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Controlled long-range interactions between Rydberg atoms and ions
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We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong
polarizabilities of the Rydberg levels increase the interaction strength between atoms and ions by many orders of
magnitude, as compared to the case of ground-state atoms, and may be mediated over micrometers. We calculate
that such interactions can be used to generate entanglement between an atom and the motion or internal state
of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic
spins in analogy to much employed techniques in ion-trap quantum simulation. The proposed scheme comes
with attractive features as it maps the benefits of the trapped-ion quantum system onto the atomic one without
obviously impeding its intrinsic scalability. No ground-state cooling of the ion or atom is required and the setup
allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the
ion. Our findings are of interest for developing hybrid quantum information platforms and for implementing
quantum simulations of solid-state physics.
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I. INTRODUCTION

Given the highly successful use of trapped ions and ultra-
cold atoms in studying quantum physics, it is of considerable
interest to couple these two systems on the quantum level
[1–5]. The main features of each may thus be combined to
break new ground in studying quantum many-body physics [6].
Proposals aimed at quantum information processing [7] and
the generation of entangled atom-ion systems have been
put forward recently [8–10], which point the way towards
such hybrid atom-ion quantum systems. However, the time-
dependent trapping field of the ions in a Paul trap poses
a significant obstacle for these ideas as it limits attainable
temperatures in interacting atom-ion systems [2,3,11–16]. This
effect stems from the fast micromotion of ions trapped in radio-
frequency traps which may cause coupling to high-energy
states when collisions with atoms occur. Additional optical
potentials for the atoms that prevent the atoms from colliding
with the ions, while still allowing significant interactions, are
quite challenging to implement. This is because the atom-ion
interaction typically takes place on the 100-nm scale and has a
steep −1/R4 character, with R the distance between the atom
and ion, making it very hard to optically resolve. These issues
put severe restraints on proposed schemes for generating en-
tanglement between atoms and ions [9,11], such as employing
controlled collisions with state-dependent scattering length [7]
and coupling single ions to atomic Josephson junctions [8,9],
where the atoms have to be brought very close to the ion. Other
experimental approaches such as octupole traps with nearly
field-free regions [17] and optical trapping of the ions [18],
seriously reduce the merits of the trapped-ion platform such
as long lifetimes and localization of individual ions.
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Here, we propose another route towards interacting
atom-ion quantum systems and provide a solution to the
micromotion-induced limitations when coupling these sys-
tems. In particular, we propose to couple atoms to low-
lying Rydberg states [19–33] such that their polarizability is
significantly increased. This in turn increases the range over
which the atom-ion interaction is effective to the micrometer
range. Optical or magnetic potentials that bring the atoms
within this distance of the ion, but still prevent the atoms
from sampling the micromotion, can be straightforwardly
generated. Furthermore, the interaction can be made state
dependent by tuning laser parameters which allows for
dynamical control as well. This last point is of importance
to bridge the energy differences between trapped atomic and
ionic systems commonly encountered in laboratory settings,
by modulating the interaction close to the ionic motional
resonance as we describe below. The interactions between
the Rydberg-coupled atom and the ion can be used to entangle
these particles or to mediate spin-spin interactions between
atoms by combining techniques employed for quantum gates
in trapped ions [34–36] with those of Rydberg atom based
gates [29–33]. The proposed scheme can thus serve as an
interface to transfer quantum information between the atomic
and ionic quantum systems or as a building block for studying
quantum many-body physics in a hybrid system [6].

The setup we have in mind is illustrated in Fig. 1: a single ion
[red (left)] is trapped at the potential minimum of a Paul trap
undergoing a harmonic oscillator motion with trap frequency
ωi . In its close vicinity, an atom [blue (right)] is optically
trapped, experiencing both the potential due to the Paul trap
and the optical light field. A laser weakly couples one of the
hyperfine ground states of the atom |↑〉a to a Rydberg level,
but not the second one |↓〉a . This can be done by, e.g., laser
polarization or a large frequency difference between the states.
By modulating the intensity of the Rydberg laser, and thereby
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FIG. 1. (a) We consider an ion (red ball) trapped in a Paul trap
(gray electrodes) experiencing a harmonic confinement with trapping
frequency ωi and lowering (raising) operators a (a†). A distance d

away, an atom (blue ball) is optically trapped with Rabi frequency
�d and coupled to a Rydberg state with a time-dependent laser
(blue arrow) of Rabi frequency �(t). (b) Internal atomic (right)
and ionic (left) level scheme. The Rydberg state experiences a
position-dependent Stark shift �(R), with R the distance between
the atom and the ion, due to the electric field of the ion. The resulting
force may be used to entangle the atom and the ion when coupling
to the Rydberg state depending on the internal state of the atom as
described in the text.

the atom-ion coupling, at a frequency ωv = ωi + δ the ionic
motion gets excited when the atom is in the state |↑〉a , but not
when it is in the state |↓〉a . We will show that the effective
interaction (to lowest order in the atom-ion separation and
within the rotating wave approximation) can be described by

ĤI ∝ (â†eiδt + âe−iδt ) |↑〉a〈↑|, (1)

with â† and â the creation and annihilation operators of
the ionic motion. This effective Hamiltonian entangles the
motional state of the ion with the internal state of the atom. An
additional laser field that generates a spin-motion interaction
of the form

ĤS-M ∝ (â†eiδt + âe−iδt ) |↑〉i〈↑| (2)

can be used to map the ion motion onto internal states of
the ion, generating effective (pseudo)spin-spin interactions
between atoms and ions [37]. Alternatively, the ion motion
may serve as a bus to generate spin-spin interactions between
atoms. Although the origin of the interactions is quite different,
the scheme mathematically resembles state-of-the-art trapped-
ion-based quantum gates and retains some of the main benefits
associated with them [34–36,38]. In particular, no ground-state
cooling of the atom or ion is required [34,35,39] and the gate
and spin-spin interactions are to a large degree immune to
micromotion [40,41]. In analogy to the trapped-ion case, these
benefits are a direct consequence of the (near) linearity of the
atom-ion interactions at large distances and break down for
small atom-ion distances.

The paper is organized as follows: In Sec. II we derive the
form of the Rydberg atom-ion adiabatic interaction potential
and we demonstrate that significant interactions can be
obtained over distances of a μm instead of the 100-nm range
of the ground-state atom-ion interaction. In Sec. III we show
how a single trapped ion can be entangled with an atomic qubit
by modulating the Rydberg laser field. We study the effects of
imperfect ion and atom cooling and the coupling to the trapping
fields of the ion and show that the interactions are resilient to
these effects. Finally, in Sec. IV we draw conclusions and
discuss the prospects for scaling up.

II. RYDBERG ATOM-ION INTERACTIONS

In the following section, we derive an effective potential for
the interaction of an alkali-metal Rydberg atom with a singly
charged ion for large atom-ion distances. Our strategy to solve
the problem will be the following: We start with a three-body
model system comprised of two singly charged spinless parti-
cles (the ion and the core of the atom) and an electron. Then,
we will use the Born-Oppenheimer approximation and expand
the ion-electron and ion-core interaction to second order in
the relative core-electron coordinate to obtain the dominant
charge-dipole and charge-quadrupole interaction terms. With
such approximated interactions between the three particles, we
diagonalize the resulting Hamiltonian in a truncated basis of
Rydberg wave functions obtained by means of the Numerov
method. We show that for the atom-ion separations and
parameters considered in this work, second-order perturbation
theory suffices and we discuss the effects of the trapping
fields. Finally, we consider a situation in which a ground-state
atom is weakly dressed with a Rydberg state and derive the
corresponding adiabatic potential.

A. Model Hamiltonian

The dynamics of the system shown in Fig. 1 can be
described by the Hamiltonian

Ĥ = Ĥa + Ĥi + Ĥia + Ĥ t
a + ĤL, (3)

accounting for the dynamics of a free atom Ĥa , the single
trapped ion Ĥi , the atom-ion interaction Ĥia , and the interac-
tion of the atom with the fields of the Paul trap Ĥ t

a . The last
term ĤL describes the interaction of the atom with the Rydberg
laser and the optical dipole trap. In the following, we discuss
each of these terms individually.

The first term of Eq. (3) describes the dynamics of the
free alkali-metal atom. It possesses a single valence electron
with the remaining electrons forming closed shells. For the
description of such system one can employ an effective two-
body approach in which the atom is modeled by a positively
charged core of mass mc at position rc and the single valence
electron of mass me at position re. The Hamiltonian of this
core-electron system is

Ĥa = p̂2
c

2mc

+ p̂2
e

2me

+ VRyd(re − rc) − p̂2
e p̂2

e

8m3
ec

2
+ V e-c

SO . (4)

It consists of the kinetic energies of the atomic core and
electron, where p̂c and p̂e denote the momentum operators
of the atomic core and electron, respectively. The interaction
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between the electron and the core can be modeled by VRyd [42],
which depends on the (relative) positions of the electron re and
core rc and its angular momentum state. The last two terms
take into account the relativistic correction to kinetic energy
and the electron-core spin-orbit interaction

V e-c
SO = 1

2m2
ec

2
Ŝ · [∇eVRyd(re − rc) × p̂e] (5)

giving rise to the fine structure of electronic levels, with Ŝ
the spin- 1

2 operator of the electron and ∇e the gradient with
respect to the position of the electron.

