affected by the Coulomb singularity as its counterpart
ejected from the shallower np3/2 subshell. The corresponding
difference in the Wigner time delays is offset by the difference
in the correction due to the Coulomb-laser coupling. As a
result, the net atomic delay difference becomes positive in Xe
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and remains negative in Kr. These findings are in line with
recent experimental observations [7].

ACKNOWLEDGMENTS

The authors wish to thank Hans Jakob Wörner for many
stimulating discussions and Marcus Dahlström for useful
comments. A.S.K. acknowledges the support of the ARC

Discovery grant DP120101805. A.M. thanks Dr. G. Aravind,
Department of Physics, IIT Madras, India, for very fruitful
discussions. V.K.D. acknowledges the support of the NSF
under Grant No. PHY-1305085. P.C.D. acknowledges the
support of a grant from the Department of Science and
Technology, Government of India. S.T.M. was supported by
the Division of Chemical Sciences, Basic Energy Science,
Office of Science, US Department of Energy.

[1] M. Schultze et al., Delay in photoemission, Science 328, 1658
(2010).

[2] K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M.
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