The second term of Eq. (3) describes the dynamics of the
ion of mass mi at position ri in the Paul trap,

Ĥi = p̂2
i

2mi

+ e�PT(ri ,t) + Ĥ int
i + Ĥ laser

i , (6)

with �PT(ri ,t) the electric potential of a standard Paul trap
(quadrupole field), e the elementary charge, and p̂i the
momentum operator of the ion. The parameters of the Paul
trap are chosen such that stable trapping is ensured and the
ionic motion can be decomposed in a slow secular motion with
trapping frequencies ω

x,y,z

i and a fast micromotion at the trap
drive frequency �rf [43]. The effect of this micromotion on the
atom-ion interaction will be discussed in Sec. III C. The terms
Ĥ int

i and Ĥ laser
i account for the internal electronic structure of

the ion and the ion-laser interaction. We can treat the external
and internal degrees of the ion separately as the internal state of
the ion does not couple to the trapping fields for the low-lying
states considered here. We note that, in writing Eqs. (4)
and (6), we neglected any cross couplings of the Rydberg laser
fields on the ion and the ion-laser fields on the atom, as the
atom and ion considered have very different electronic level
structures.

The third term of Eq. (3) describes the atom-ion inter-
action, which can be split into charge-charge interactions
of the form VC(x) = e2/(4πε0|x|) between the ion-core and
ion-electron:

Ĥia = VC(rc − ri) − VC(re − ri) + V e-i
SO . (7)

Additionally, the electric field of the ion generates a spin-orbit-
like interaction for the electron

V e-i
SO = − 1

2m2
ec

2
Ŝ · [∇eVC(re − ri) × p̂e], (8)

which modifies the fine structure of the electronic levels given
by Eq. (5). Since in the present analysis the hyperfine splitting
between Rydberg states is smaller than the interaction energies
and the laser detunings considered in this work, it can safely
be neglected.

B. Born-Oppenheimer approximation

In this section, we study the interaction between a Rydberg
atom (consisting of a core and the highly excited single valence
electron) and the ion. In order to simplify the following
presentation, we first neglect the internal degrees of the ion and
any laser interaction between them, i.e., H laser

i = H int
i = 0. For

the same reason, we set Ht
a = 0 in this section. The effects of

the Paul trap on the atom, i.e., Ht
a , will be discussed in Sec. II C,

where we show that they are small for distinct atom-ion

separations. In particular, we derive Born-Oppenheimer (BO)
energy surfaces, which, in a secular approximation, give rise to
effective interaction potentials between the Rydberg atom and
the ion. These potentials form the basis for the further analysis
of Rydberg dressing in Sec. II D.

For the following derivation it is convenient to change
the frame of reference to the atomic center-of-mass (COM)
coordinate ra = (mere + mcrc)/M and the relative electron-
core coordinate r = re − rc with M the total mass. The
corresponding COM and relative momentum operators are
p̂a and p̂, respectively. First, we rearrange terms in the full
Hamiltonian

Ĥ = Ĥa + Ĥi + Ĥia ≈ Ĥi + p̂2
a

2M
+ ĤBO. (9)

We note that in writing Eq. (9) we have neglected a
component of the spin-orbit terms as well as a contribution to
the relativistic kinetic energy correction, which are small due to
a prefactor of me/M (see Appendix A). The BO Hamiltonian
ĤBO is defined as [44]

ĤBO = p̂2

2μ
+ VRyd(r) − p̂2p̂2

8m3
ec

2
+ 1

2m2
ec

2
Ŝ · [∇VRyd(r) × p̂]

−VC

(
R + mc

M
r
)

+ VC

(
R − me

M
r
)

− 1

2m2
ec

2
Ŝ ·
[
∇VC

(
R + mc

M
r
)

× p̂
]
, (10)

where μ = me mc/M is the reduced mass, and R = ra − ri

is the atom-ion separation. Treating ri and ra as parameters,
we can interpret ĤBO as a family ĤBO(ri ,ra) of operators on
the Hilbert space of the relative coordinate r only. The BO
potentials εk(ri ,ra) are obtained as the eigenenergies of the
BO Hamiltonian for fixed atom-ion distances and zero kinetic
energies. We assume that the linewidths of the corresponding
states are smaller than the energy separation between them,
and that the relevant kinetic energies are small enough, such
that Landau-Zener transitions between different BO surfaces
can be neglected (secular approximation). In this case, the
resulting position-dependent eigenvalues act as potentials in
each state manifold. This yields effective Hamiltonians for the
electron staying in the kth energy level:

Ĥ
(k)
eff = p̂2

i

2mi

+ p̂2
a

2M
+ εk(ri ,ra) + e�PT(ri ,t). (11)

Figure 2 shows a typical example of the BO potentials around
the Rydberg state |30S1/2〉 of 6Li. The adiabatic eigenenergies
are obtained by expanding the atom-ion interaction terms of
the Hamiltonian ĤBO of Eq. (10) up to second order in |r|/R
(taking into account the dominant charge-dipole and charge-
quadrupole interactions) and diagonalizing it in the basis of
unperturbed atomic wave functions (see Appendix A). In
particular, we see that the state |30S1/2〉 remains well separated
in energy from the other states down to atom-ion distances
of about 500 nm. For distances in the μm range, the full
diagonalization is in excellent agreement with second-order
perturbation theory within the dipole approximation, which
yields a potential of the form −C

|R〉
4 /R4 = −α|R〉|Eion|2(R)/2

with Eion(R) the electric field of the ion evaluated at the
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FIG. 2. Eigenenergies εk of ĤBO for 6Li interacting with an ion
as a function of the ion-core distance R that emanate from the n = 30
and the n = 29 manifolds based on our simulation without trapping
fields. The 30S and 30P energies lie separated at −3754.4 and
−3666.7 GHz. The dashed red line shows a −C

|30S1/2〉
4 /R4 potential

shifted down by the 30S energy that is based on second-order
perturbation theory within the dipole approximation. Here, C

|30S1/2〉
4

was taken from Refs. [46,47]. We see that the 30S state remains well
separated from the others down to distances of ∼500 nm, whereas
second-order perturbation theory works well for distances �1 μm.

atom position, and α|R〉 the polarizability of the Rydberg
state [45]. Since the polarizability scales with the principal
quantum number to the power 7, α|R〉 ∝ n7, it can be many
orders of magnitude larger for the Rydberg state than for the
ground-state atom. For instance, for lithium in the |30S1/2〉
state, α|R〉 = 3.5 × 108 α|2S1/2〉 [46,47]. Note that the electron
orbit in a Rydberg atom is given by rn = n2a0 with a0 being
the Bohr radius. For n = 30, we have r30 	 0.05 μm, which
is indeed much smaller than the atom-ion separation (∼1 μm)
we are interested in.

C. Atom–Paul trap interactions

In this section, we discuss the effect of the ionic trapping
field from the Paul electrodes on the Rydberg atom. The
interactions between the atom and the Paul trapping fields
are described by

Ĥ t
a = e�PT(rc,t) − e�PT(re,t) + V e-t

SO , (12)

where we included the spin-orbit potentials due to the trapping
fields (with the superscript t denoting “trap”)

V e-t
SO = e

2m2
ec

2
Ŝ · [EPT(re,t) × p̂e]. (13)

Here, EPT(re,t) = −∇e�PT(re,t) denotes the electric field of
the Paul trap at the electron position. A linear Paul trap is
generated by the electric fields EPT(r,t) = Es(r) + Erf(r,t)
with

Es(x,y,z) = miω
2
i

e

(
x

2
,
y

2
, − z

)
, (14)

Erf(x,y,z,t) = mi�
2
rfq

2e
cos �rf t(x, − y,0), (15)

and q the stability parameter for an ion of mass mi and �rf the
trap drive frequency.

As it is clear from Eq. (15), there is no oscillating field in
the z direction and the confinement along this axis is supplied
by the static field, which generates a harmonic trap with a
trap frequency ωi . The distance at which the trapping fields
cancel the field of the ion in the z direction, assuming the ion
is bound to the center of the trap ri = 0, is given by 
z =
[e2/(4πε0miω

2
i )]

1/3
. For 171Yb+ with ωi = 2π 250 kHz, we

have 
z = 6.9 μm. For z 
 
z, we can neglect the Stark shift
of the static trapping field on the Rydberg level, whereas for
z � 
z, the Stark shift of the trapping field dominates. For the
transverse directions, the static field adds to the ionic field, and
no cancellation occurs. The lowest value of the combined field
occurs at 
⊥ = 22/3
z.

The oscillating field Erf (x,y,z,t) supplies the confinement
in the transverse direction. The motion of the ion in the
transverse direction is given by a slow secular motion of
frequency ω

(⊥)
i ≈ �rf

2

√
as + q2/2 with as = −2ω2

i /�2
rf the

static stability parameter, and a fast micromotion of frequency
�rf . The amplitude of Erf(x,y,z,t) is typically a factor
∼10–100 larger than the static field. Thus, the effect of the ion
trapping fields can only be neglected when considering atoms
that are trapped close to the radio-frequency null line x,y ∼ 0.
For the numbers considered in this work (�rf = 2π 2.5 MHz
and q = 0.28), the oscillating field at maximal amplitude starts
to dominate over the ion field at 2.9 μm. From Fig. 2 we see that
this is within the range where second-order perturbation theory
can be used. Furthermore, since the energy gaps between the
Rydberg states lie in the 100-GHz range, the MHz trapping
field cannot drive transitions between the Rydberg states,
allowing us to treat the effect quasistatically.

D. Atom-laser interactions: Dressed atoms

We end this section by considering the interaction with
laser fields. The situation we have in mind is one where
a ground-state atom is weakly dressed by two laser fields.

013420-4



CONTROLLED LONG-RANGE INTERACTIONS BETWEEN . . . PHYSICAL REVIEW A 94, 013420 (2016)

One of them, Edip(ra,t), is a tightly focused laser that creates
the atomic trapping potential, whereas the other, Edress(ra,t),
couples the atom off-resonantly to a Rydberg state. Within the
dipole approximation, the Hamiltonian is given by

ĤL = er · [Edress(ra,t) + Edip(ra,t)]. (16)

We assume that each of the fields is tuned close to a single
transition with low enough coupling strength to allow us to
neglect all other transitions. In particular, the dipole laser is
tuned close to a dipole allowed transition |ga〉 ↔ |ea〉, with
|ea〉 = |2P 〉, whereas the Rydberg dressing laser is tuned
close to the transition |ga〉 ↔ |R〉, where |ga〉, |ea〉, and
|R〉 denote ground, excited, and Rydberg states, respectively.
Note that, in practice, the Rydberg laser may be comprised
of two light fields, to couple the S ground state to some
Rydberg state nS via a P state. We assume that the laser
fields have (effective) Rabi frequencies of �d (ra) ∝ E0

dip

and � ∝ E0
dress, where E0

dress and E0
dip denote the electric

field amplitudes of the two laser fields, and that they are
detuned by �d and �0 from the states |ea〉 and |R〉 = |nS1/2〉,
respectively. A closeby ion causes a Stark shift in the Rydberg
state such that the total detuning of the Rydberg state is
given by ��(R) = ��0 + α|R〉|Eion(|R|)|2/2 [45]. Here, we
neglected interactions of higher order than the dominant
charge-induced dipole interactions and spin-orbit interactions,
as well as possible position dependence in �. Within the
rotating wave approximation, we can write the three-level
interaction Hamiltonian in the |ga〉, |ea〉, |R〉 basis as

H3-level =
⎛⎝ 0 ��d (ra) ��

��d (ra) −��d 0

�� 0 −��0 − C
|R〉
4

R4

⎞⎠. (17)

Here, we neglected the atom-ion interaction for the states
|ga〉 and |ea〉, which is justified for R � R∗ with R∗ =
(2μaiC

|ga〉
4 /�

2)1/2 the typical length scale of the ground-state
atom-ion interaction, with μai the reduced atom-ion mass.
For typical atom-ion combinations, R∗ lies in the 100-nm
range [48]. Assuming |�0| � |�|, �0 > 0, i.e., blue detuning
as well as |�d | � |�d (ra)| and �d < 0, the Hamiltonian
can be diagonalized to second order in � and �d (ra) to
obtain the adiabatic potential Vad = Vdip(ra) + V (R). Here,
Vdip(ra) = �|�d (ra)|2/�d represents the dipole trap, which
we assume traps the atom harmonically with trap frequencies
ω

x,y,z
a , and

V (R) = − AR4
w

R4 + R4
w

(18)

denotes the dressed atom-ion potential. The depth of this
potential is given by A = ��2/�0 and its width by Rw =
(C|R〉

4 /��0)1/4. We note that Eq. (18) takes a similar form as
the case for the atom-atom dressed Rydberg potential (see
e.g. [26]), but retains a R−4 character instead of the R−6

van der Waals case of the atom-atom interaction, and it is
always attractive for |nS1/2〉 states. Note that the potential
is also of lower order, scaling as �2/�0 instead of �4/�3

0,
because for the ion-atom case only a single particle needs
to be dressed. This relaxes restraints on the required laser
power. For red detunings, the potential is also attractive, but

� � � � �
���

���

���

	��

	��

��

�

R Μm

E
h

kH
z

FIG. 3. Adiabatic potentials for a ground-state atom and an ion
(solid black), for a dressed atom with � = 2π 10 MHz and � = 2π

1 GHz (red dashed-dotted line) and 2π 0.4 GHz (blue dashed line)
assuming coupling to the | 30S1/2〉 state of lithium.

an avoided crossing occurs at R = Rw, such that resonant
Rydberg excitation may result.

Taking the ion trapping fields into account within second-
order perturbation theory and retaining only the charge-dipole
terms, the adiabatic potential (18) is changed to

Ṽ (ri ,ra) = ��2

�0 + α|R〉
2�

|Eion(|ri − ra|) + EPT(ra,t)|2
. (19)

Since the Stark shift due to the electric fields always increases,
the frequency offset from resonance for blue detuning,
�0 � |�|, assures adiabaticity.

To conclude this discussion, let us consider a lithium
atom with n = 30, � = 2π 10 MHz, �0 = 2π 1 GHz, for
which we have A/h = 100 kHz and Rw = 1 μm, such
that Rw � R∗ (e.g., assuming an yitterbium ion). For these
numbers, the lifetime of the dressed atom is enhanced by a
factor 104 as compared to the Rydberg state, putting coherent
experiments on the 100-ms time scale within reach. In Fig. 3,
we show the resulting adiabatic potential. As it is shown,
the adiabatic potential of a Rydberg dressed atom discussed
above (red dashed-dotted and blue dashed lines) has a much
longer-ranged character than the corresponding ground-state
atom-ion interaction (solid black line). It also shows that at
intermediate distances, 1–2 μm, the interaction is to a good
approximation linear with respect to the atom-ion separation.
This will be a crucial element for the implementation of
quantum gates and the impact of the ionic micromotion on
the atom, as we shall discuss in the next sections.

III. ATOM-ION SPIN-SPIN INTERACTIONS

In the following, we show how an atomic qubit can be
entangled with a single trapped ion. Specifically, the atomic
pseudospins are encoded in two long-lived hyperfine states
|↓〉a and |↑〉a as shown in Fig. 1(b). Choosing proper hyperfine
states and laser polarizations (or by employing frequency
differences due to hyperfine or fine-structure splittings) one
can indeed achieve that the laser couples only the state
|↑〉a to a Rydberg level, leaving the state |↓〉a unaffected.
Then, we shall investigate the impact of micromotion and
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imperfect ground-state cooling of both the atom and the ion
demonstrating the robustness of the gate with respect to these
two important sources of imperfections.

A. Gate description

We assume the atom to be trapped at some distance
d � R∗, but d 
 
z, away from the ion, along the z axis
of the ion trap, such that we can neglect for now the effect
of the trapping potential for the ion on the atom and also
the ground-state interaction between the atom and ion, as
justified in Sec. II C. Then, we couple the |↑〉a state of
the atom to a Rydberg state with Rabi frequency � and
detuning �0, such that their interaction Hamiltonian is given
by Ĥai = V (ẑi − ẑa + d)|↑〉a〈↑| with V given by Eq. (18)
and ẑi and ẑa the ion and atom position with respect to their
equilibrium position. We now expand this potential around
the ion and atom equilibrium positions z̄i = 0 and z̄a = 0:
V ≈ V (d) + Fzi − Fza + . . ., with

F = dV

dzi

∣∣∣∣
z=z̄

= − dV

dza

∣∣∣∣
z=z̄

, (20)

where we used z̄ ≡ (z̄i ,z̄a) as a shorthand notation for the
two equilibrium positions. The force between the atom and
ion reaches its highest value of Fmax = 1.065A/Rw for d =
0.88Rw, whereas the second-order terms vanish at this point.
Introducing the normal creation and annihilation operators for
the atom (b̂† and b̂) and ion (â† and â) in their trap, we can
write the full Hamiltonian as Ĥ = Ĥtrap + Ĥai with

Ĥtrap = �ωiâ
†â + �ωab̂

†b̂,

Ĥai ≈ [V (d) + F
i(â
† + â) − F
a(b̂† + b̂)]|↑〉a〈↑|. (21)

Here, 
j = √
�/(2mjωj ) for j = i,a, and |↑〉a〈↑| = (σ̂ a

z +
1)/2, where σ̂ a

z denotes the Pauli matrix for the atom and
1 is the identity matrix. In order to induce large ion motion we
modulate the force between the atom and ion close to the ionic
trap frequency. Therefore, we introduce time dependence in
A → A(t) = A0(1 − cos ωvt)/2, by amplitude modulating the
Rydberg laser, e.g., using an acousto-optical modulator [39].
As long as ωv 
 �0, the minimal detuning of the laser,
no resonant Rydberg excitation can occur and we can treat
the modulation of the dressed potential quasistatically. In
order to obtain the slowly changing dynamics, we go into an
interaction picture with respect to Ĥtrap + Vstatic(d) |↑〉a〈↑| /2,
with Vstatic(d) denoting the static part of V (z), that is, the time
average of the potential (18) over a period 2π/ωv . Now, by
defining δ = ωv − ωi and assuming �|ωv − ωa| 
 F0
a,F0
i

we can make a rotating wave approximation by neglecting
terms rotating faster than δ to obtain

ĤI = F0
i

4
(â†eiδt + âe−iδt ) |↑〉a〈↑|. (22)

Here, F0 is the amplitude of the force oscillation (i.e., the
time-independent part) and we also assumed �ωv � V (d)/2
such that fast oscillating position-independent Stark shifts in
the atom average out.

The Hamiltonian (22) entangles the motion of the ion with
the internal state of the atom. In particular, for δ = 0, and
starting from the state |ψin〉 = |0〉mi(|↓〉a+ |↑〉a), where |0〉mi

denotes the ground state of ion motion, the Hamiltonian gener-
ates catlike states of the form |ψout〉 = |0〉mi |↓〉a + |β〉mi |↑〉a
after a time t with |β〉mi denoting a coherent state of amplitude
β = F0
it/(4�).

Adding a bichromatic laser field that interacts with the
internal states of the ion [34–36,38] such that

ĤS-M = η��S-M

2
(â†eiδt + âe−iδt ) |↑〉i〈↑| (23)

with the laser Lamb-Dicke parameter η = δk
i 
 1, δk the
wave-number difference between the two components of the
bichromatic laser field and �S-M its (effective) Rabi frequency,
allows us to map the entanglement onto the internal state of
the ion. This is most easily seen when we set η��S-M/2 =
−F0
i/4 in the total interaction Hamiltonian ĤI + ĤS-M . In
this case, no motion is excited in the ion when the spin of both
atom and ion are down (since the operators |↑〉a〈↑| and |↑〉i〈↑|
evaluate to zero for such states). When both particles are in the
spin-up state, also no motion is excited since the two forces
cancel. Only when the particles have opposite spins is the ion
motion excited and thereby the energy changed. This results
in an interaction that is similar to the one usually encountered
in Mølmer-Sørensen gates or phase gates in ions [36,49].
After a time τ = 2π/δ this accumulates in an effective
interaction that is locally equivalent to Ĥzz = J σ̂ i

z σ̂
a
z /2 with

J = F 2
0 
2

i /(32�δ) and the ionic motion returns to the initial
orbit. Setting Jτ/� = π/4 corresponds to a geometric phase
quantum gate [34,36]. The coupling of Eq. (23) can be obtained
by two counterpropagating beams with frequency difference
ωv that are far detuned from an excited state. By proper
choice of polarization and states, this geometry can implement
differential Stark shifts into the spin states of the ion of the
form (23) [34,36].

We can also map the atom-ion entanglement on a second
atom. For this, we consider two atoms, each trapped on one
side of the ion along the z axis of the ion trap. The Rydberg
laser will once again only induce motion in the ion when the
atoms are in opposite states and the effective interaction is
proportional to J σ̂ a

z σ̂ a
z . In principle, even more atoms may be

involved, but the relative strengths of the spin-spin interactions
will depend on the positioning of the atoms with respect to the
ion. We will study this interesting many-body scenario in a
future work.

As a particular example, we consider a 7Li atom interacting
with a 171Yb+ ion. We set the trap frequency of the ion to ωi =
2π 250 kHz and the trap frequency of the atom to ωa = 2π

205 kHz. Using n = 30, � = 2π 10.02 MHz, �0 = 2π 0.4
GHz, we have A0/h = 250 kHz and Rw = 1.4 μm. Further,
for the ion laser driving field we use η�S-M = 2π 1.045 kHz
and δ = 2π 1.040 kHz, and we set the distance between the
atom and ion trap to d = 0.88Rw = 1.23 μm to optimize
the coupling. To check whether the Rydberg state is still in
the perturbative regime under these conditions [i.e., such that
Eq. (18) holds], we have numerically obtained the eigenstates
of the lithium Rydberg states over the relevant distance
by taking into account charge-dipole and charge-quadrupole
interactions between the atom and ion, as we discussed in
Sec. II. We note that Rydberg excitation of individually trapped
atoms with accurate positioning has been reported in a number
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FIG. 4. Dynamics of the populations P↑↑, . . . during the gate
for the input state |ψi〉 = (|↑〉a + |↓〉a)(|↑〉i + |↓〉i)/2 and after
performing an additional π/2 pulse (see text). The dashed line
indicates the time at which the gate is finished.

of works [29,50,51], such that the considered setup seems to
be within experimental reach.

For the chosen parameters, the static trapping field of the
ion can be neglected, but we have taken terms rotating faster
than δ in the total Hamiltonian into account as well as terms
up to third order in ẑi and ẑa . More precisely, the simulated
gate dynamics corresponds to the following Hamiltonian:

Ĥg = Ĥtrap + V (3)(ẑi ,ẑa)

2
(1 + cos ωvt) |↑〉a〈↑| +ĤS-M, (24)

where V (3)(ẑi ,ẑa) denotes the Taylor expansion around the
equilibrium positions up to third order of V (ẑi ,ẑa). For simplic-
ity, we have for now neglected the motion in the transverse di-
rection and thereby the time-dependent electric fields. We con-
sider the product input states |ψ±±

i 〉 = (|↑〉a ± |↓〉a)(|↑〉i ±
|↓〉i)/2, which can be prepared by simple radio-frequency
pulses, and assume the motional ground states for the atomic
and ionic oscillators. The case of |ψ++

i 〉 is shown in Fig. 4. The
motion of the ion returns to its initial orbit after τg = 2π/δ =
962.5 μs and the electronic state of the atom-ion system is
found to be locally equivalent to the entangled state |�+〉 =
(|↑〉a |↑〉i + i |↓〉a |↓〉i)/

√
2 for the input state |ψ++

i 〉. This
can be checked by performing the local unitary (π/2 pulse)
Û = exp[−iπ (σ̂ a

y + σ̂ i
y)/4] to the state after the gate, leading

to a fidelity of F = 0.997. The fidelity is simply defined as the
modulus square of the scalar product between the time evolved
state |ψout〉 and the goal state |0i ,0a〉 ⊗ |�+〉. Similarly, the
input states |ψ+−

i 〉, |ψ−+
i 〉, and |ψ−−

i 〉 map to the entan-
gled states (|↑〉a |↓〉i ± i |↑〉a |↓〉i)/

√
2 and (|↑〉a|↑〉i − i|↓〉a

|↓〉i)/
√

2, respectively, following the gate and the unitary Û ,
all with fidelities F � 0.992. We attribute the deviation from
unit fidelity to interactions beyond linear and rotating terms
neglected in the rotating wave approximation, but we expect
that further parameter tuning, for example, via optimal control,
can improve the fidelity further. The present goal, however,
is to demonstrate that the proposed scheme is in principle
possible, as the attained fidelities prove.

B. Gate on thermal states

As with ionic quantum gates that are essentially described
by the same equations to first order, no ground-state cooling is
required, although we need the Lamb-Dicke regime for both
the ion-laser and the atom-ion interaction, namely, η 
 1 and
F0
a 
 �ωa , F0
i 
 �ωi . To investigate this property, we
calculate the gate dynamics for the thermal input state

ρ̂th =
∑
ni ,na

Pni
(n̄i)Pna

(n̄a)|ni,na〉〈ni,na| ⊗ |ψ++〉〈ψ++|
(25)

with Pn(n̄) = 1
1+n̄

( n̄
n̄+1 )n and n̄ the average phonon number.

When we start with both the atom and the ion in a thermal
motional state with average phonon number n̄i = n̄a = 0.25,
the fidelity of the resulting Bell state is found to be F = 0.992,
demonstrating that the gate indeed works for non-ground-state
cooled particles, too. We note that in this case the fidelity is
defined as F = Tr{ρ̂gρ̂out}, where ρ̂g represents the goal state
[e.g., ρ̂g = ∑

ni ,na
Pni

(n̄i)Pna
(n̄a)|ni,na〉〈ni,na| ⊗ |�+〉〈�+|]

and ρ̂out the output state after the gate and unitary Û . We
attribute the fidelity loss to the higher-order terms in ẑi and ẑa ,
as the linear approximation in the atom-ion interaction works
less well for higher-lying Fock states. For the simulation, we
limited the summation range in Eq. (25) to na,ni = {0, . . . ,3}
in a Hilbert space that spans nine phonons for both the atom
and ion and such that Tr{ρ̂th} = 0.997.

C. Micromotion

To investigate the role of micromotion during the motional
excitation of the ion we consider the situation in which the
atom is trapped some distance d away from the ion in the
transverse direction. To deal with the micromotion of the ion,
we replace the simple harmonic oscillator term in Eq. (21)
of the ion with �ωiâ

†â → Ĥmm(t) = mi�
2
rfqx̂2

i cos (�rf t)/4 +
p̂2

i /(2mi) [52], where p̂i = �

2i
i
(â† − â) is the ion momentum,

x̂i = 
i(â† + â) its transverse position, and the trap drive
frequency is given by �rf . Note that in this Hamiltonian we
use as a basis the harmonic oscillator states of �ωia

†a where
we set ωi = �rfq/23/2 and neglect the static trapping field
(as = 0), which typically is a factor 10–100 smaller than the
time-dependent field in a Paul trap. Aside from this, we only
consider the x direction to reduce Hilbert space size, i.e.,
the problem is again one dimensional. Additionally, instead
of using V (r), we take Ṽ (x̂i ,x̂a) that includes the Stark shift
due to the time-dependent trapping field. Classical simulations
show that expanding Ṽ (x̂i ,x̂a) to third order in x̂i and x̂a for
d = 1 μm approximates the ion and atom orbits to within
< 5 × 10−3
i,a ∼ 5 pm. In total then the Hamiltonian for
which the dynamics is simulated is given by

Ĥtot(t) = Ĥ1 + Ṽ (3)(x̂i ,x̂a)

2
(1 + cos ωvt) |↑〉a〈↑| +ĤS-M.

(26)
Here, Ṽ (3)(x̂i ,x̂a) denotes the Taylor expansion around the
equilibrium positions up to third order of Ṽ (x̂i ,x̂a) and Ĥ1 =
Ĥmm(t) + �ωa(b̂†b̂ + 1/2).

We again consider 171Yb+ and 7Li coupled to n = 30 and
use the parameters ωa = 2π 200 kHz, �rf = 2π 2.5 MHz,
q = 0.28 and η�S-M = 2π 1.06 kHz and the (approximate)
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FIG. 5. Expectation values 〈x̂i〉 and 〈x̂a〉 during the gate for each of the four possible spin input states. The insets also show zoom ins of
the ion and atom motion, clearly showing the micromotion. Some residual atomic motion occurs for the states |↑〉a , where the atom gets pulled
closer to the ion.

ground states of motion. We use classical physics to obtain the
real secular trap frequency of the ion [43] which is given by
ω

(⊥)
i = 2π 254.089 kHz and we set δ(⊥) = ωv − ω

(⊥)
i = 2π

1.064 kHz (see also Appendix B).
For the Rydberg laser, we set � = 2π 13.1 MHz and �0 =

2π 0.8 GHz. To limit the induced motion in the atom, we switch
on the Rydberg dressing in 50 μs (see Appendix B for more
details on the calculation). In Fig. 5, we show the dynamics of
the position expectation values for the atom and the ion for each
of the possible spin states, demonstrating that the micromotion
does not distort the motion of the particles during the gate
significantly. As in the case without micromotion, the motion
returns to its input state after the gate is finished, that is, in
about 2π/δ(⊥) = 940 μs without additional energy exchange
between the atom and ion, demonstrating the resilience of the
scheme to micromotion.

The presented quantum gate closely resembles that of
common ion gates, e.g., [39]. As with those gates, we can
improve the fidelity by making sure the approximations made

to obtain the gate dynamics, neglecting fast rotating terms
and assuming the Lamb-Dicke regime, are well justified. This
means for the atom that tight confinement needs to be reached.
Furthermore, to reach a gate time that is much faster than the
photon scattering rate �ph ∼ (4�2

0/�2) × �Ryd, strong laser
fields are useful. In the present example, the lifetime of the
bare Rydberg state lies in the 10–20 μs regime [53], leading
to lifetimes of ∼100 ms [28] for the dressed case.

IV. OUTLOOK

In conclusion, we have theoretically investigated the inter-
action between a single atom coupled to a Rydberg state and an
ion trapped in a Paul trap. The large polarizability of the Ryd-
berg state allows for strong interactions between the atom and
the ion mediated over a μm. These interactions may be used
to generate entanglement or spin-spin interactions between
the ion and the atom by state-dependent excitation of the ion
motion. The proposed scheme thus combines techniques from
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Rydberg- and trapped-ion-based quantum computing, but the
underlying gate mechanism is that of the trapped-ion system,
i.e., mechanical in nature. The resulting gate also retains some
of the robustness of the trapped-ion scheme, namely, no need
for ground-state cooling, full dynamical control, and near
immunity to micromotion. The ionic motion may also be used
to mediate spin-spin interactions between two or more atoms.
The latter scheme may serve as an alternative to quantum gates
and spin-spin interactions between Rydberg atoms that are
mediated directly by dipole-dipole interaction [29–33,54,55].
Here, it may be of interest that the phononic excitations
in large-ion crystals can be mediated over many tens of
μm. For instance, the 15-ion crystal employed for quantum
simulation in [56] was more than 100 μm long, such that
phonon-mediated spin-spin interactions between atoms over a
similar range seem feasible with our proposed scheme. This
extended system may be employed to study quantum spin
models, spin-phonon coupling, or to entangle distant atoms by
“wiring” them to the ionic quantum bus. On the other hand,
the field inhomogeneities of the ion trap will likely prevent
the implementation of any hybrid system beyond (quasi-)
one-dimensional geometries. A study into such many-body
Rydberg-ion systems should also take the direct dipole-dipole
interactions between the dressed atoms into account, a subject
we leave for future work.

The proposed scheme also allows for other interesting
extensions such as dressing the atoms with a state of negative
polarizability such that the atom-ion interaction becomes
repulsive. This eliminates micromotion-induced heating over
an energy range set by the power available in the dressing field,
even without tight atomic trapping potentials. Dressing with
higher angular momentum states may also bring interesting
functional forms of the atom-ion interaction potentials within
reach, such as the nondispersive charge-dipole 1/R2 and
charge-quadrupole 1/R3 terms. Finally, let us note that recent
experiments with Rydberg ions in Paul traps demonstrate
the feasibility of Rydberg excitations in the presence of the
ion-trapping field [57–59]. Hence, given the similarities of
our proposal and those recent experiments, the prospects of
confining Rydberg-dressed atoms interacting with ions in a
Paul trap are indeed very promising.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions with P.
Zoller. R.G. and T.S. acknowledge K. Jachymski, T. Feldker,
and F. Schmidt-Kaler for valuable comments. This work
was supported by the EU via the ERC (Starting Grant No.
337638) and EQuaM (Grant No. 323714) and the Nether-
lands Organisation for Scientific Research (NWO) via Vidi
Grant 680-47-538 (R.G.) and by the excellence cluster “The
Hamburg Centre for Ultrafast Imaging–Structure, Dynamics
and Control of Matter at the Atomic Scale” of the Deutsche
Forschungsgemeinschaft (A.N.). A.W.G. acknowledges the
SFB FoQuS (FWF Project No. F4016-N23) and the ERA-
NET CHIST-ERA (R-ION consortium) for support. We also
acknowledge financial support by the EU H2020 FET Proac-
tive project RySQ.

T.S. and R.G. contributed equally to this work and share
first authorship.

APPENDIX A: RYDBERG-ION INTERACTION

1. Born-Oppenheimer approximation

In this appendix, we provide a detailed derivation of the
Rydberg atom-ion effective Hamiltonian, whose derivation
is based on the Born-Oppenheimer approximation. The idea
is that for quantum systems comprised of particles that can
be divided into two classes, light and heavy ones, one can
approximately separate and solve first the dynamics of the light
particles, namely, by diagonalizing the Born-Oppenheimer
Hamiltonian, which then, for each solution |φk〉 of the light-
particle problem, yields an effective Hamiltonian Ĥ

(k)
eff for the

heavy particles. Hence, we will first investigate how to apply
the Born-Oppenheimer formalism in our scenario, and then
we will give a detailed presentation of the diagonalization of
ĤBO(ri ,ra) for pure Rydberg states and for the dressed case. In
the first case, we shall also include the effect of the ion-trapping
potential.

We start with the full Hamilton operator as defined in Eq. (3)
and rearrange terms:

Ĥ = Ĥa + Ĥi + Ĥia + Ĥ t
a + ĤL

= Ĥi + p̂2
a

2M
+ ĤBO + V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂ (A1)

with

ĤBO = p̂2

2μ
− p̂2p̂2

8m3
ec

2
+ VRyd(r) + V ′e-c

SO + Ĥ ′
ia + Ĥ ′t

a + ĤL.

(A2)

Here, we split the spin-orbit terms of the electron into two parts,
including only atomic or relative core-electron momentum
operators. All spin-orbit terms are of the following form:

V e-◦
SO = 1

2m2
ec

2
Ŝ · (◦×p̂e) = V ′e-◦

SO + V̄ e-◦
SO , (A3)

where we replaced the indices and electric fields of the
particular terms with the ◦ symbol and the split-up terms are
defined as

V ′e-◦
SO = 1

2m2
ec

2
Ŝ · (◦×p̂) and

V̄ e-◦
SO = me

M

1

2m2
ec

2
Ŝ · (◦×p̂a) (A4)

since p̂e = p̂ + me

M
p̂a in the coordinate frame we introduced

in Sec. II B. Accordingly, Ĥ ′
ia and Ĥ ′t

a are defined as Ĥia and
Ĥ t

a , respectively, with the spin-orbit terms V e−◦
SO they include

replaced by V ′e-◦
SO , with ◦ =̂ c,i,t . The operator K̂ comprises

the terms of the relativistic kinetic energy correction, that also
include the momentum operator p̂a of the atom

K̂ = −me

M

1

8m3
ec

2

{
4p̂2p̂ · p̂a − 4

me

M

[
(p̂ · p̂a)2 + 2p̂2p̂2

a

]
− 4

(
me

M

)2

p̂ · p̂ap̂2
a −

(
me

M

)3

p̂2
ap̂2

a

}
. (A5)

The so-defined Born-Oppenheimer Hamiltonian ĤBO com-
mutes with ri and ra , and therefore we can express ĤBO

as
∫ ∫

dridra|ri ,ra〉〈ri ,ra| ⊗ ĤBO(ri ,ra), where ĤBO(ri ,ra)
is now an operator acting on the r-Hilbert space with ri and
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FIG. 6. Comparison of the effective potential emanating from the
30S of 6Li state with (dots) and without (gray line) trapping field
in the radial direction. The three points correspond to the trapping
field at maximal positive and negative and zero amplitude. In this
calculation, we used the following parameters, �rf = 2π 2.5 MHz,
q = 0.28, assuming an Yb+ ion trapped at the origin.

ra treated as parameters. Hence, the full Hamiltonian (A1)
becomes

Ĥ = Ĥi + p̂2
a

2M
+
∫∫

dridra|ri ,ra〉〈ri ,ra| ⊗ ĤBO(ri ,ra)

+ V̄ e-c
SO + V̄ e-i

SO + V̄ e-t
SO + K̂. (A6)

In our case, however, ĤBO(ri ,ra) is time dependent because
of the external electric fields used to trap both the atom and
the ion [see Eqs. (6) and (16)]. Nevertheless, as we shall see
later in the appendix, we will perform a unitary transformation
to ĤBO(ri ,ra) such that the resulting Hamiltonian can be
approximated by a time-independent one. Given this, we shall
now consider ĤBO(ri ,ra) as time independent.

The first step is to change to a spectral representation of
ĤBO(ri ,ra) for each tuple of parameters (ri ,ra):

ĤBO(ri ,ra) =
∑

k

εk(ri ,ra)|φk(ri ,ra)〉〈φk(ri ,ra)|, (A7)

where φk(ri ,ra,r) denote the eigenstates of ĤBO(ri ,ra)
with eigenenergies εk(ri ,ra). We assume that we can in-
dex the eigenstates such that for

∫∫
dridra|ri ,ra〉〈ri ,ra| ⊗

|φk(ri ,ra)〉 = |φk〉 with k fixed the projectors P̂k defined by

(P̂k�)(ri ,ra,r) = φk(ri ,ra,r)
∫

dr′φ∗
k (ri ,ra,r′)�(ri ,ra,r′)

= fk(ri ,ra)φk(ri ,ra,r) (A8)

do exist. To ease notation, let us define a tensor product struc-
ture ⊗̃ given by 〈ri ,ra,r|(|f 〉⊗̃|φk〉) = f (ri ,ra)φk(ri ,ra,r).
Since

∑
k P̂k adds up to identity and P̂l P̂k equals δlkP̂k , because

φk(ri ,ra,r) form an orthonormal basis of the r-Hilbert space
for every tuple (ri ,ra), we can write the full Hamiltonian as

Ĥ =
∑
l,k

P̂lĤ P̂k

=
∑

k

Ĥ
(k)
eff ⊗̃|φk〉〈φk| +

∑
l,k

P̂l

(
V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂
)
P̂k

+
∑
l,k

[
ĥl,k + 1

2mi

ĥ(i)
l,k(ri ,ra) · p̂i + 1

2M
ĥ(a)

l,k (ri ,ra) · p̂a

]
⊗̃ |φl〉〈φk|, (A9)

where Ĥ
(k)
eff = Ĥi + p̂2

a

2M
+ εk(ri ,ra) is acting on the fk compo-

nent of the wave function only [cf. Eq. (11)] and the terms in
the last line are defined as

ĥl,k(ri ,ra) =
∫

dr′φ∗
l (ri ,ra,r′)

[(
p̂2

i

2mi

+ p̂2
a

2M

)
φk(ri ,ra,r′)

]
,

ĥ(i)
l,k(ri ,ra) =

∫
dr′φ∗

l (ri ,ra,r′)[p̂iφk(ri ,ra,r′)],

ĥ(a)
l,k =

∫
dr′φ∗

l (ri ,ra,r′)[p̂aφk(ri ,ra,r′)]. (A10)

One can see this by looking at the action of Ĥ on a general
state |�〉 in coordinate representation:

(Ĥ�)(ri ,ra,r) =
∑
l,k

(PlĤPk�)(ri ,ra,r)

=
∑

k

φk(ri ,ra,r)

[
Ĥi + p̂2

a

2M
+ εk(ri ,ra)

] ∫
dr′φ∗

k (ri ,ra,r′)�(ri ,ra,r′)

+
[∑

l,k

Pl

(
V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂
)
Pk�

]
(ri ,ra,r)
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+
∑
l,k

φl(ri ,ra,r′)
∫

dr′φ∗
l (ri ,ra,r′)

[(
p̂2

i

2mi

+ p̂2
a

2M

)
φk(ri ,ra,r′)

] ∫
dr′′φ∗

k (ri ,ra,r′′)�(ri ,ra,r′′)

+
∑
l,k

1

2mi

φl(ri ,ra,r′)
∫

dr′φ∗
l (ri ,ra,r′)[p̂iφk(ri ,ra,r′)]

[
p̂i

∫
dr′′φ∗

k (ri ,ra,r′′)�(ri ,ra,r′′)
]

+
∑
l,k

1

2M
φl(ri ,ra,r′)

∫
dr′φ∗

l (ri ,ra,r′)[p̂aφk(ri ,ra,r′)]
[

p̂a

∫
dr′′φ∗

k (ri ,ra,r′′)�(ri ,ra,r′′)
]
. (A11)

We assume that we can choose εk(ri ,ra) and φk(ri ,ra,r) in such
a way that they are differentiable in (ri ,ra) for fixed k. In our
case, this is guaranteed in a natural way since we first project
on a finite-dimensional subspace of the r coordinates such that
finite-dimensional perturbation theory for small changes in ri

and ra can be applied. Then, the second term is of order O(me

M
)

[see Eq. (A4)] and it can be neglected. We also neglect the
last three terms, which are small for the range of (ri ,ra) we
consider, since the eigenstates φk(ri ,ra,r) depend just weakly
on (ri ,ra). Hence, we can approximate Ĥ by an orthogonal
sum of effective Hamiltonians Ĥ 	 ⊕

k [Ĥ (k)
eff ⊗̃|φk〉〈φk|],

where

Ĥ
(k)
eff = Ĥi + p̂2

a

2M
+ εk(ri ,ra), (A12)

each acting on the fk(ri ,ra) component of |�〉 only. We note
that the effect of the neglected terms are corrections to the

operators Ĥ
(k)
eff as well as couplings between the orthogonal

subspaces the Ĥ
(k)
eff act on.

Now, we continue in analyzing the time-dependent Born-
Oppenheimer Hamiltonian. Therefore, we have to investigate
the time-dependent Schrödinger equation i�∂t� = Ĥ�. We
want to move to a rotating frame such that the Born-
Oppenheimer Hamiltonian can be written in a form such that
we can apply the rotating wave approximation. To this end,
we make the following ansatz for the time-dependent unitary
transformation:

Û =
∫∫

dridra|ri ,ra〉〈ri ,ra| ⊗ Ûri ,ra
(t). (A13)

Thus, the Schrödinger equation is now equivalent to
i�∂t Û|�〉 = (ÛĤ Û† + i�Û′Û†)Û|�〉 with Û′ being the time
derivative of Û. Let us have a closer look to the right-hand side
of the Schrödinger equation:

ÛĤ Û† + i�Û′Û† = Û
(

Ĥi + p̂2
a

2M

)
Û† +

∫∫
dridra|ri ,ra〉〈ri ,ra| ⊗ [

Ûri ,ra
ĤBO(ri ,ra)Û †

ri ,ra
+ i�Û ′

ri ,ra
Û †

ri ,ra

]
+ Û

(
V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂
)
Û†

= Ĥi + p̂2
a

2M
+
∫∫

dridra|ri ,ra〉〈ri ,ra| ⊗ [
Ûri ,ra

ĤBO(ri ,ra)Û †
ri ,ra

+ i�Û ′
ri ,ra

Û †
ri ,ra

]
+
[

Û,

(
p̂2

i

2mi

+ p̂2
a

2M

)]
Û† + Û

(
V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂
)
Û†

≈ Ĥi + p̂2
a

2M
+
∫∫

dridra|ri ,ra〉〈ri ,ra| ⊗ ˆ̃HBO(ri ,ra)

+
[

Û,

(
p̂2

i

2mi

+ p̂2
a

2M

)]
Û† + Û

(
V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂
)
Û†

=
∑

k

[
Ĥi + p̂2

a

2M
+ ε̃k(ri ,ra)

]
⊗̃|φ̃k〉〈φ̃k| +

∑
l,k

[
ˆ̃hl,k + 1

2mi

ˆ̃h(i)
l,k(ri ,ra) · p̂i + 1

2M

ˆ̃h(a)
l,k (ri ,ra) · p̂a

]
⊗̃|φl〉〈φk|

+
[

Û,

(
p̂2

i

2mi

+ p̂2
a

2M

)]
Û† + Û

(
V̄ e-c

SO + V̄ e-i
SO + V̄ e-t

SO + K̂
)
Û†. (A14)

Here, we assume that we can choose Ûri ,ra
such that [Ûri ,ra

ĤBO(ri ,ra)Û †
ri ,ra

+ i�Û ′
ri ,ra

Û
†
ri ,ra

] ≈ ˆ̃HBO(ri ,ra), where ˆ̃HBO(ri ,ra) is

a time-independent operator. The P̃k , ε̃k(ri ,ra), |φ̃k〉, ˆ̃hl,k , ˆ̃h(i)
l,k , and ˆ̃h(a)

l,k are defined as before, but for ˆ̃HBO(ri ,ra). As in Eq. (A11),
the last term in Eq. (A14) is of order O(me

M
), and the terms in the two lines above are in our case both of the type of the last term

in Eq. (A11). Hence, we are in a similar situation as in the time-independent case discussed at the beginning of this section. We
shall see in the next section how Ûri ,ra

is chosen in practice.
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2. Diagonalization of the Born-Oppenheimer Hamiltonian

Now, let us have a more detailed look at how to get
the desired spectral representations of the Born-Oppenheimer
Hamiltonian

ĤBO(ri ,ra) = p̂2

2μ
+ VRyd(r) − p̂2p̂2

8m3
ec

2
+ V ′e-c

SO

− e2

4πε0

∣∣R + mc

M
r
∣∣ + e2

4πε0

∣∣R − me

M
r
∣∣

+V ′e-i
SO + Ĥ ′t

a + ĤL. (A15)

We are interested in the case of atom-ion distances R

in the μm range with the electron close to the core. In
the close to core region, the potential VRyd dominates
the remaining potential terms. Therefore, we assume that
projecting on a subspace of bound states of a single
atom Ĥ0 = p̂2

2μ
+ VRyd(r) − p̂2p̂2

8m3
ec

2 + V ′e-c
SO yields a good

approximation. To simplify the situation further, we expand
the ion part Ĥ ′

ia in r/R since r/R is small for the states we
project on, yielding the following approximated Hamiltonian:

Ĥ ′
ia = − e2

4πε0

∣∣R + mc

M
r
∣∣ + e2

4πε0

∣∣R − me

M
r
∣∣

− 1

2m2
ec

2
Ŝ ·
{[

e2
(
R + mc

M
r
)

4πε0

∣∣R + mc

M
r
∣∣3
]

× p̂

}

≈ e2

4πε0

[
−r · R + mc−me

2M
r2

|R|3 − 3(mc − me)(r · R)2

2M|R|5
]

− e2

8πε0m2
ec

2
Ŝ ·
[( mc

M
r − R

|R|3 + 3mc

M

r · R
|R|5 R

)
× p̂

]
,

(A16)

where the terms in the first line of Eq. (A16) on the right-hand
side from left to right denote the attractive Coulomb potential

of ion and Rydberg electron, the repulsive Coulomb potential
of ion and the atomic core and the spin-orbit-like interaction
term of the electron and the electric field of the ion. The
terms in the second line correspond to a Taylor expansion
of the Coulombic terms up to second order in r around
r = 0. The part proportional to r · R is the dipole term and
the remaining parts of the second line form the quadrupole
term. In the last line, the terms in cross product with the
momentum operator p̂ correspond to a Taylor expansion of the
ion’s electric field at the electron position in r around r = 0
up to first order only since also the momentum operator will
approximately be proportional to r, as the following identity
shows:

p̂ = i2
μ

�
[Ĥ0,r]− μ

�m2
ec

2
[Ŝ × (∇eVRyd)] − i

μ

4�m3
ec

2
[p̂2p̂2,r].

(A17)

We use this identity to substitute the momentum operator p̂ in

Eq. (A16). Because α2 = ( e2

4πε0�c
)
2 � O( r

R
) for the distances

we are interested in, we neglect terms of the form α2O( r2

R2 )
and α4O( r

R
) in order to obtain an approximate expression of

Ĥ ′
ia up to O( r2

R2 ):

Ĥ ′
ia ≈ e2

4πε0|R|3
(

−r · R + mc − me

2M
r2

)
− 3e2(mc − me)

8πε0M|R|5 (r · R)2 − i
e2μ

4πε0�m2
ec

2

1

|R|3 Ŝ

· (R × [Ĥ0,r]). (A18)

We also use the identity (A17) to approximate V ′e-t
SO such that all

perturbation terms are now simple polynomials of second order
in the relative position variable r with coefficients depending
on the parameters ri and ra . We then arrive at the following
expression:

ĤBO(ri ,ra) ≈ Ĥ0

+ e2

4πε0|R|3
(

−r · R + mc − me

2M
r2

)
− 3e2(mc − me)

8πε0M|R|5 (r · R)2

− i
e2μ

4πε0�m2
ec

2

1

|R|3 Ŝ · (R × [Ĥ0,r])

⎫⎪⎪⎬⎪⎪⎭Ĥ ′
ia

+ eφPT(rc,t) − eφPT(re,t) + i
eμ

� m2
ec

2
Ŝ · [EPT(re,t) × [Ĥ0,r]]

}
Ĥ ′t

a

+ er · [Edress(ra,t) + Edip(ra,t)].

}
ĤL

(A19)

In order to proceed, we need to determine the eigenstates
of Ĥ0. We assume that the effective Rydberg potential VRyd

depends only on the absolute value of r and that for |r| → ∞
it scales as |r|−1. Under these assumptions, the angular
component of the wave function is solved by means of the

spherical harmonics, as for the hydrogen atom. As far as the
radial part of the wave function is concerned, since the exact
shape of the inner part of the Rydberg potential is unknown,
we can only rely on the experimentally determined quantum
defect energy values. Thus, we obtain the approximate radial
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wave functions by means of the Numerov method as in
Ref. [60], in which we start the propagation from the classical
forbidden region, where the wave function has to vanish
at large |r| ≈ 2n(n + 15)a0 with a0 the Bohr radius and n

the principal quantum number, to a point close to the core
|r| ≈ n∗{n∗ − [n∗2 − (l + 1/2)2]

1
2 }a0, by assuming a potential

∝|r|−1 for all r. Here, n∗ = n − δnlj with δnlj being the
quantum defect for which we used the known quantum defect
values reported in Ref. [61].

Let us first treat the Born-Oppenheimer Hamiltonian
quasistatically, which means treating time as a parameter. In
our simulations, we projected on the subspace spanned by the
eigenstates with principal quantum number between 25 and
35 for the case without trapping field and on the subspace
spanned by the eigenstates with principal quantum number
between 26 and 34, with azimuthal quantum number up to
25, for the simulations including the ion-trapping field. The
eigenenergies of the resulting matrices have been obtained
numerically. The effect of the ion-trapping field in the radial
direction is visualized in Fig. 6, where we have chosen the
field parameters as in Sec. II C.

Now, we continue with the time-dependent case. We can di-
vide ĤBO(ri ,ra) into a time-independent and a time-dependent

part

Ĥ stat
BO (ri ,ra) = p̂2

2μ
+ VRyd(r) + V ′e-c

SO + Ĥ ′
ia,

Ĥ
dyn
BO (ri ,ra,t) = Ĥ ′t

a + ĤL. (A20)

To change to a spectral representation of Ĥ stat
BO (ri ,ra) we use

second-order perturbation theory in the dipole approximation
and project on a finite subspace of states, whose energy
differences are close to the laser frequencies:

ĤBO(ri ,ra) =
∑

k

εstat
k (ri ,ra)|φk(ri ,ra)〉〈φk(ri ,ra)|

+
∑
k′,k

h
dyn
k′,k(ri ,ra,t)|φk′(ri ,ra)〉〈φk(ri ,ra)|.

(A21)

Here, φk(ri ,ra,r) are the eigenvectors of Ĥ stat
BO (ri ,ra) with

eigenenergies εstat
k (ri ,ra), and h

dyn
k′,k(ri ,ra,t) = 〈φk′(ri ,ra)|

Ĥ
dyn
BO (ri ,ra,t)|φk(ri ,ra)〉. For the unitary transform we use

Û =
∑

ri ,ra ,k

|ri ,ra〉〈ri ,ra| ⊗ eiωkt |φk(ri ,ra)〉〈φk(ri ,ra)|, (A22)

where the ωk are chosen such that all the time dependence is comprised in fast rotating terms, which we neglect, namely,

ˆ̃HBO(ri ,ra) =
(∑

k′,k

{[
εstat
k (ri ,ra) − �ωk

]
δk′,k + ei(ωk′ −ωk)th

dyn
k′,k(ri ,ra,t)

}|φk′(ri ,ra)〉〈φk(ri ,ra)|
)

≈
(∑

k′,k

{[
εstat
k (ri ,ra) − �ωk

]
δk′,k + hRW

k′,k (ri ,ra)
}|φk′(ri ,ra)〉〈φk(ri ,ra)|

)
. (A23)

In the specific case of Rydberg dressing discussed in Sec. II D, we project on the three-level subspace spanned by |ga〉, |ea〉,
and |R〉:

ĤBO =

⎛⎜⎜⎝
εg 2��d (ra) cos

[( εe−εg

�
+ �d

)
t
]

2�� cos
[( ε

(0)
R −εg

�
+ �0

)
t
]

2��d (ra) cos
[( εe−εg

�
+ �d

)
t
]

εe 0

2�� cos
[( ε

(0)
R −εg

�
+ �0

)
t
]

0 ε
(0)
R − C

|R〉
4

R4

⎞⎟⎟⎠, (A24)

where we neglect the R dependence of �, εe, and εg . According to this we choose

Û (R,t) =

⎛⎜⎝e−i
εg

�
t 0 0

0 e−i( εe
�

+�d )t 0

0 0 e−i(
ε
(0)
R
�

+�0)t

⎞⎟⎠ (A25)

for the unitary transform. The resulting three-dimensional matrix is the one given in Eq. (17), which can be diagonalized to get
the effective potential (18) in the Rydberg dressed case.

APPENDIX B: MICROMOTION CALCULATION

For the sake of simplicity and without loss of generality, in the numerical simulations for the assessment of the impact of the
micromotion on both the atom and ion we have considered the following total atom-ion Hamiltonian:

Ĥtot(t) = Ĥmm(t) + �ωa

(
b̂†b̂ + 1

2

)
+ η��S-M cos(ωvt)(â

† + â)|↑〉i〈↑| + Ṽ (3)(x̂i ,x̂a)

2
[1 + cos(ωvt)]|↑〉a〈↑|, (B1)
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where terms rotating faster than δ have not been neglected. The other terms in Eq. (26) are then defined as

Ĥmm(t) = p̂2
i

2mi

+ mi�
2
rfq

4
x̂2

i cos(�rf t),

Ṽ (3)(x̂i ,x̂a) = Ṽ (0,0) +
3∑

k=1

Ṽ ′
0,k(0,0)x̂k

a +
3∑

k=1

Ṽ ′
k,0(0,0)x̂k

i + Ṽ ′
1,1(0,0)x̂i x̂a + Ṽ ′

1,2(0,0)x̂i x̂
2
a + Ṽ ′

2,1(0,0)x̂2
i x̂a,

Ṽ ′
j,k(0,0) = 1

(j + k)!

∂j+k

∂x
j

i ∂xk
a

Ṽ (0,0), Ṽ (x̂i ,x̂a) = ��2

�0 + α|R〉
2�

|Eion + Es + Erf|2
.

Here, the norm of the total electric field E = Eion + Es + Erf is given by

|E(ra,ri ,t)|2 = m2
i ω

4
i

4e2

(
x2

a + y2
a + 4z2

a

)+ m2
i �

4
rfq

2

4e2
cos2(�rf t)

(
x2

a + y2
a

)+ e2k2
C

[(xa − xi)2 + (ya − yi)2 + (za − zi)2]2

+ m2
i �

2
rfω

2
i q

2e2
cos(�rf t)

(
x2

a − y2
a

)+ mikCω2
i

(xa − xi)xa + (ya − yi)ya − 2(za − zi)za

[(xa − xi)2 + (ya − yi)2 + (za − zi)2]3/2

+mi�
2
rfqkC cos(�rf t)

(xa − xi)xa − (ya − yi)ya

[(xa − xi)2 + (ya − yi)2 + (za − zi)2]3/2
. (B2)

As we outlined in Sec. III C, we consider the situation in which the atom is trapped some distance d away from the ion in the
(transverse) x direction (i.e., x̄i = 0 and x̄a = d) and yi = ya = zi = za = 0. Thus, the above expression for the electric field
norm simplifies to

|E(xa,xi,t)|2 = m2
i

4e2
(xa + d)2

[
ω4

i + �4
rfq

2 cos2(�rf t) + 2qω2
i �

2
rf cos(�rf t)

]
+ e2k2

C

(xa − xi + d)4
+ mikC

xa + d

(xa − xi + d)2

[
ω2

i + �2
rfq cos(�rf t)

]
.

Now, by rewriting the adiabatic potential as Ṽ (x̂i ,x̂a) = ξ1

ξ2+ξ3f (xi ,xa ) , the corresponding derivatives are

∂

∂xa,i

Ṽ (0,0) = − ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂

∂xa,i

f (0,0),

∂2

∂x2
a,i

Ṽ (0,0) = − ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂2

∂x2
a,i

f (0,0) + 2ξ1ξ
2
3

[ξ2 + ξ3f (0,0)]3

[
∂

∂xa,i

f (0,0)

]2

,

∂3

∂x3
a,i

Ṽ (0,0) = − ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂3

∂x3
a,i

f (0,0) + 6ξ1ξ
2
3

[ξ2 + ξ3f (0,0)]3

∂

∂xa,i

f (0,0)
∂2

∂x2
a,i

f (0,0)

− 6ξ1ξ
3
3

[ξ2 + ξ3f (0,0)]4

[
∂

∂xa,i

f (0,0)

]3

,

∂2

∂xa∂xi

Ṽ (0,0) = − ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂2

∂xa∂xi

f (0,0) + 2ξ1ξ
2
3

[ξ2 + ξ3f (0,0)]3

∂

∂xa

f (0,0)
∂

∂xi

f (0,0),

∂3

∂xa∂x2
i

Ṽ (0,0) = − ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂3

∂xa∂x2
i

f (0,0) − 6ξ1ξ
3
3

[ξ2 + ξ3f (0,0)]4

[
∂

∂xi

f (0,0)

]2
∂

∂xa

f (0,0)

+ 2ξ1ξ
2
3

[ξ2 + ξ3f (0,0)]3

[
∂2

∂x2
i

f (0,0)
∂

∂xa

f (0,0) + 2
∂

∂xi

f (0,0)
∂2

∂xa∂xi

f (0,0)

]
,

∂3

∂x2
a∂xi

Ṽ (0,0) = − ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂3

∂x2
a∂xi

f (0,0) − 6ξ1ξ
3
3

[ξ2 + ξ3f (0,0)]4

[
∂

∂xa

f (0,0)

]2
∂

∂xi

f (0,0)

+ 2ξ1ξ
2
3

[ξ2 + ξ3f (0,0)]3

[
∂2

∂x2
a

f (0,0)
∂

∂xi

f (0,0) + 2
∂

∂xa

f (0,0)
∂2

∂xa∂xi

f (0,0)

]
.

Here, ξ1 = ��2, ξ2 = �0, and ξ3 = α|r〉
2�

. Then, the total electric field norm is

f (0,0) = m2
i ω

4
i

4e2
d2 + m2

i �
4
rfq

2

4e2
cos2(�rf t)d

2 + e2k2
C

d4
+ m2

i �
2
rfω

2
i q

2e2
cos(�rf t)d

2 + mikCω2
i

d
+ mi�

2
rfqkC cos(�rf t)

d
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while the derivatives of f are

∂

∂xa

f (0,0) = m2
i d

2e2

[
ω4

i + �4
rfq

2 cos2(�rf t) + 2qω2
i �

2
rf cos(�rf t)

]− mikC

d2

[
ω2

i + �2
rfq cos(�rf t)

]− 4e2k2
C

d5
,

∂2

∂x2
a

f (0,0) = m2
i

2e2

[
ω4

i + �4
rfq

2 cos2(�rf t) + 2qω2
i �

2
rf cos(�rf t)

]+ 2mikC

d3

[
ω2

i + �2
rfq cos(�rf t)

]+ 20e2k2
C

d6
,

∂3

∂x3
a

f (0,0) = −6mikC

d4

[
ω2

i + �2
rfq cos(�rf t)

]− 120e2k2
C

d7
,

∂

∂xi

f (0,0) = 2mikC

d2

[
ω2

i + �2
rfq cos(�rf t)

]+ 4e2k2
C

d5
,

∂2

∂x2
i

f (0,0) = 6mikC

d3

[
ω2

i + �2
rfq cos(�rf t)

]+ 20e2k2
C

d6
,

∂3

∂x3
i

f (0,0) = 24mikC

d4

[
ω2

i + �2
rfq cos(�rf t)

]+ 120e2k2
C

d7
,

∂2

∂xa∂xi

f (0,0) = −4mikC

d3

[
ω2

i + �2
rfq cos(�rf t)

]− 20e2k2
C

d6
,

∂3

∂xa∂x2
i

f (0,0) = −18mikC

d4

[
ω2

i + �2
rfq cos(�rf t)

]− 120e2k2
C

d7
,

∂3

∂x2
a∂xi

f (0,0) = 12mikC

d4

[
ω2

i + �2
rfq cos(�rf t)

]+ 120e2k2
C

d7
.

Finally, we note that the micromotion Hamiltonian can be rewritten as

Ĥmm(t) = p̂2
i

2mi

+ miω
2
i

2
x̂2

i + mi�
2
rfq

4
x̂2

i cos(�rf t) − miω
2
i

2
x̂2

i = Ĥ i
0 + miω

2
i

2
x̂2

i

[
�2

rf

2ω2
i

q cos(�rf t) − 1

]
.

Now, the goal is to solve the Schrödinger equation i�∂t |ψ(t)〉 = Ĥtot(t)|ψ(t)〉 with initial condition at time t = 0 given by
the (Gaussian) ground states (note that this does not exactly correspond to the ground state of the ion in the Paul trap) of the
unperturbed ion Ĥ i

0 and atom Ĥ a
0 = �ωa(na + 1/2) Hamiltonians. The equation can be then easily solved in coordinated space

(xi,xa) and the integration can be performed with a split-step operator together with the fast Fourier transform techniques.
For the sake of completeness, we briefly note that for the numerics it is better to work in dimensionless units. To this end, we

have rescaled the energies in units of ��rf and the lengths in units of 
 = √
�/(μaiω̄) with μai = mami/(ma + mi) being the

reduced mass, and ω̄ = √
ωaωi . Thus, we shall also make the replacement τ = �rf t . Then, the dressed potential can be rewritten as

Ṽ (x̂i ,x̂a)

��rf
=

�
�rf

�0
�

+ α|R〉
2��

E2f (x̂i ,x̂a)
= ξ̄1

ξ̄2 + ξ̄3f (x̂i ,x̂a)
, (B3)

where ξ̄1 = �/�rf , ξ̄2 = �0/�, and

ξ̄3 = α|R〉
2��

E2 = γα|↑〉
2��

k2
Ce2


4
= γ

4

(�ω̄)2

��E∗ , (B4)

with E∗ = �
4/(2α|↑〉μ2e2k2

C) and γ = α|R〉/α|↑〉. Hence, we have

f (0,0) = β1
d̄2

4
+ β2

d̄2

4
q2 cos2(τ ) + β3

d̄2

2
q cos(τ ) + β4

d̄
+ β5

d̄
q cos(τ ) + 1

d̄4
, (B5)

where d̄ = d/
, and

β1 = m2
i ω

4
i 


6

e4k2
C

, β2 = m2
i �

4
rf


6

e4k2
C

, β3 = m2
i ω

2
i �

2
rf


6

e4k2
C

, β4 = miω
2
i 


3

kCe2
, β5 = mi�

2
rf


3

kCe2
.

APPENDIX C: DETERMINATION OF THE EFFECTIVE
RABI AND DRIVING FREQUENCIES

Once the driving frequency ωv and the ion bicromatic
Rabi frequency �S-M are chosen, we have to choose the
Rydberg effective Rabi frequency � such that when both

the atom and the ion are in the internal spin state |↑〉 the
corresponding forces compensate each other, as we discussed
in Sec. III. In other words, in order to have 〈x̂i(t)〉 	
0 ∀ t the laser Hamiltonian ĤS-M and the linear term of
Ṽ (3)(x̂i ,x̂a) have to be equal in size, but opposite in sign.
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More precisely,

2η��S-M = −V ′
1,0(0,0). (C1)

However, the derivative V ′
1,0(0,0) is time dependent because

of the rf field. Since the rf field oscillates at a frequency much
higher than the observation time (∼1 ms), we can take the time
average 〈V ′

1,0(0,0)〉Trf with Trf = 2π/�rf , that is,

〈V ′
1,0(0,0)〉Trf =

〈
∂

∂xi

Ṽ (0,0)

〉
Trf

= −
〈

ξ1ξ3

[ξ2 + ξ3f (0,0)]2

∂

∂xi

f (0,0)

〉
Trf

.

For the sake of simplicity, we shall compute such time average
as

〈V ′
1,0(0,0)〉Trf = − ξ1ξ3

[ξ2 + ξ3〈f (0,0)〉Trf
]2

〈
∂

∂xi

f (0,0)

〉
Trf

, (C2)

with

〈f (0,0)〉Trf = m2
i ω

4
i

4e2
d2 + m2

i �
4
rfq

2

8e2
d2 + e2k2

C

d4
+ mikCω2

i

d

and 〈
∂

∂xi

f (0,0)

〉
Trf

= 2mikC

d2
ω2

i + 4e2k2
C

d5
.

Putting everything together, one has to choose the laser
strength such that Eq. (C1) is fulfilled. Given the results
displayed in Fig. 5, we can also conclude that the computation
of the time average as done in Eq. (C2) is a very good
approximation for the considered numerical example.

Finally, we describe how ωv can be chosen for particular
ion-trap parameters. The secular frequency of the ion can be
approximated by ω

(⊥)
i ≈ �rf

2

√
as + q2/2 for small q and as .

For the parameters used in Sec. III C, where we set as = 0,
since we neglected the static trapping field, we get ω

(⊥)
i ≈

2π 250 kHz. However, a more accurate calculation based on
continued fractions for solving the Mathieu equations [43]
yields ω

(⊥)
i = 2π 254.089 kHz such that δ(⊥) = ωv − ω

(⊥)
i =

2π 1.064 kHz in Sec. III C, corresponding to a gate time of
τg = 940 μs. This in turn gives Jτg/� = π/4, corresponding
to the desired phase gate.
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